Volume 4 - Proceedings of MFPS XL

Volume 4 of ENTICS is devoted to the Proceedings of the Fortieth Conference on the Mathematical Foundations of Programming Semantics, which was held in conjunction with the Applied Category Theory (ACT) Conference at the University of Oxford in June, 2024. [10.46298/entics.proceedings.mfps40](https://doi.org/10.46298/entics.proceedings.mfps40)


1. Parametricity via Cohesion

C. B. Aberlé.
Parametricity is a key metatheoretic property of type systems, which implies strong uniformity & modularity properties of the structure of types within systems possessing it. In recent years, various systems of dependent type theory have emerged with the aim of expressing such parametric reasoning in their internal logic, toward the end of solving various problems arising from the complexity of higher-dimensional coherence conditions in type theory. This paper presents a first step toward the unification, simplification, and extension of these various methods for internalizing parametricity. Specifically, I argue that there is an essentially modal aspect of parametricity, which is intimately connected with the category-theoretic concept of cohesion. On this basis, I describe a general categorical semantics for modal parametricity, develop a corresponding framework of axioms (with computational interpretations) in dependent type theory that can be used to internally represent and reason about such parametricity, and show this in practice by implementing these axioms in Agda and using them to verify parametricity theorems therein. I then demonstrate the utility of these axioms in managing the complexity of higher-dimensional coherence by deriving induction principles for higher inductive types, and in closing, I sketch the outlines of a more general synthetic theory of parametricity, with applications in domains ranging from homotopy type theory to the analysis of program […]

2. Linear Arboreal Categories

Samson Abramsky ; Yoàv Montacute ; Nihil Shah.
Arboreal categories, introduced by Abramsky and Reggio, axiomatise categories with tree-shaped objects. These categories provide a categorical language for formalising behavioural notions such as simulation, bisimulation, and resource-indexing. In this paper, we strengthen the axioms of an arboreal category to exclude `branching' behaviour, obtaining a notion of `linear arboreal category'. We then demonstrate that every arboreal category satisfying a linearisability condition has an associated linear arboreal subcategory related via an adjunction. This identifies the relationship between the pebble-relation comonad, of Montacute and Shah, and the pebbling comonad, of Abramsky, Dawar, and Wang, and generalises it further. As another outcome of this new framework, we obtain a linear variant of the arboreal category for modal logic. By doing so we recover different linear-time equivalences between transition systems as instances of their categorical definitions. We conclude with new preservation and characterisation theorems relating trace inclusion and trace equivalence with different linear fragments of modal logic.

3. Positive Focusing is Directly Useful

Beniamino Accattoli ; Jui-Hsuan Wu.
Recently, Miller and Wu introduced the positive $\lambda$-calculus, a call-by-value $\lambda$-calculus with sharing obtained by assigning proof terms to the positively polarized focused proofs for minimal intuitionistic logic. The positive $\lambda$-calculus stands out among $\lambda$-calculi with sharing for a compactness property related to the sharing of variables. We show that -- thanks to compactness -- the positive calculus neatly captures the core of useful sharing, a technique for the study of reasonable time cost models.

4. A Semantic Proof of Generalised Cut Elimination for Deep Inference

Robert Atkey ; Wen Kokke.
Multiplicative-Additive System Virtual (MAV) is a logic that extends Multiplicative-Additive Linear Logic with a self-dual non-commutative operator expressing the concept of "before" or "sequencing". MAV is also an extenson of the the logic Basic System Virtual (BV) with additives. Formulas in BV have an appealing reading as processes with parallel and sequential composition. MAV adds internal and external choice operators. BV and MAV are also closely related to Concurrent Kleene Algebras. Proof systems for MAV and BV are Deep Inference systems, which allow inference rules to be applied anywhere inside a structure. As with any proof system, a key question is whether proofs in MAV can be reduced to a normal form, removing detours and the introduction of structures not present in the original goal. In Sequent Calcluli systems, this property is referred to as Cut Elimination. Deep Inference systems have an analogous Cut rule and other rules that are not present in normalised proofs. Cut Elimination for Deep Inference systems has the same metatheoretic benefits as for Sequent Calculi systems, including consistency and decidability. Proofs of Cut Elimination for BV, MAV, and other Deep Inference systems present in the literature have relied on intrincate syntactic reasoning and complex termination measures. We present a concise semantic proof that all MAV proofs can be reduced to a normal form avoiding the Cut rule and other "non analytic" […]

5. CaTT contexts are finite computads

Thibaut Benjamin ; Ioannis Markakis ; Chiara Sarti.
Two novel descriptions of weak {\omega}-categories have been recently proposed, using type-theoretic ideas. The first one is the dependent type theory CaTT whose models are {\omega}-categories. The second is a recursive description of a category of computads together with an adjunction to globular sets, such that the algebras for the induced monad are again {\omega}-categories. We compare the two descriptions by showing that there exits a fully faithful morphism of categories with families from the syntactic category of CaTT to the opposite of the category of computads, which gives an equivalence on the subcategory of finite computads. We derive a more direct connection between the category of models of CaTT and the category of algebras for the monad on globular sets, induced by the adjunction with computads.

6. Strong Nominal Semantics for Fixed-Point Constraints

Ali K. Caires-Santos ; Maribel Fernández ; Daniele Nantes-Sobrinho.
Nominal algebra includes $\alpha$-equality and freshness constraints on nominal terms endowed with a nominal set semantics that facilitates reasoning about languages with binders. Nominal unification is decidable and unitary, however, its extension with equational axioms such as Commutativity (which has a finitary first-order unification type) is no longer finitary unless permutation fixed-point constraints are used. In this paper, we extend the notion of nominal algebra by introducing fixed-point constraints and provide a sound semantics using strong nominal sets. We show, by providing a counter-example, that the class of nominal sets is not a sound denotation for this extended nominal algebra. To recover soundness we propose two different formulations of nominal algebra, one obtained by restricting to a class of fixed-point contexts that are in direct correspondence with freshness contexts and another obtained by using a different set of derivation rules.

7. On a fibrational construction for optics, lenses, and Dialectica categories

Matteo Capucci ; Bruno Gavranović ; Abdullah Malik ; Francisco Rios ; Jonathan Weinberger.
Categories of lenses/optics and Dialectica categories are both comprised of bidirectional morphisms of basically the same form. In this work we show how they can be considered a special case of an overarching fibrational construction, generalizing Hofstra's construction of Dialectica fibrations and Spivak's construction of generalized lenses. This construction turns a tower of Grothendieck fibrations into another tower of fibrations by iteratively twisting each of the components, using the opposite fibration construction.

8. Continuous Domains for Function Spaces Using Spectral Compactification

Amin Farjudian ; Achim Jung.
We introduce a continuous domain for function spaces over topological spaces which are not core-compact. Notable examples of such topological spaces include the real line with the upper limit topology, which is used in solution of initial value problems with temporal discretization, and various infinite dimensional Banach spaces which are ubiquitous in functional analysis and solution of partial differential equations. If a topological space $\mathbb{X}$ is not core-compact and $\mathbb{D}$ is a non-singleton bounded-complete domain, the function space $[\mathbb{X} \to \mathbb{D}]$ is not a continuous domain. To construct a continuous domain, we consider a spectral compactification $\mathbb{Y}$ of $\mathbb{X}$ and relate $[\mathbb{X} \to \mathbb{D}]$ with the continuous domain $[\mathbb{Y} \to \mathbb{D}]$ via a Galois connection. This allows us to perform computations in the native structure $[\mathbb{X} \to \mathbb{D}]$ while computable analysis is performed in the continuous domain $[\mathbb{Y} \to \mathbb{D}]$, with the left and right adjoints used for moving between the two function spaces.

9. Inferentialist Resource Semantics

Alexander V. Gheorghiu ; Tao Gu ; David J. Pym.
In systems modelling, a 'system' typically comprises located resources relative to which processes execute. One important use of logic in informatics is in modelling such systems for the purpose of reasoning (perhaps automated) about their behaviour and properties. To this end, one requires an interpretation of logical formulae in terms of the resources and states of the system; such an interpretation is called a 'resource semantics' of the logic. This paper shows how inferentialism -- the view that meaning is given in terms of inferential behaviour -- enables a versatile and expressive framework for resource semantics. Specifically, how inferentialism seamlessly incorporates the assertion-based approach of the logic of Bunched Implications, foundational in program verification (e.g., as the basis of Separation Logic), and the renowned number-of-uses reading of Linear Logic. This integration enables reasoning about shared and separated resources in intuitive and familiar ways, as well as about the composition and interfacing of system components.

10. Amortized Analysis via Coalgebra

Harrison Grodin ; Robert Harper.
Amortized analysis is a cost analysis technique for data structures in which cost is studied in aggregate: rather than considering the maximum cost of a single operation, one bounds the total cost encountered throughout a session. Traditionally, amortized analysis has been phrased inductively, quantifying over finite sequences of operations. Connecting to prior work on coalgebraic semantics for data structures, we develop the alternative perspective that amortized analysis is naturally viewed coalgebraically in a category of cost algebras, where a morphism of coalgebras serves as a first-class generalization of potential function suitable for integrating cost and behavior. Using this simple definition, we consider amortization of other sample effects, non-commutative printing and randomization. To support imprecise amortized upper bounds, we adapt our discussion to the bicategorical setting, where a potential function is a colax morphism of coalgebras. We support algebraic and coalgebraic operations simultaneously by using coalgebras for an endoprofunctor instead of an endofunctor, combining potential using a monoidal structure on the underlying category. Finally, we compose amortization arguments in the indexed category of coalgebras to implement one amortized data structure in terms of others.

11. Polynomials in homotopy type theory as a Kleisli category

Elies Harington ; Samuel Mimram.
Polynomials in a category have been studied as a generalization of the traditional notion in mathematics. Their construction has recently been extended to higher groupoids, as formalized in homotopy type theory, by Finster, Mimram, Lucas and Seiller, thus resulting in a cartesian closed bicategory. We refine and extend their work in multiple directions. We begin by generalizing the construction of the free symmetric monoid monad on types in order to handle arities in an arbitrary universe. Then, we extend this monad to the (wild) category of spans of types, and thus to a comonad by self-duality. Finally, we show that the resulting Kleisli category is equivalent to the traditional category of polynomials. This thus establishes polynomials as a (homotopical) model of linear logic. In fact, we explain that it is closely related to a bicategorical model of differential linear logic introduced by Melliès.

12. Typed Non-determinism in Concurrent Calculi: The Eager Way

Bas van den Heuvel ; Daniele Nantes-Sobrinho ; Joseph W. N. Paulus ; Jorge A. Pérez.
We consider the problem of designing typed concurrent calculi with non-deterministic choice in which types leverage linearity for controlling resources, thereby ensuring strong correctness properties for processes. This problem is constrained by the delicate tension between non-determinism and linearity. Prior work developed a session-typed {\pi}-calculus with standard non-deterministic choice; well-typed processes enjoy type preservation and deadlock-freedom. Central to this typed calculus is a lazy semantics that gradually discards branches in choices. This lazy semantics, however, is complex: various technical elements are needed to describe the non-deterministic behavior of typed processes. This paper develops an entirely new approach, based on an eager semantics, which more directly represents choices and commitment. We present a {\pi}-calculus in which non-deterministic choices are governed by this eager semantics and session types. We establish its key correctness properties, including deadlock-freedom, and demonstrate its expressivity by correctly translating a typed resource {\lambda}-calculus.

13. Algebraic Reasoning over Relational Structures

Jan Jurka ; Stefan Milius ; Henning Urbat.
Many important computational structures involve an intricate interplay between algebraic features (given by operations on the underlying set) and relational features (taking account of notions such as order or distance). This paper investigates algebras over relational structures axiomatized by an infinitary Horn theory, which subsume, for example, partial algebras, various incarnations of ordered algebras, quantitative algebras introduced by Mardare, Panangaden, and Plotkin, and their recent extension to generalized metric spaces and lifted algebraic signatures by Mio, Sarkis, and Vignudelli. To this end, we develop the notion of clustered equation, which is inspired by Mardare et al.'s basic conditional equations in the theory of quantitative algebras, at the level of generality of arbitrary relational structures, and we prove that it is equivalent to an abstract categorical form of equation earlier introduced by Milius and Urbat. Our main results are a family of Birkhoff-type variety theorems (classifying the expressive power of clustered equations) and an exactness theorem (classifying abstract equations by a congruence property).

14. Two-dimensional Kripke Semantics II: Stability and Completeness

G. A. Kavvos.
We revisit the duality between Kripke and algebraic semantics of intuitionistic and intuitionistic modal logic. We find that there is a certain mismatch between the two semantics, which means that not all algebraic models can be embedded into a Kripke model. This leads to an alternative proposal for a relational semantics, the stable semantics. Instead of an arbitrary partial order, the stable semantics requires a distributive lattice of worlds. We constructively show that the stable semantics is exactly as complete as the algebraic semantics. Categorifying these results leads to a 2-duality between two-dimensional stable semantics and categories of product-preserving presheaves, i.e. models of algebraic theories in the style of Lawvere.

15. An Ultrametric for Cartesian Differential Categories for Taylor Series Convergence

Jean-Simon Pacaud Lemay.
Cartesian differential categories provide a categorical framework for multivariable differential calculus and also the categorical semantics of the differential $\lambda$-calculus. Taylor series expansion is an important concept for both differential calculus and the differential $\lambda$-calculus. In differential calculus, a function is equal to its Taylor series if its sequence of Taylor polynomials converges to the function in the analytic sense. On the other hand, for the differential $\lambda$-calculus, one works in a setting with an appropriate notion of algebraic infinite sums to formalize Taylor series expansion. In this paper, we provide a formal theory of Taylor series in an arbitrary Cartesian differential category without the need for converging limits or infinite sums. We begin by developing the notion of Taylor polynomials of maps in a Cartesian differential category and then show how comparing Taylor polynomials of maps induces an ultrapseudometric on the homsets. We say that a Cartesian differential category is Taylor if maps are entirely determined by their Taylor polynomials. The main results of this paper are that in a Taylor Cartesian differential category, the induced ultrapseudometrics are ultrametrics and that for every map $f$, its Taylor series converges to $f$ with respect to this ultrametric. This framework recaptures both Taylor series expansion in differential calculus via analytic methods and in categorical models of the differential […]

16. On Kleisli liftings and decorated trace semantics

Daniel Luckhardt ; Harsh Beohar ; Sebastian Küpper.
It is well known that Kleisli categories provide a natural language to model side effects. For instance, in the theory of coalgebras, behavioural equivalence coincides with language equivalence (instead of bisimilarity) when nondeterministic automata are modelled as coalgebras living in the Kleisli category of the powerset monad. In this paper, our aim is to establish decorated trace semantics based on language and ready equivalences for conditional transition systems (CTSs) with/without upgrades. To this end, we model CTSs as coalgebras living in the Kleisli category of a relative monad. Our results are twofold. First, we reduce the problem of defining a Kleisli lifting for the machine endofunctor in the context of a relative monad to the classical notion of Kleisli lifting. Second, we provide a recipe based on indexed categories to construct a Kleisli lifting for general endofunctors.

17. GATlab: Modeling and Programming with Generalized Algebraic Theories

Owen Lynch ; Kris Brown ; James Fairbanks ; Evan Patterson.
Categories and categorical structures are increasingly recognized as useful abstractions for modeling in science and engineering. To uniformly implement category-theoretic mathematical models in software, we introduce GATlab, a domain-specific language for algebraic specification embedded in a technical programming language. GATlab is based on generalized algebraic theories (GATs), a logical system extending algebraic theories with dependent types so as to encompass category theory. Using GATlab, the programmer can specify generalized algebraic theories and their models, including both free models, based on symbolic expressions, and computational models, defined by arbitrary code in the host language. Moreover, the programmer can define maps between theories and use them to declaratively migrate models of one theory to models of another. In short, GATlab aims to provide a unified environment for both computer algebra and software interface design with generalized algebraic theories. In this paper, we describe the design, implementation, and applications of GATlab.

18. Cost-sensitive computational adequacy of higher-order recursion in synthetic domain theory

Yue Niu ; Jonathan Sterling ; Robert Harper.
We study a cost-aware programming language for higher-order recursion dubbed $\textbf{PCF}_\mathsf{cost}$ in the setting of synthetic domain theory (SDT). Our main contribution relates the denotational cost semantics of $\textbf{PCF}_\mathsf{cost}$ to its computational cost semantics, a new kind of dynamic semantics for program execution that serves as a mathematically natural alternative to operational semantics in SDT. In particular we prove an internal, cost-sensitive version of Plotkin's computational adequacy theorem, giving a precise correspondence between the denotational and computational semantics for complete programs at base type. The constructions and proofs of this paper take place in the internal dependent type theory of an SDT topos extended by a phase distinction in the sense of Sterling and Harper. By controlling the interpretation of cost structure via the phase distinction in the denotational semantics, we show that $\textbf{PCF}_\mathsf{cost}$ programs also evince a noninterference property of cost and behavior. We verify the axioms of the type theory by means of a model construction based on relative sheaf models of SDT.

19. Implicit automata in {\lambda}-calculi III: affine planar string-to-string functions

Cécilia Pradic ; Ian Price.
We prove a characterization of first-order string-to-string transduction via $\lambda$-terms typed in non-commutative affine logic that compute with Church encoding, extending the analogous known characterization of star-free languages. We show that every first-order transduction can be computed by a $\lambda$-term using a known Krohn-Rhodes-style decomposition lemma. The converse direction is given by compiling $\lambda$-terms into two-way reversible planar transducers. The soundness of this translation involves showing that the transition functions of those transducers live in a monoidal closed category of diagrams in which we can interpret purely affine $\lambda$-terms. One challenge is that the unit of the tensor of the category in question is not a terminal object. As a result, our interpretation does not identify $\beta$-equivalent terms, but it does turn $\beta$-reductions into inequalities in a poset-enrichment of the category of diagrams.