Robert Atkey ; Wen Kokke - A Semantic Proof of Generalised Cut Elimination for Deep Inference

entics:14870 - Electronic Notes in Theoretical Informatics and Computer Science, December 11, 2024, Volume 4 - Proceedings of MFPS XL - https://doi.org/10.46298/entics.14870
A Semantic Proof of Generalised Cut Elimination for Deep InferenceArticle

Authors: Robert Atkey ; Wen Kokke

    Multiplicative-Additive System Virtual (MAV) is a logic that extends Multiplicative-Additive Linear Logic with a self-dual non-commutative operator expressing the concept of "before" or "sequencing". MAV is also an extenson of the the logic Basic System Virtual (BV) with additives. Formulas in BV have an appealing reading as processes with parallel and sequential composition. MAV adds internal and external choice operators. BV and MAV are also closely related to Concurrent Kleene Algebras. Proof systems for MAV and BV are Deep Inference systems, which allow inference rules to be applied anywhere inside a structure. As with any proof system, a key question is whether proofs in MAV can be reduced to a normal form, removing detours and the introduction of structures not present in the original goal. In Sequent Calcluli systems, this property is referred to as Cut Elimination. Deep Inference systems have an analogous Cut rule and other rules that are not present in normalised proofs. Cut Elimination for Deep Inference systems has the same metatheoretic benefits as for Sequent Calculi systems, including consistency and decidability. Proofs of Cut Elimination for BV, MAV, and other Deep Inference systems present in the literature have relied on intrincate syntactic reasoning and complex termination measures. We present a concise semantic proof that all MAV proofs can be reduced to a normal form avoiding the Cut rule and other "non analytic" rules. We also develop soundness and completeness proofs of MAV (and BV) with respect to a class of models. We have mechanised all our proofs in the Agda proof assistant, which provides both assurance of their correctness as well as yielding an executable normalisation procedure.- Our technique extends to include exponentials and the additive units.


    Volume: Volume 4 - Proceedings of MFPS XL
    Published on: December 11, 2024
    Accepted on: December 2, 2024
    Submitted on: December 2, 2024
    Keywords: Computer Science - Logic in Computer Science

    Consultation statistics

    This page has been seen 53 times.
    This article's PDF has been downloaded 20 times.