We introduce continuous $R$-valuations on directed-complete posets (dcpos, for short), as a generalization of continuous valuations in domain theory, by extending values of continuous valuations from reals to so-called Abelian d-rags $R$. Like the valuation monad $\mathbf{V}$ introduced by Jones and Plotkin, we show that the construction of continuous $R$-valuations extends to a strong monad $\mathbf{V}^R$ on the category of dcpos and Scott-continuous maps. Additionally, and as in recent work by the two authors and C. ThÃ©ron, and by the second author, B. Lindenhovius, M. Mislove and V. Zamdzhiev, we show that we can extract a commutative monad $\mathbf{V}^R_m$ out of it, whose elements we call minimal $R$-valuations. We also show that continuous $R$-valuations have close connections to measures when $R$ is taken to be $\mathbf{I}\mathbb{R}^\star_+$, the interval domain of the extended nonnegative reals: (1) On every coherent topological space, every non-zero, bounded $\tau$-smooth measure $\mu$ (defined on the Borel $\sigma$-algebra), canonically determines a continuous $\mathbf{I}\mathbb{R}^\star_+$-valuation; and (2) such a continuous $\mathbf{I}\mathbb{R}^\star_+$-valuation is the most precise (in a certain sense) continuous $\mathbf{I}\mathbb{R}^\star_+$-valuation that approximates $\mu$, when the support of $\mu$ is a compact Hausdorff subspace of a second-countable stably compact topological space. This in particular applies to Lebesgue measure on the unit interval. As a result, the Lebesgue measure can be identified as a continuous $\mathbf{I}\mathbb{R}^\star_+$-valuation. Additionally, we show that the latter is minimal.

Source: arXiv.org:2211.12392

Volume: Volume 2 - Proceedings of ISDT 9

Published on: March 21, 2023

Accepted on: November 25, 2022

Submitted on: November 23, 2022

Keywords: Mathematics - General Topology,Computer Science - Logic in Computer Science

This page has been seen 87 times.

This article's PDF has been downloaded 84 times.