
Electronic Notes in Volume 3

Theoretical Informatics ENTICS Proceedings of
And Computer Science https://entics.episciences.org MFPS 2023

Preface

This volume contains the Proceedings of the 39h International Conference of Mathematical Foundations
of Programming Semantics (MFPS XXXIX), which was held as a hybrid conference with an in-person
meeting at Bloomington University in Bloomington, Indian USA and as a virtual event online. The
conference took place from June 21 to 23, 2023, and was colocated with CALCO which took place from June
19 to 21. The local organization was chaired by Larry Moss, and involved Devendra, Osanda Illeperuma,
Pavel Kovalev, Caleb Schultz Kisby, Darshal Shetty, Zixiu Su, and Cathy Wyss. Many thanks go to the
MFPS Organizers (Steering Committee), in particular Michael Mislove, for their guidance and advice.

MFPS conferences are dedicated to the areas of mathematics, logic, and computer science that are
related to models of computation in general, and to semantics of programming languages in particular.
This is a forum where researchers in mathematics and computer science can meet and exchange ideas.

Topics include, but are not limited to, the following: bio-computation; concurrent qualitative and
quantitative distributed systems; process calculi; probabilistic systems; constructive mathematics; domain
theory and categorical models; formal languages; formal methods; game semantics; lambda calculus;
programming-language theory; quantum computation; security; topological models; logic; type systems;
type theory.

MFPS 2023 continued the tradition of having an exciting group of invited speakers, both plenary and
in special sessions. We enjoyed listening to Robert Harper and Assia Mahboubi, who gave a plenary
talk joint with CALCO, and to Azalea Raad and Alex Simpson, who gave MFPS plenary talks. MFPS
and CALCO held a joint special session on Machine-checked mathematics, organized by Assia Mahboubi.
Additionally, MFPS held special sessions on Semantics and Compilers, organized by Amal Ahmed, and
on Categories of bidirectional processes, organized by Jules Hedges.

The conference received submissions from Australia, Bangladesh, Denmark, France, Greece, Italy
Netherlands, Norway, Portugal, Sweden, United Kingdom, and the United States. We are grateful to
the program committee members and external reviewers for their work. The accepted and invited papers
are published in this volume (in alphabetical order of the names of first authors). We hope you enjoy
reading the papers in this volume as much as we enjoyed listening to the talks.

Marie Kerjean and Paul B. Levy
November 2023

Published November 15, 2023 Available Online at © M. Kerjean, P. B. Levy

https://doi.org/10.46298.entics.proceedings.mfps39 cb Creative Commons

https://entics.episciences.org
https://doi.org/10.46298.entics.proceedings.mfps39
https://creativecommons.org/about/cclicenses/


ii Preface

Program Committee

Henning Basold LIACS, Leiden University

Andrej Bauer University of Ljubljana

Robin Cockett University of Calgary

Liron Cohen Ben-Gurion University

Adrian Francalanza University of Malta

Francesco Gavazzo University of Pisa

Sergey Goncharov FAU Erlangen-Nürnberg

Tom Hirschowitz CNRS, Univ. Savoie Mont Blanc

Justin Hsu Cornell University

Guilhem Jaber Universié de Nantes

Achim Jung University of Birmingham

Marie Kerjean (co-chair) CNRS, Univ. Sorbonne Paris Nord

Vasileios Koutavas Trinity College Dublin

Neelakantan Krishnaswami University of Cambridge

Paul Blain Levy (co-chair) University of Birmingham

Maria Emilia Maietti University of Padua

Samuel Mimram École Polytechnique

Alexandre Miquel University of the Republic (Montevideo)

Michael Mislove Tulane University

Koko Muroya RIMS, Kyoto University

Rasmus Ejlers Møgelberg IT University of Copenhagen

Max New University of Michigan

Paige North Utrecht University

Filip Sieczkowski Heriot-Watt University

Organizers (Steering Committee)

L Andrej Bauer, University of Ljubljana Michael Mislove, Tulane University

Lars Birkedal, Aarhus University Joël Ouaknine, MPI for Software Systems

Steve Brookes, Carnegie Mellon University Prakash Panangaden, McGill University

Achim Jung, University of Birmingham Alexandra Silva, Cornell University

Catherine Meadows, Naval Research Laboratory Sam Staton, University of Oxford

Christine Tasson, Sorbonne University Justin Hsu, Cornell



Kerjean & Levy iii

External Reviewers

Davide Barbarossa, Rafaël Bocquet, Amar Hadzihasanovic, Alex Kavvos, Dylan McDermott, Simon Mir-
wasser, Eugenio Moggi, Lê Thành Düng Nguyen, Tanjona Ralaivaosaona, Eike Ritter, Gerard Tabone,
Alejandro Villoria, Jasmine Xuereb.

Invited plenary talks

Robert Harper (Carnegie Mellon University) A cost-aware logical framework. (Joint with CALCO)

The computational view of intuitionistic dependent type theory is as an intrinsic logic of (functional) pro-
grams in which types are viewed as specifications of their behavior. Equational reasoning is particularly
relevant in the functional case, where correctness can be formulated as equality between two implemen-
tations of the same behavior. Besides behavior, it is also important to specify and verify the cost of
programs, measured in terms of their resource usage, with respect to both sequential and parallel evalu-
ation. Although program cost can—and has been—verified in type theory using an extrinsic formulation
of programs as data objects, what we seek here is, instead, an intrinsic account within type theory itself.

In this talk we discuss Calf, the Cost-Aware Logical Framework, which is an extension of dependent call-
by-push-value type theory that provides an intrinsic account of both parallel and sequential resource usage
for a variety of problem-specific measures of cost. Thus, for example, it is possible to prove that insertion
sort and merge sort are equal as regards behavior, but differ in terms of the number of comparisons
required to achieve the same results. But how can equal functions have different cost? To provide an
intrinsic account of both intensional and extensional properties of programs, we make use of Sterling’s
notion of Synthetic Tait Computability, a generalization of Tait’s method originally developed for the
study of higher type theory.

In STC the concept of a “phase” plays a central role: originally as the distinction between the syntactic
and semantic aspects of a computability structure, but more recently applied to the formulation of type
theories for program modules and for information flow properties of programs. In Calf we distinguish
two phases, the intensional and extensional, which differ as regards the significance of cost accounting—
extensionally it is neglected, intensionally it is of paramount importance. Thus, in the extensional phase
insertion sort and merge sort are equal, but in the intensional phase they are distinct, and indeed one is
proved to have optimal behavior as regards comparisons, and the other not. Importantly, both phases are
needed in a cost verification—the proof of the complexity of an algorithm usually relies on aspects of its
correctness.

We will provide an overview of Calf itself, and of its application in the verification of the cost and
behavior of a variety of programs. So far we have been able to verify cost bounds on Euclid’s Algorithm,
amortized bounds on batched queues, parallel cost bounds on a joinable form of red-black trees, and the
equivalence and cost of the aforementioned sorting methods. In a companion paper at this meeting Grodin
and I develop an account of amortization that relates the standard inductive view of instruction sequences
with the coinductive view of data structures characterized by the same operations. In ongoing work we
are extending the base of verified deterministic algorithms to those taught in the undergraduate parallel
algorithms course at Carnegie Mellon, and are extending Calf itself to account for probabilistic methods,
which are also used in that course.

Joint work with Harrison Grodin (Carnegie Mellon), Yue Niu (Carnegie Mellon), and Jon Sterling
(Cambridge).

Assia Mahboubi (Inria) Machine-checked computational mathematics. (Joint with CALCO)

Geared with increasingly fast computer algebra libraries and scientific computing software, computers
have become amazing instruments for mathematical guesswork. In fact, computer calculations are even
sometimes used to substantiate actual reasoning steps in proofs, later published in major venues of the
mathematical literature. Yet surprisingly, little of the now standard techniques available today for verifying
critical software (e.g., cryptographic components, airborne commands, etc.) have been applied to the
programs used to produce mathematics. In this talk, we propose to discuss this state of affairs.



iv Preface

Azalea Raad (Imperial College London) Incorrectness Logic for Scalable Bug Detection.

Incorrectness Logic (IL) has recently been advanced as a logical under-approximate theory for proving
the presence of bugs—dual to Hoare Logic, which is an over-approximate theory for proving the absence
of bugs. To facilitate scalable bug detection, later we developed incorrectness separation logic (ISL) by
marrying the under-approximate reasoning of IL with the local reasoning of separation logic and its frame
rule. This locality leads to techniques that are compositional both in code (concentrating on a program
component) and in the resources accessed (spatial locality), without tracking the entire global state or
the global program within which a component sits. This enables reasoning to scale to large teams and
codebases: reasoning can be done even when a global program is not present. We then developed Pulse-
X, an automatic program analysis for catching memory safety errors, underpinned by ISL. Using PulseX,
deployed at Meta, we found a number of real bugs in codebases such as OpenSSL, which were subsequently
confirmed and fixed. We have compared the performance of Pulse-X against the state-of-the-art tool Infer
on a number of large programs; our comparison shows that Pulse-X is comparable with Infer in terms of
performance, and in certain cases its fix-rate surpasses that of Infer.

Alex Simpson (University of Ljubljana) Probabilistic Programming with Coinductive Data.

Many stochastic processes can be represented as probabilistically generated coinductive data, produced
by programs that utilise a principle of probabilistic corecursion. Mathematically this principle is justified
because the categories of deterministic and probabilistic maps enjoy an unusual coincidence of final coal-
gebras. Based on these observations, I shall present a simple programming language combining recursion,
corecursion and probability with a lazy operational semantics. I shall argue that the correctness proof for
the operational semantics is most easily carried out in a set theory in which all sets are measurable.

Joint work with Danel Ahman and Léo Soudant.

Special session on machine-checked mathematics (joint with CALCO)

For this session, the following speakers were invited.

Yannick Forster (Inria) Synthetic Computability in Constructive Type Theory.

Mathematical practice in most areas of mathematics is based on the assumption that proofs could be
made fully formal in a chosen foundation in principle. This assumption is backed by decades of formalising
various areas of mathematics in various proof assistants and various foundations. An area that has been
largely neglected for computer-assisted and machine-checked proofs is computability theory. This is due
to the fact that making computability theory (and its sibling complexity theory) formal is several orders
of magnitude more involved than formalising other areas of mathematics, due to the – citing Emil Post –
“forbidding, diverse and alien formalisms in which this [...] work of Gödel, Church, Turing, Kleene, Rosser
[...] is embodied.”. For instance, there have been various approaches of formalising Turing machines, all to
the ultimate dissatisfaction of the respective authors, and none going further than constructing a universal
machine and proving the halting problem undecidable. Professional computability theorist and teachers
of computability theory thus rely on the informal Church Turing thesis to carry out their work and only
argue the computability of described algorithms informally.

A way out was proposed in the 1980s by Fred Richman and developed during the last decade by
Andrej Bauer: Synthetic computability theory, where one assumes axioms in a constructive foundation
which essentially identify all (constructively definable) functions with computable functions. A drawback
of the approach is that assuming such an axiom on top of the axiom of countable choice - which is routinely
assumed in this branch of constructive mathematics and computable analysis - is that the law of excluded
middle, i.e. classical logic, becomes invalid. Computability theory is however dedicatedly classical: Almost
all basic results are presented by appeal to classical axioms and even the full axiom of choice.

We observe that a slight foundational shift rectifies the situation: By basing synthetic computability
theory in the Calculus of Inductive Constructions, the type theory underlying amongst others the Coq proof
assistant, where countable choice is independent and thus not provable, axioms for synthetic computability



Kerjean & Levy v

are compatible with the law of excluded middle.
I will give an overview over a line of research investigating a synthetic approach to computability theory

in constructive type theory, discussing suitable axioms, a Coq library of undecidability proofs, results in
the theory of reducibility degrees, a synthetic definition of Kolmogorov complexity, constructive reverse
analysis of theorems, and synthetic oracle computability.

Parts of results are in collaboration with Dominik Kirst, Gert Smolka, Felix Jahn, Fabian Kunze, Nils
Lauermann, Niklas Mück, and the contributors of the Coq Library of Undecidability Proofs.

Andrei Popescu (University of Sheffield) On the exquisite pleasure of doing coinduction and corecursion
in Isabelle.

Coinduction is a powerful technique for defining and reasoning about infinite objects and infinite behaviors.
I will show how the Isabelle/HOL proof assistant is a natural home for coinduction. I will illustrate
Isabelle’s compositional infrastructure for codatatypes, coinductive predicates, and corecursive function
definitions. As a working example, I will give a formal proof of the equivalence between Knaster-Tarski
greatest fixpoints and provability by infinite proof trees – which is a foundational result for coinduction in
proof assistants. I will also show how Isabelle facilitates the sound mixture of recursion and corecursion.1n
and ample first order differential relations, which is a general technique to find solutions for construction
problems.

Special session on semantics and compilers

For this session, the following speakers were invited.

Amal Ahmed (Northeastern University) Semantic Intermediate Representations for Safe Language In-
teroperability.

Designers of typed programming languages commonly prove meta-theoretic properties such as type sound-
ness for at least a core of their language. But any practical language implementation must provide some
way of interoperating with code written in other languages – usually via a foreign-function interface (FFI)
– which opens the door to new, potentially unsafe behaviors that aren’t accounted for in the original
type soundness proofs. Despite the prevalence of interoperability in practical software, principled foun-
dations for the end-to-end design, implementation, and verification of interoperability mechanisms have
been largely neglected.

In this talk, I’ll advocate a proof technique for ensuring soundness of practical languages, which im-
plement interoperability using glue code that mediates interaction between languages after compilation to
a common lower-level intermediate representation (IR). The technique involves building a semantic inter-
mediate representation: a semantic model of source-language types as relations on terms of the lower-level
IR. Semantic IRs can be used to guide the design and implementation of sound FFIs and to verify that
the IR glue code used to implement conversions ensures type soundness. I’ll conclude with some avenues
of future work using semantic IRs as a basis for principled design of language interoperability.

Jérémie Koenig (Yale University) Three dimensions of compositionality in CompCert semantics.

Compositional models have been designed for a broad range of language features, but using compositional
semantics to formulate and establish compiler correctness theorems remains challenging. In this context,
horizontal composition of program components interacts with vertical composition of compiler phases, as
both must be compatible with the refinement relation used to formulate compositional semantics preser-
vation.

In this talk I will outline how this challenge plays out in the context of the certified compiler CompCert.
By borrowing concepts and tools from higher category theory, we can give a systematic account of the
way composition principles interact with each other, and give string diagram algebras for various models.
I will then explain how the CompCertO model can accomodate spatial as well as horizontal and vertical
compositionality, extending its capabilities as a verification framework. This is work in progress with Yu
Zhang, Zhong Shao and Yuting Wang.



vi Preface

Max New (University of Michigan) Compiling with Call-by-push-value.

Paul Levy demonstrated that call-by-push-value (CBPV) provides a natural way to decompose both the
operational and denotational semantics of call-by-value and call-by-name into more fundamental primitive
notions of value and computation type. In this talk we discuss how this same call-by-push-value struc-
ture naturally arises in stack-based implementation techniques for compilation of functional programming
languages. We show how several standard compilation passes (continuation-passing style, closure con-
version) amount to the correctness of Church-encoding in impredicative polymorphic CBPV. Further we
relate CBPV to existing calculi for compilation: ANF, Monadic form, SSA, CPS and speculate on poten-
tial advantages and disadvantages of incorporating CBPV structure explicitly into compiler intermediate
languages.

Special session on categories of bidirectional processes

For this session, the following speakers were invited.

Jules Hedges (University of Strathclyde) Introduction to categorical cybernetics.

The term “categorical cybernetics” refers to two things: a general theory of categories of optics and related
constructions, and a lot of specific examples. These tend to arise in topics that historically were called
”cybernetics” (before that term drifted beyond recognition) - AI, control theory, game theory, systems
theory. Specific examples of ”things that compose optically” are derivatives (well known as backprop),
exact and approximate Bayesian inverses, payoffs in game theory, values in control theory and reinforcement
learning, updates of data (the original setting for lenses), and updates of state machines. I’ll do a gentle
tour through these, emphasising their shared structure and the field we’re developing to study it.

Valeria de Paiva (Topos Institute) Lenses and Dialectica constructions

Dialectica categories were first introduced in my doctoral work to provide an internal characterization of
Godel’s Dialectica Interpretation. Many years later it was realized that Dialectica category morphisms
have the same types as lenses, for a specific definition of lenses. In this short talk, we explain how the
motivation for lenses, a special case of bidirectional transformations, in terms of connections of computing
systems might suggest uses for Dialectica versions of lenses.

Mario Román (Tallinn University of Technology) Optics: the Algebra of Monoidal Decomposition.

Optics have gained popularity in recent years. They appear in differential categories, compositional game
theory, bidirectional accessors, process dependency and causality. At the same time, they remain a bit
mysterious: why are they so effective? We claim that, apart from their usual monoidal tensor (⊗), optics
have a second, hidden, monoidal tensor (◁). This tensor structure is the crucial ingredient for some
applications of optics, but it hides in plain sight because it is non-representable: the tensor of two objects
is not again an object, but only a presheaf. Once we can clearly see this second tensor, optics become
a non-representable duoidal algebra that is the universal such one over a monoidal category in a precise
sense.

This talk is based on The Produoidal Algebra of Process Decomposition, which is recent joint work with
Matt Earnshaw and James Hefford.


