ELECTRONIC NOTES IN i EM | |' :S VOLUME 5
THEORETICAL INFORMATICS . PROCEEDINGS OF

AND COMPUTER SCIENCE HTTPS://ENTICS.EPISCIENCES.ORG MFEPS 2025

A Fresh Look at Bivariate Binomial Distributions

Bart Jacobs!

1Hub
Radboud University
Nigmegen, The Netherlands

Abstract

Binomial distributions capture the probabilities of ‘heads’ outcomes when a (biased) coin is tossed multiple times. The coin
may be identified with a distribution on the two-element set {0, 1}, where the 1 outcome corresponds to ‘head’. One can also
toss two separate coins, with different biases, in parallel and record the outcomes. This paper investigates a slightly different
‘bivariate’ binomial distribution, where the two coins are dependent (also called: entangled, or entwined): the two-coin is a
distribution on the product {0,1} x {0,1}. This bivariate binomial exists in the literature, with complicated formulations.
Here we use the language of category theory to give a new succint formulation. This paper investigates, also in categorically
inspired form, basic properties of these bivariate distributions, including their mean, variance and covariance, and their
behaviour under convolution and under updating, in Laplace’s rule of succession. Furthermore, it is shown how Expectation
Maximisation works for these bivariate binomials, so that mixtures of bivariate binomials can be recognised in data. This
paper concentrates on the bivariate case, but the binomial distributions may be generalised to the multivariate case, with
multiple dimensions, in a straightforward manner.

Keywords: Probability theory, bivariate binomial distribution, convolution Laplace’s rule of Succession, Expectation
Maximisation

1 Introduction

A very basic physical model of a random phenomenon is the tossing (or ‘flipping’ or ‘throwing’) of a coin.
The possible outcomes are ‘head’ and ‘tail’, or ‘1’ and ‘0’ in this paper. The coin may have a bias r € [0, 1],
which we incorporate in a ‘flip’ distribution on the set of outcomes {0,1}. Using ‘ket’ notation | — ) it is

written as:
flip(r) :r‘1>+(1—r)‘0>. (1)

This says that the probability of outcome 1 is » and the probability of outcome 0 is 1 — 7.

Repeating such coin flipping K € N times, still with a bias r € [0, 1], yields the binomial distribution
on the set {0,1,..., K} where a number n in the set gets the probability that n out of these K flips are
head. Again using ket notation this binomial distribution is written as:

ikl = 30 ()= nf ), @

0<n<K
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Fig. 1. Plots of an ordinary binomial distribution (20 tosses with bias %) on the left, and a bivariate binomial distribution

on the right, with 10 tosses of a two-coin %|0,0> + 15—2 0, 1> + %| 1,0> + %! 1,1>.

The probabilities add up to one by the Binomial Theorem. On the left in Figure 1 one sees the plot of such
a binomial distribution with K = 20 tosses of a coin with bias r = %. Via the bias this typical (discrete)
bell shape can be shifted to the left or right.

On the right in Figure 1 we see a plot of a bivariate binomial distribution. It has a bell shape in two
dimensions. It does not arise from a single coin distribution flip(r) on {0,1} but from what we call a
two-coin distribution on {0,1} x {0,1}. Such a two-coin may arise as a tensor product flip(r) ® flip(s)
of two separate coins, but in general it is more than such a product. It may incorporate the important
feature of ‘joint’ distributions on product spaces, namely that the whole distribution does not coincide
with the product of its marginals. In that case the joint distribution is called dependent, entangled, or
entwined.

A possible physical model of such a two-coin distribution on {0,1} x {0,1} =
{(0,0),(0,1),(1,0),(1,1)} is given by a tetrahedron, as on the side, also known as a tri-
angular pyramid. Its four faces can be labeled 00, 01, 10 and 11. Such a tetrahedron
can be tossed, where the outcome is the label on the face on which the tetrahedron lands.

One could imagine that the weight distribution inside the tetrahedron is such that the
outcomes are determined by a general two-coin distribution:

7"1‘0,0>—|—7"2‘0,1>—|—7“3}1,0>+7“4|1,1> where r+ro+rg+rg=1.

This paper formulates this bivariate binomial distribution, for such a two-coin, using some basic cat-
egory theory, namely the functoriality of sending a set X to the set D(X) of distributions on X. For a
number K € N of tosses, it produces a distribution on the product set {0,1,..., K} x {0,1,..., K} — as
on the right in Figure 1 where K = 10. This bivariate binomial is introduced as a (functorial) pushforward
of a multinomial distribution along a ‘marginal heads’ function, see Section 3 for the mathematical details.
Intuitively, one throws the tetrahedron K-many times and one separately counts the number of 1’s in the
first a and in the second b position in the label ab written on the faces that the tetrahedron lands on (in
K-many tosses). We focus on a 2-dimensional extension of the binomial distribution. One can also extend
to N-dimensional form, via a ‘hedron’ object with 2V sides and labels from {0,1}V. It gives a distribution
on {0,1,..., K} when one counts the 1’s in each of the N positions 1,..., N of the (down-facing) labels,
after multiple tosses.

The (ordinary) binomial distribution (2) can be seen as discrete version of the widely used Gaussian
(normal) distribution. Gaussians often occur in N-dimensional form. The N-dimensional discrete version,
however, is less familiar. In Section 6 we show how to recognise (mixtures of) bivariate binomials in
(multisets of) data items. This technique may have practical value and could increase the popularity of
bivariate binomial distributions.

This paper starts by describing the relevant background information, on multisets and distributions,
tensor products and convolutions of distributions, channels and their inversions, and on binomial and
multinomial distributions. Section 3 then introduces bivariate binomial distributions, via functoriality,
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and establishes some basic properties with respect to marginalisation and also closure under convolution.
Subsequently, Section 4 determines the mean, variance and covariance of bivariate binomials. It turns out
that they can be expressed, respectively, as K times the mean, variance and covariance of the underlying
two-coin distribution, where K is the number of tosses. Section 5 briefly discusses Laplace’s rule of succes-
sion, which is in generally used to describe the expected outcome after an update. Here it is formulated
in general terms, as a mean of a dagger (channel), and more specifically for bivariate distributions, with
Dirichlet and Poisson distributions as priors. Section 6 gives an illustration of how bivariate binomials can
be recognised in suitable data multisets.

2 Preliminaries

2.1 Multisets, distributions and random variables

A multiset is like a subset, except that its elements may occur multiple times. Alternatively, a multiset is
like a list in which the order of the elements does not matter. For instance, an urn filled with three red,
two green and five blue balls forms a multiset. We write it using ket notation as 3| R) +2|G)+5| B), where
the ket brackets | — ) serve to separate the elements R, G, B for the three colours, from their multiplicities
3,2,5. Also a draw of multiple balls from such an urn forms a multiset. In general, multiple data items,
as used for learning (see Section 6) are naturally described as a multiset.

For an arbitrary set X we shall write M(X) for the set of (finite) multisets with elements from
X. A multiset ¢ € M(X) may be described in two equivalent ways, namely via kets as a formal sum
© =ni|lx1) + - +nglex) = > ;n| ), with elements x; € X and associated multiplicities n; € N.
Alternatively, we may describe a multiset ¢ € M(X) as a function ¢: X — N with finite support, where
supp(p) = {x € X | p(x) # 0}. We can combine these notations and write ¢ = Y ¢(x)|x), where the
summands with multiplicity zero are omitted.

The size ||¢|| € N of a multiset ¢ € M(X) is the total number of its elements, including multiplicities.
Thus, ||¢]| = >, ¢(z). The abovementioned urn v = |R) + 2|G) + 5| B) has size ||v]| = 10. There is
one multiset in M(X) of size zero, namely the empty multiset, written as 0 € M(X). As a function, it
satisfies 0(x) = 0, for each = € X, giving = multiplicity 0. We write M[K](X) C M(X) for the subset of
multisets of size K € N.

The mapping X — M(X) forms a monad on the category of sets. We only use functoriality: a function
f: X — Y yields another function M(f): M(X) — M(Y) via the following two equivalent definitions, in
ket form on the left, and in function form on the right.

M Simil2i)) = Somil £(w0) M@ = > ele). )

z€f~1(y)

We shall especially use functoriality for a projection function 71 : X xY — X. Then M(m1): M(X XY) —
M(X) performs marginalisation.

One more observation is that M(X) is the free commutative monoid on the set X. The monoid
structure is given by pointwise addition of multisets: (¢ + ) (z) = ¢(x) + ¢ (x), with the everywhere zero
multset 0 € M(X) as neutral element. Functions M(f) preserve this monoid structure.

We turn to distributions: a (finite discrete probability) distribution r|z1) 4 -+ 7k |z ) is written as
a multiset, except that the multiplicities ; are now probabilities from the unit interval [0, 1] that add up
to one: ). r; = 1. We shall write D(X) for the set of distributions with elements from X. A distribution
w € D(X) may be written in ket form, as we just did, but also as a function w: X — [0, 1] with finite
support supp(w) = {z € X | w(z) # 0} and with > w(xz) = 1. When X is a finite set, we say that
w € D(X) has full support when supp(w) = X, that is, when w(z) > 0 for each € X. The operation D is
also a monad on the category of sets. Functoriality works as for M, in (3), in particular with projections
D(m;) for marginalisation.

Each non-empty multiset ¢ € M(X) can be turned into a distribution Flrn(p) € D(X), where Flrn
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stands for frequentist learning. This involves learning by counting:

Flrn(p) = Z #(w) |z). (4)

ceomn(e) 19

For instance, for the above urn v = 3|R) + 2|G) + 5| B) we get Flrn(v) = &|R) + £|G) + 1| B). It
captures the probabilities of drawing a ball of a particular colour from the urn.

A random variable is a pair (w,p) where w € D(X) is a distribution and p: X — R an ‘observable’.
The validity (or expected value) is:

whp = 3 w@)-pla). (5)

zeX

2.2 Products and convolutions of distributions

For two distributions w € D(X) and p € D(Y) one can form the (parallel) product distribution w ® p €
D(X xY), via (w® p)(z,y) = w(z) - p(y). Marginalisation of such a product yields the components:

D(m)(w®p) =w and D(m2)(w ® p) = p.

In general, for a ‘joint’ distribution 7 € D(X x Y'), on a product space, one does not have 7 = D(71)(7) ®
D(mg)(7). If this equation does hold, 7 is called independent, non-entangled, or non-entwined.

We write 2 = {0,1}. A distribution 7 € D(2 x 2), say 7 =11]|0,0) +1r2]0,1) +r3|1,0) + 74| 1,1) with
r1 +ro +r3 + rg = 1, is non-entwined if and only if 7 - 74 = ro - 3.

Tensors of distributions are used for a special sum of distributions, called convolution. Let M =
(M,+,0) be a commutative monoid and let w, p € D(M) be two distributions on the underlying set M.
Then we can form their convolution w + p € D(M) as, via functoriality of D, applied to the addition
+: M x M — M, as in:

w+p3=D(+)(w®p) = > wl@) o) |e+y). (6)
z,yeM

This turns D(M) into a commutative monoid, with 1|0) € D(M) as unit, for 0 € M. It is not hard to see
that if f: M — M’ is a homomorphism of monoids, then so is D(f): D(M) — D(M").

In the sequel we shall encounter distributions on {0, 1} or more generally on {0, ..., K'}. By considering
these sets as subsets of N, with its additive commutative monoid structure, we can apply the convolution
definition (6) to such distributions. Commutative monoids are closed under products x, so that N> = Nx N
is also a commutative monoid, via component-wise sums and zeros. Also, as we have seen, the set M(X)
of multisets over a set X is a commutative monoid, so that convolution can be used for distributions on
multisets. This applies to multinomial distributions, see Subsection 2.4.

2.8  Channels and their inversions / daggers

A channel is a function of the form c¢: X — D(Y). It maps an element z € X to a distribution c¢(z)
on Y. As such it occurs often as conditional probability, written as Pr(y|z). Channels are well-behaved
probabilistic computations that can be composed sequentially and in parallel. They form the morphisms
in the symmetric monoidal Kleisli category K¥(D) of the distribution monad D. In fact we simplify the
notation and use a special arrow -+ for channels. Thus we simply write ¢: X - Y for the more cumbersome
c: X - D).
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A basic operation is pushforward along a channel. Given a channel ¢: X - Y and a distribution
w € D(X) on its domain X, we can form a new distribution ¢,(w) € D(Y) on its codomain Y, namely:

e(w) =) wlz)-elx) =) (Z w(z) - C(w)(y)> ). (7)

zeX yeY \zeX

Under suitable circumstances a channel can be turned around, via an operation called Bayesian inver-
sion, see e.g. [4,3,5]. This involves turning a conditional probability Pr(y|z) into Pr(z|y). We present it
in channel form: so let ¢: X -> Y be a channel from X to Y, where the set Y is finite. We will turn it
into a channel Y - X, in the opposite direction. This inversion requires a ‘prior’ distribution w € D(X)
such that the pushforward c.(w) € D(Y) has full support. Then we can define a new channel, written as

cL: Y - X via:

i) = 3 YDA ®

2 o))

The full support requirement is needed to prevent division-by-zero errors.

2.4  Binomial and multinomial distributions

We have seen the binomial distribution bn[K](r) € D({0,...,K}) in Equation (2), for K-many tosses of
a coin with bias r € [0,1]. A single coin toss is given by the flip distribution flip(r) in (1).

Lemma 2.1 (i) The binomial distribution is an iterated convolution of the flip distribution:

bn[K|(r) = K - flip(r) = flip(r) + - - - + flip(r) .

K times

Hence, binomial distributions are closed under convolution: bn[K|(r) + bn[L](r) = bn[K + L|(r).

(ii) The mean and variance of the binomial distribution are given by:
mean(bn[K](r)) =K-r and var(bn[K](T)) =K-(K-1)-r O

We turn to the multinomial distribution. We can view a distribution w € D(X) as an abstract urn,
where X is the set of colours and w(z) € [0, 1] gives the probability of drawing a ball of colour z € X. We
are interested in drawing multiple balls, in ‘multinomial mode’, with replacement. A draw of K-many balls
from the urn w can be identified with a K-sized multiset ¢ € M[K](X). The multinomial distribution
mn[K](w) € D(M[K](X)) assigns probabilites to such draws of size K. It is defined as:

mlElw) = Y (¢) I w@?@]p) where (9)= gl ©)

peMIK](X) z€supp(w)

The precise form of this multinomial distribution does not matter so much at this stage; interested readers
may consult [9,11]. We make the following facts explicit. The first two items are standard. For details
about the third item, see e.g. [13, Prop. 7.2] or [14].

Lemma 2.2 Consider the multinomial distribution (9) for w € D(X) and K € N.
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(i) The binomial and multinomial distribution can be identified when X = 2 = {0,1}, via the isomor-
phisms flip: [0,1] = D(2) and {0,..., K} = M[K](2), via n+— n|1) + (K —n)|0), in:
bn|K]
0,1] D({0,...,K})
A ZH

D(2) ————D(M[K](2))
(il) Multinomials are closed under convolution: mn[K](w) + mn[L](w) = mn[K + L](w).
(iii) For elements y,z € X with y # z,

pEMIK](X)
> mn[K(w)(e) - ey) - e(z) = K- (K —1)-w(y)  w(2).
PEMIK(X)
> mnK]w)(e)-ey)?® =K-(K-1)-wy)?+ K -w(y). O
pEMIK](X)

3 Introducing bivariate distributions

This section introduces the main distribution of this paper, namely the bivariate binomial distribution. It
also describes some of its most basic properties. Our definition exploits functoriality of distributions D,
via a marginal heads function that is defined first. This definition is compared to explicit formulations in
the literature in Remark 3.5 below.

Definition 3.1 Fix a number K € N and consider the following ‘marginal heads’ function:
MIK)(2 x 2) 2248 10, 1,... K} x {0,1,..., K},
defined as pair of marginals evaluated at 1 € 2, in:
heads() = ((1,0) + ¢(1,1), 9(0,1) +¢(1,1) ) = (M(m)(p)(1), M(m2)(¢)(1)).
The last line makes clear that the multiplicities of 1, that is of ‘head’, in the marginal mulitsets are counted

by this function heads.
More generally, for a ‘dimension’ N > 1 one can define:

M[K} (2N) heads {07 o 7[(}N
P! (M(m)(@)(1), ..., M(mn)(¢)(1))

We shall need the following combinatorial result about the marginal heads function.

Lemma 3.2 For K >0 and N > 1 and numbers n =ny,...,ny € {0,..., K} one has:
K

> w- 1 (5)

PEM[K](2N), heads(p)=n 1<i<N M

Proof. We do the proof for N = 2 and use Vandermonde’s formula, see e.g. [6]: for numbers B,G € N

and K < B+ G,
B+ G B G
)2 6 0) o
b<B,g<G,btg=K
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Now, for a multiset ¢ € M[K](2 x 2) we use new variables 4, j below, where i = ¢(1,1) and j = ¢(0,1).

> (¥)

PEMIK](2x2), heads(p)=(n1,n2)
K!

. . l. |
QOEM[K](2><2),ap(l,O)-&-tp(l,l):nh<p(071)+<p('171):n2 p(0,0)1- 0(1,0)- (0, 1)1 - (1, 1)!

- Z g — . I
T (K —ny— )l (ng —d)!- 4!l
N nl'(K—nl)' Z'(nl—l)' ]'(K—nl—])'

iS”l,jSK—nl,i—‘r‘j:nQ
K K o
:<> Z (n1>< 'z>(2)<)‘( ) -
" 1<ni, j<K—n1,it+j=no t J ni n9

Definition 3.3 For a ‘two-coin’ distribution v € D(2 X 2) and a ‘toss number’ K the bivariate binomial
distribution is defined as pushforward along the marginal heads function, of a multinomial distribution:

bvbn[K](7) = D(heads) (mn[K)(7)) € D({0,1,...,K} x {0,1,.... K})
= 2 > malK] (7)) | 1,2 ). (12)

0<n1,n2<K peM[K](2%2), heads(p)=(n1,n2)

The N-dimensional version of this binomial distribution is obtained by first forming the multinomial
distribution mn[K](y) € D(M[K](2V)), for an N-coin v € D(2"), and then pushing along the N-
dimensional marginal heads function (10).

Example 3.4 Consider the two-coin distribution v = % 0,0> + % 0, 1> + % 1,0> + é 1, 1>. It is not
hard to see that it is entwined, i.e. that it is different from the product ® of its marginals. We use K = 2
and first consider the multinomial distribution on M[2](2 x 2). It is written via ‘kets of kets’ in:

mn[2)(v) = & [2/0,0)) + = [1]0,0) +1]0,1) ) + 2 [2]0,1) ) + 15 | 1]0,0) +1|1,0) )
+2110,1) +11,0)) + 137 | 211,0)) + 25 [ 1/0,0) + 1]1,1))
+2100,1) + 11,1)) + & | 1]1,0) + 1]1,1)) + & | 2|1,1) ).

We now obtain the associated bivariate binomial distribution by applying the marginals heads function
heads to the multisets inside the above big kets ‘ — > By counting the total number of 1’s on the left and
on the right in these multisets one obtains:

0,0) + %[0,1) + 2510,2) + | 1,0) + sk
+2(1,2) + 54]2,0) + &]2.1) + &2,2).

bvbn[2](y) = D(heads) (mn[2](’y)) =2 1,1)

The bivariate binomial for draw size K = 10, of the same ~, is plotted on the right in Figure 1.

Remark 3.5 (i) Our formulation of the bivariate binomial in Definition 3.3 uses the functoriality of D.
Common definitions in the literature do not exploit this functoriality and involve more complicated
explicit formulations. For instance, in [1, Eqn. (1)] one finds the following expression, translated into
ket form:

K
. > k=)= (K —k—1+i)! (13)

0<k,I<K max(0,k-+I—K)<i<min(k,l) , ) , ,
7(07 O)Z ’ 7(07 O)k_l ’ 7(07 O)l_l ’ 7(07 O)K_k_l_H ‘ k, l>
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One recognises elements of the multinomial distribution (9) in this formulation, but it is hard to
follow what is going on. In fact, this formulation (13) is subtly different, from the one that we use
in (12), since it does not count heads / ones but it counts tails / zeros, in each coordinate separately.

Multi-dimensional (multivariate) versions of the formula (13) become even harder, see e.g. [1,17].
Here, the multi-dimensional form is obtained in a straightforward manner: the definition (12) still
works for an N-coin v € D(2") with the marginal heads function (10) used in N-ary form.

(ii) We can also give a more explicit formulation of our functorial definition (12) of the bivariate binomial,
in the style of (13), via the following characterisation of the inverse image.

{o € M[K](2 x 2) | heads(¢) = (n1,n2)}
{(K —n2—1)[0,0) + (n2g —n1 +)[0,1) +|1,0) + (ny — )| 1,1) .
0 <i<min(ny, K — 77,2)} h= (14)
{(K —n1—14)[0,0) +i]0,1) + (n1 — n2 +1)|1,0) + (ng —4)|1,1)

" .
’0§i§min(n2,K—n1)} if no <my

We first collect some basic, standard properties about the bivariate binomial distribution, in particular
in relation to the ordinary binomial distribution. The definition (12) of the bivariate binomial distribution
via functoriality allows equational reasoning in proofs. The details are relegated to the appendix.

Lemma 3.6 Let a number K € N and a two-coin distribution v € D(Z X 2) be given. For clarity we use
different notation for the various projections:

PRE_% {o,...,K}x{o,...,K}%{o,...K} (15)

We then write v1 :== D(m1)(7y) and 2 := D(m2)(7y) in D(2) for the two marginal coins. They are determined
by the ‘heads’ probabilities v1(1),v2(1) € [0, 1], via the isomorphism D(2) = [0, 1].

(i) The marginals of the bivariate binomial distribution are the (ordinary) binomials of the marginals of
the two-coin distribution:

D) (bvbuK] (7)) = bu[K] (11(1)) D(L) (bvbu[K](3)) = bu[K](12(1)).

(ii) When ~y is non-entwined, that is, when v = v1 ® 72, then bvbn[K]|(v) is also non-entwined, with:

bvbnlK (71 ©52) = bulK](11(1)) @ bulK] (12(1)).

This second result confirms that the notion of bivariate binomial is a well-defined extension of the
ordinary binomial: if the two-coin distribution v is a tensor product of two coins, the bivariate binomial
is a tensor product of the two (marginal, ordinary) binomial distributions.

There is one more well-behavedness property that we add, namely closure under convolution, as we
have seen for binomial and multinomial distributions, in Lemmas 2.1 and 2.2. Again, the proofs are in the
appendix.

Proposition 3.7 Let v € D(Z X 2) be given, with numbers K,L € N. Bivariate binomials are closed
under convolution, as expressed on the left below.

bvbn[K](7) 4 bvbn[L](y) = bvbn[K + L](v) bvbn[K](y) = K -y = v+ -+ 7.

Thus, the bivariate binomial is a K-fold convolution of the two-coin distribution vy, as on the right. O
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4 Mean, variance and covariance

This section describes common statistical characteristics of the bivariate binomial distribution, namely the
mean, variance and covariance. It turns out that these values are K-times the values for the underlying
two-coin distributions. This gives nice formulas. The proofs require some work.

First, for a distribution w € D(RN ), for some number N > 1, the mean is described as the tuple in

RY given by the validities of the projections 7;: RN — R, viewed as observables. This gives the formula:

mean(w) == (w1, ..., w E7N). (16)
Lemma 4.1 For K e N and v € D(2 X 2),

mean(bvbn[K}(w)) = K -mean(y) € RxR.

Proof. An abstract argument uses that the mean ommutes with convolutions, in combination with Propo-
sition 3.7. But one can also proceed in a more concrete manner. First, the mean of v € D(2 X 2) can be
expressed in terms of 4’s marginals v1 := D(m1)(7), 72 = D(m2)(7) € D(2), namely as:

mean(v) (1:6)(w|: T, w E 772) = Z (b1, b2) - by, Z Y(b1,b2) - bo
b1,b2€2 b1,b2€2 (*)
= [ b, A0 | = (), ).
bac2 b1€2

Next, using the projection notation from (15),
(16)
mean(bvbn[K] (7)) =) (bvbn[K](y) k= Iy, bvbn[K](y) = I, )

= Z bvbn[K](y)(n1,n2) - n1, Z bvbn[K](y)(n1,n2) - ng

ni1,n2EN ni1,n2EN
= | X pm) (bvbulK)()) (1) - ma, Y D) (bvbnlK(7) ) (m2) - o
ni1 €N n2€N

= | DY ba[K](m(1))(n1) -na, > bn[K](72(1))(n2) - n2 | by Lemma 3.6 (i)

n1 €N no €N

= (mean(bn ( 1 mean(bﬂ ('72(1))) )
— ( 1(1), by Lemma 2.1 (ii)
- K. ( (1), ?; mean U

Analogous results exist for the variance and covariance of the bivariate binomial. We first recall the
definitions, for a distribution w € D(X) and two observables p,q: X — R on the same set:

var(w,p) = (w Izp&p) - (w ):p)2

cov(w,p,q):(wkp&q)_(w):p),(w):q)‘ (17)
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The conjunction & of observables is given by point-wise multiplication. When the underlying set X is (a
subset of) RY one typically computes these variances and covariances for the projections. That will be
done below.

Theorem 4.2 For K € N and v € D(2 x 2) one has, fori,j € {1,2},
V&I‘(beH[K]("}/),HZ‘) = K -var(y,m;) and cov(bvbn[K](’y),Hi,Hj> = K - cov(y, m, m5).

Proof. We do the case for ¢ = 1. First,

V&r(y, 7r1> (D (’y Em & m) — (7 = 771)2 = Z v(by1,b2) b1 - b1 | — Z (b1, b2) - by

b1,bo€2 b1,b2€2

2
= 7(1,0) +(1,1) — (7(1,0) +~(1,1) "

We turn to the bivariate binomial and make use of Lemma 2.2 (iii).

Var(bvbn[K]('y),HZ-) = (bvbn[K](fy) =1L & Hl) - (bvbn[K]('y) = H1)2

= Z bvbn[K](y)(ni,n2) -n1-ny | — Z bvbn[K](y)(n1,n2) - n1

ni,n2E€N ni,n2€N

= > maKIE) - (21,0 + (1, 1)’

PEMIK](2x2)

- > mu[K]()(9) - (e(0,1) + o(1,1))
PEM[K](2x2)
=K (K—-1)-9(1,02+ K -v(1,0) + 2- K - (K — 1) - y(1,0) - v(1,1)

+ K- (K_ 1) '7(171)2 +K'7(171) - (K"Y(l’o) +K"7(171)>2
= K- —~(1,0)2 +~(1,0) = 2-(1,0) - v(1,1) — v(1,1)? +’Y(1vl))
= K- (~(1,0) +~(1,1) — (7(1,0)+7(1>1))2)

= K -var (7,771) as shown above.

For covariance, the cases where ¢ = j are covered by the previous point, since covariance with equal
observables is variance. We do the case i = 1, j = 2, which gives the same outcome as for i = 2,5 = 1. We
first look at the covariance of the two-coin distribution ~.

C0V<%7rl,7Tz> (o (V Fm &M) - (7 = Wl) ' (7 FWQ)
= Z (b1, b2) - b1 - b2 | — Z (b1, bg) - by | - Z v(by, bs) - bs

b1,b2€2 b1,b2€2 b1,b2€2
= (11 = (4(1,0) +9(1,1) - (3(0.1) +4(1,1)).
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Next, again by Lemma 2.2 (iii):

cov( bvbn[K](~), 111, Hg)
— (bvbnlK](7) T & T12) — (bvbn[K](7) =01 ) - (bvbn[K] () b= T2 )

= Z bvbn[K](y)(n1,n2) - n1 - n2

ni,ne eN

- Z bvbn[K]|(7)(ni,n2) -ny | - Z bvbn[K](7y)(n1,ng) - na

ni,n2€eN n1,n2EN

= > mn[K])(e) - (2(1,0) +9(1,1)) - (2(0,1) + ¢(1,1))
peM[K](2x2)

— (K 71,00+ K-9(1,1)) - (K-7(0,1) + K -5(1,1))
=K (K-1) (V(LO)'V(Oa 1) +7(1,0) - 7(1,1) +7(1,1) - (0, 1)
+y(L1)2) + K A(1,1) = K2+ (3(1,0) +9(L D)) - (5(0.1) +7(1,1))
= K- (1(1,1) = (91,0 + (1L, 1) - (50, 1) +7(1, 1))

= cov ('y,m,m), see before. O

We conclude with an observation which will be useful for Expectation Maximisation in Section 6.

Fact 4.3 Suppose we have a distribution o € D({O, LK} xAo,. .. ,K}), for some given K € N. We

know that o is a bivariate binomial distribution, of the form o = bvbn[K](y) but we do not know ~v €
D(2 X 2). We can compute the mean and the covariance of o. Via Proposition 4.1 and Theorem 4.2 we
can then obtain the probabilities of v, and thus ~y itself, in the following way.

e v(1,1) =%+ (COV(U,H1,H2) —(cEIL) - (0 H2)>;

* 9(1,0) = % (0 FIL) —(1,1);

° '7(07 1) = % ’ (U ': HQ) - '7(17 1);

Thus, when the draw size K 1is given, a bivariate binomial distribution is entirely determined by its mean

and covariance, since its mean is given by the pair of validities ( bvbn[K|(y) = Iy, bvbn[K](v) | Ilg),
see (16).

5 Laplace’s rule of succession

Laplace’s rule of succession provides an answer to what was originally formulated as the sunrise problem:
suppose I have seen the sun rise in n successive days, what is the probability that it will rise tomorrow?
The answer according to Laplace’s rule is Z—i; It will go to one as n goes to infinity.

The binomial distribution plays a role in a systematic answer formulation of the rule of succession.
Hence the question arises: is there a role for the bivariate binomial too? In order to answer this question
we first provide a general, modern interpretation of the rule of succession. It is generally understood as
providing the expected outcome after an update, see e.g. [16] or [2]. We reformulate this as: the rule of
succession calculates the mean of a dagger.

The relevant calculations involve continuous distributions as priors, such as the Beta and Dirichlet



10-12 A fresh look at Bivariate Bionomial Distributions

distributions. We have to assume that the reader is reasonably familiar with these distributions and with
the associated results. Therefore, this section only gives a sketch of the situation at hand, from a structural
angle. We start by recalling, without proof, basic facts about the Beta distribution on [0, 1] and about the
Dirichlet distribution on discrete distributions D(X). These continuous distributions are typically used for
the bias parameter r € [0,1] of a flip distribution flip(r) and for the distribution parameter w € D(X) of
a multinomial distribution mn[K](w). The results below are standard. The formulation of the conjugate
prior property in terms of daggers is in line with [8].

Lemma 5.1 We write Beta(a, ) for the Beta distribution on the unit interval [0,1], where a, B € Nxg.

(i) mean(Beta(a,ﬁ)) = o%rﬂ
(ii) The Beta distribution on [0, 1] is conjugate prior to the binomial channel bn[K]: [0,1] - {0,..., K}.
The dagger channel bn[K}Lem(a 5 {0,..., K} = [0,1], with Beta(c, B) as prior distribution, gives a
parameter update of the form:
bn[K];m(w 4(n) = Beta(a +n, f+ K —n).

(iii) Laplace’s rule of succession gives in this case as mean of the dagger:

mean(bn[K]gem(aﬂ)(n» = mean(Beta(a +n, B+ K — n)) = af;f}{. O

Starting from a uniform prior on [0, 1], for « = 8 = 1, the probability of seeing another sunrise after
seeing K out of K sunrises is thus:

1+ K  K+1
1414 K K+2

mean<bH[K]TBeta(1,1) (K))

This is what Laplace calculated.

There is a similar situation for multinomial distributions (9), where the appropriate distribution is the
Dirichlet distribution Dir()) on D(X), for a finite set X. This distribution involves a multiset ) € M(X)
with full support as parameter.

Lemma 5.2 (i) mean(Dir(¢)) = Flrn(1).

(ii) The Dirichlet distribution on D(X) is conjugate prior to the multinomial channel mn[K]: D(X) ~»
MIK](X) with parameter update induced by observation ¢ € M[K|(X) is:

mn[K}Eﬂw)(‘P) = Dir(¢ + ¢).

(iii) Laplace’s rule of succession thus gives:

mean (mn[K]hr(w(goD = mean (Dir (v + Lp)> = Flrn(¢ + ¢). O

‘We now come to the bivariate binomial situation.

Proposition 5.3 For K € N consider the bivariate binomial as a channel bvbn[K]: D(2 X 2) —
{0,...,K} x {0,...,K}, with a Dirichlet distribution Dir(y) on D(2 X 2), for a multiset parameter

(NS M(Z X 2) with full support. Laplace’s rule of succession gives for observations ni,ng € {0,..., K} as
outcome:

mean(bvbn[K]gjr(w)(nl, n2)> = Flrn Z Y+
PEMIK](2x2), heads(p)=(n1,n2)
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Proof. (Sketch) We write Z for a suitable normalisation constant in:

mean (ben[K”er(w) (nq, ng))

- / bvbalK(7)(n1,m2) - Dir()(7) -7 dy
~y€D(2x2)

Nl = N[~

> [ mlKI0)e) - Dirw)6) o

pEMIK](2x2), heads(p)=(n1,nz) * TEP(2X2)

= Flrn Z mean (mn[K”LDjr(w)(g)»
peEM[K](2x%2), heads(p)=(n1,n2)

= Flmn > Flrn(1) +¢) |, by Lemma 5.2 (iii)
PEM[K](2x%2), heads(p)=(n1,n2)

= Flrn > Vol . O

PEM[K](2%2), heads(p)=(n1,n2)

In Lemma 5.1 and 5.2 there are Laplace succession rules arising from conjugate prior situations, but
this not a necessary ingredient, as Equation (18) below shows. It involves the combination of the binomial
and Poisson distributions, see e.g. [15, §6.11]. This applies for instance when one has an imperfect particle
counter/detector in physics, where particles are emitted by some source according to a Poisson distribution
(with rate A) and the imperfect detection is captured by a subsequent binomial channel (with chance r of
being detected). When n particles are detected, the question is: what is the expected number of emitted
particles? The distribution of these total numbers is obtained by updating the prior Poisson distribution.
Interestingly, this yields a new Poisson distribution, but with a shift. The Laplace succession rule says in
this case:

mean(bn[—] (") i (n)) — i (1—7)- A (18)

Here one views binomial as a channel bn[—](r): N —» {0,..., K} that is reversed via the dagger, with
the Poisson distribution on N as prior. The formula (18) expresses that after detecting n particles the
expected number of emitted particles is n+ (1 —7) - A. The factor (1 —r)- X captures the expected number
of emitted particles that were not detected. This makes sense.

Without proof we mention the following analogue for bivariate binomials.

Proposition 5.4 Fiz A € R>g, K € N, v € D(2 X 2). For observations n1,ny € {0,..., K}, say with

ny < ns, one has:

Zogifm ppp(i) - i
Z()Sigm ppp(i)

mean(bvbn[—](*y)jmis[)\] (nl,ng)) =ng + 7(0,0) - X +

Y

where ppp(i) = pois[y(0,1) - A](na —ny +14) - pois[y(1,0) - A](7) - pois[y(1,1) - A](n1 —i). O

6 Expectation Maximisation for bivariate binomials

Expectation Maximisation is an unsupervised machine learning technique for classifying data in a finite
number of classes/features. The classification takes place by finding a ‘mixture’ distribution that assigns
propertions (in the form of probabilities) to the different classification features. This section gives an
impression how bivariate distributions — in the formulation of this paper — may be useful in concrete
applications in machine learning. Below we use the channel-based analysis of Expectation Maximisation
developed in [12,14] and demonstrate how it works in a concrete example. It avoids explicit updates of
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Fig. 2. Plots of 1000 samples from the distribution o € D({0,...,15} x {0,...,15}) from (19).

def BivariateBinomialEM (dist, chan, data_dist):
dagger = chanLst
# E-step, as Jeffrey update
new_dist = dagger.(data_dist)
# M-step, via double dagger
double_dagger = daggeerth
def new_chan(x): return bvbn[K]( recover (double_dagger (x)) )
return (new_dist, new_chan)

Fig. 3. Expectation Maximisation for finding a mixture of bivariate binomial distributions.

parameters, as happens in common formulations in Expectation Maximisation. However, implicitly, a
two-coin distribution parameter is recomputed in each iteration via the steps described in Fact 4.3.

The approach is as follows. We start from a known mixture of two bivariate binomial distributions,
with K = 15, namely:

70 = §[0,0) +33[0,1) + 5]1,0) + 5[ 1,1)

(19)
M = 15/0,0) +15/0,1) + 5]1,0) + 5[ 1, 1)

o = 3 -bvbn[K](y0) + 3 - bvbn[K](y1) where {

We form a multiset ¢ € M[lOOO](2 X 2) via 1000 random samples from this distribution. This multiset
is plotted in Figure 2. One recognises two humps that indicate that there may be an underlying mixture
of bivariate binomial distributions. Our aim is now to reconstruct not only the % — % mixture but also
the two distributions 1, yo from these data alone — where we only assume that two numbers are known,
namely the number K = 15 of tosses and the number 2 of binomials in the mixture.

Expectation Maximisation is the technique for doing this. It seeks a mixture distribution w, in this
case on 2 = {0, 1} since we seek a mixture of 2 binomials, and a channel c: 2 -+ {0,...,15}2, where both
¢(0) and ¢(1) are bivariate distributions. The aim is to minimise the KL-divergence Dkp,(FIrn(v), cs(w)),
so that the divergence between the data distribution and the prediction is minimal, see [12] for details.

This reduction happens via several iterations. A single iteration, in Python-like pseudo code, is de-
scribed in Figure 3. It produces a new mixture distribution via Jeffrey’s update rule [7,10], using the
dagger of the original channel, with the mixture distribution as prior. The new channel is obtained by
first forming the double dagger, with the data distribution Flrn(t)) as prior. This double dagger may not
be of the right bivariate binomial form, but it is forced into this form via a recover function. It uses the
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steps described in Fact 4.3, to find a distribution on 2 x 2 by computing the mean and covariance.

We run the algorithm in Figure 3 five times on an arbitrary mixture distribution w € D(2) and with
a channel c: 2 =+ {0,...,15}? consisting of arbitrary bivariate distributions ¢(0) and ¢(1). One such run
gives as successive divergences:

1.991 0.272 0.093 0.087 0.087.

Starting from a divergence resulting from random choices, we see that these divergence quickly stabilise
(in three decimals). The mixture distribution and associated (channel of bivariate binomials) given by
two-coin distributions that emerge after these five runs are:

0.378/0,0) +0.416]0,1) 4 0.0795|1,0) + 0.127|1,1)

0.326/0) +0.674[1) 0.094]0,0) + 0.104]0, 1) +0.205|1,0) + 0.597|1, 1)

We see that they are pretty close to values in the mixture (19), from which the 1000 samples in Figure 2 were

taken. This example illustrates how Expectation Maximisation can be performed for bivariate binomial
distributions.

7 Concluding remarks

This paper reformulates bivariate binomial distributions in a concise manner, by exploiting the functoriality
of the mapping X — D(X), sending a set X to the set of probability distributions on X. It demonstrates
the clarifying power of the categorical approach to probability theory by (re)describing some of the basic
properties of bivariate binomials, for instance via (dagger) channels. It also shows that this categorical
formulation makes it possible to prove basic properties via equational reasoning. The paper concentrates
on two dimensions, for simplicity, but the extension to multiple dimensions is straightforward.

The multivariate binomial distribution be understood as a discrete version of the widely used multi-
dimensional Gaussian distribution. By the famous theorem of De Moivre-Laplace every binomial distri-
butions approximate a Gaussian distribution. This is a special case of the Central Limit Theorem. The
approximation also works for multivariate binomials, see [18].

References

[1] I. Bayramoglu and O. Elmastas. Discrete distributions connected with the bivariate binomial. Hacettepe Journ. of
Mathematics and Statistics, 39(1):109-120, 2010. https://dergipark.org.tr/en/pub/hujms/issue/46741/531103.

[2] J. Blitzstein and J. Hwang. Introduction to Probability. CRC Press, 274 edition, 2019, ISBN: 9780429766732, 0429766734

[3] K. Cho and B. Jacobs. Disintegration and Bayesian inversion via string diagrams. Math. Struct. in Comp. Sci., 29(7):938—
971, 2019. doi:10.1017/s0960129518000488.

[4] F. Clerc, F. Dahlqvist, V. Danos, and I. Garnier. Pointless learning. In J. Esparza and A. Murawski, editors, Foundations
of Software Science and Computation Structures, number 10203 in Lect. Notes Comp. Sci., pages 355—-369. Springer, Berlin,
2017. doi:10.1007/978-3-662-54458-7_21.

[5] T. Fritz. A synthetic approach to Markov kernels, conditional independence, and theorems on sufficient statistics.
Advances in Math., 370:107239, 2020. doi:10.1016/J.AIM.2020.107239.

[6] R. Graham, D. Knuth, and O. Patashnik. Concrete Mathematics. Addison-Wesley, 2* edition, 1994, ISBN: 0-201-55802-5

[7] B. Jacobs. The mathematics of changing one’s mind, via Jeffrey’s or via Pearl’s update rule. Journ. of Artif. Intelligence
Research, 65:783-806, 2019. doi:10.1613/jair.1.11349.

[8] B. Jacobs. A channel-based perspective on conjugate priors. Math. Struct. in Comp. Sci., 30(1):44-61, 2020. doi:
10.1017/80960129519000082.


https://dergipark.org.tr/en/pub/hujms/issue/46741/531103
https://doi.org/10.1017/s0960129518000488
https://doi.org/10.1007/978-3-662-54458-7_21
https://doi.org/10.1016/J.AIM.2020.107239
https://doi.org/10.1613/jair.1.11349
https://doi.org/10.1017/S0960129519000082
https://doi.org/10.1017/S0960129519000082

10-16 A fresh look at Bivariate Bionomial Distributions

[9] B. Jacobs. From multisets over distributions to distributions over multisets. In Logic in Computer Science. Computer
Science Press, 2021.
d0i:10.1109/1ics52264.2021.9470678.

[10] B. Jacobs. Learning from what’s right and learning from what’s wrong. In A. Sokolova, editor, Math. Found. of
Programming Semantics, number 351 in Elect. Proc. in Theor. Comp. Sci., pages 116-133, 2021.
doi:10.4204/EPTCS.351.8.

[11] B. Jacobs. Urns & tubes. Compositionality, 4(4), 2022.
doi:10.32408/compositionality-4-4.

[12] B. Jacobs. A principled approach to Expectation Maximisation and Latent Dirichlet Allocation using Jeffrey’s update
rule. In H. Hansen, A. Scedrov, and R. de Queiroz, editors, Worksh. on Logic, Language, Inf. & Comp., number 13923
in Lect. Notes Comp. Sci., pages 256273, 2023.
d0i:10.1007/978-3-031-39784-4_16.

[13] B. Jacobs. Drawing with distance. Logical Methods in Comp. Sci., 21(2), 2025.
doi:10.46298/1mcs-21(2:11)2025.

[14] B. Jacobs. Structured probabilitistic reasoning. Book, in preparation, see http://www.cs.ru.nl/B.Jacobs/PAPERS/
ProbabilisticReasoning.pdf, 2025.

[15] E. Jaynes. Probability Theory: the Logic of Science. Cambridge Univ. Press, 2003, ISBN: 9780521592710, 0521592712
[16] S. Ross. A first course in probability. Pearson Education, 10" edition, 2018, ISBN: 9780024038722, 0024038725
[17] J. Teugels. Some representations of the multivariate Bernoulli and binomial distributions. Journ. of Multivariate Analysis,
32(2):256-268, 1990.
d0i:10.1016/0047-259X(90)90084-U.

[18] J. Veeh. The multivariate laplace-de moivre theorem. Journ. of Multivariate Analysis, 8(1):46-51, 1986.
doi:10.1016/0047-259X(86)90057-6.

Appendix

We add proofs that are skipped in the main text.
Proof. (of Lemma 3.6)

(i) We do only the first equation, using twice the Binomial Theorem. For 0 < n; < K we have:

D(IIy) (bvbn[K](y)) (n1) = Z D (heads) (mn[K] (7))(711,712)

0<n2<K

= > > mn[K](7)(¢)

0<n2<K oeM[K]|(2%2), heads(p)=(n1,n2)

= > (@) I ~G5)2@?

PEM[K](2x2), (1,0)+¢(1,1)=n1 1,j€2

K
-2 (K —ny— )l -1 (nqg —i)! -4l

0<i<ng 0<j<K-—my

: ’Y(Oa O)K_nl_j ) 7(07 1)J ’ ’Y(]-a O)nl_i : ’Y(]-a ]-)Z

N Z Z ni!- (K —ny)! dl-(ng—i)! 51 (K —nq —j)!

0<i<ni 0<j<K-m
' 7(07 O)K_nl_j : 7(03 1)j ’ 7(17 O)nl_i : ’7(1a 1)i

N <K) (7(1,0) 4+ (1, 1))™ - (3(0,0) + 7(0,1) ™

ny

- (K) A (=) = balK) (D) ()

ny
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(ii) We now get for 0 < nj,ny < K, via Lemma 3.2,

bvbn|K] <V1 ® 72) (n1,n2) = > mn[K] (71 ® 72)(%0)
pEM[K](2%2), heads(p)=(n1,n2)

- Z () - 71 (1)PLOFLL) ) ()2 (00 +£(0.1),

<p€heads_1 (n1,n2)
2 (1)PODF(L1) Ay (0)2(0.0)+(1,0)

= Y (@) @™ (0K (1) g (0)K
sDEhead571 (n1,m2)

- <K> ' <K> (D)™ (1= (1) (1) (1= a2(1)) T

ni no
= bn[K](v1(1)) (1) - bn[K](72(1)) (n2)

= (balE) (1 (1)) @ ba[K] (15(1)) ) (1, m2). O

Proof. (of Proposition 3.7) For the first equation we use the closure of multinomial distributions un-
der convolution, from Lemma 2.2 (ii) and note that the commutative monoid involved is N? with the
component-wise sum + - N? x N? — N2,

bvbn[K](~y) + bvbn[L](~)
= D(+) (bvbn[K] () + bvbn[L] (’Y))
= 3 X bvbnlK]()(m.ma) - bYBn[LI()) (ma,ma) | (1) + (m,ma) )

ni,ng eN mq ,ma €N

= Z Z ( Z mn[K](y)(cp)) - ( Z mn[ﬂ(v)@))
(n1,m2)

n1,m2EN m1,m2EN  \ pcheads™! wEheads™ ! (m1,ma)
| (n1 + m1,ng +ma))

= > S mm[K](7)(¢) - mu[Z](7)()

PEM[K](2x2) peEM[L](2X2)

| (M) () (1) + M (1) () (1), M(2) () (1) + M (m2) ()(1) )
=D S mnlK)(3)(e) - mulL)(7)(¥)

PeEM[K](2x2) peM[L](2x2)

| (M(m1)(p +m) (@) (1), M(m2) (0 +9)(1)))

= D(heads) ( > > mu[K](7)(¢) - mu[L](y)(#) 90+¢>)

PpEM[K](2Xx2) peM[L](2x2)
= D(heads) (mn[K] () + mn[L)] (fy)) = D|(heads) <mn[K + L] (fy)) = bvbn[K + L|(7).

The second equation bvbn[K](y) = K -« is obtained via this closure under convolution, using that
bvbn[0](v) = 1/0,0) =0 - v and:
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bvbn[1](y) = bvbn[1](7)(0,0)|0,0) 4+ bvbn[1](7)(0,1)]0,1)
+ bvbn[1](7)(1,0)|1, o>+bvbn[ J(v)(1,1)|1,1)
= mn[1](v)(1]0,0))]0,0) + mn[1](v)(1]0,1))|0,1)
+mn(1]()(1]1,0))|1,0) + mn[1](y)(1 \1 1))]1,1)
7(0,0)[0,0) +7(1,0)[1,0) +~(0,1)|0,1) +~(1,1)[1,1) = 7.
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