ELECTRONIC NOTES IN (N EM | |(:S VOLUME 5
THEORETICAL INFORMATICS «iit PROCEEDINGS OF

AND COMPUTER SCIENCE HTTPS://ENTICS.EPISCIENCES.ORG MFPS 2025

Modular Abstract Syntax Trees (MAST):
Substitution Tensors with Second-class Sorts

Marcelo P. Fiore*! Ohad Kammar®? Georg Moser®® Sam Staton®*

* Department of Computer Science and Technology
University of Cambridge
England

b Laboratory for Foundations of Computer Science
School of Informatics
University of Edinburgh
Scotland

¢ Theoretical Computer Science
Department of Computer Science
University of Innsbruck
Austria

4 Department of Computer Science
University of Oxford
England

Abstract

We adapt Fiore, Plotkin, and Turi’s treatment of abstract syntax with binding, substitution, and holes to account for languages
with second-class sorts. These situations include programming calculi such as the Call-by-Value A-calculus (CBV) and Levy’s
Call-by-Push-Value (CBPV). Prohibiting second-class sorts from appearing in variable contexts changes the characterisation
of the abstract syntax from monoids in monoidal categories to actions in actegories. We reproduce much of the development
through bicategorical arguments. We apply the resulting theory by proving substitution lemmata for varieties of CBV.

Keywords: denotational semantics, presheaves, abstract syntax, binding, actegories, monoidal actions, skew monoidal
categories, bicategories, substitution lemma, holes, metaprogramming.

1 Introduction

Fiore, Plotkin, and Turi’s [39] mathematical foundations for abstract syntax with binding and substitution
possess several unique properties. It is based on Goguen et al.’s [46] initial algebra semantics, and as such
provides an abstract interface that supports modularity and extensibility. It accommodates both syntactic
representations and their semantic models in one semantic setting. Its multi-sorted extension supports
intrinsically-typed representation: the abstract syntax also encodes simply-typed constraints, ensuring only

I Email: marcelo.fiore@cl.cam.ac.uk
2 Email: ohad.kammar@ed.ac.uk

3 Email: georg.moser@uibk.ac.at

4 Email: sam.staton@cs.ox.ac.uk

Rec’d Apr 3,2025; Pub’d Dec 15,2025 Proceedings Available Online at © M.P. Fiore, O. Kammar, G. Moser, and S. Staton
10.46298 /entics. 16879 ENTICS MFPS 41 Proceedings ©@®O Creative Commons

https://entics.episciences.org
mailto:marcelo.fiore@cl.cam.ac.uk
mailto:ohad.kammar@ed.ac.uk
mailto:georg.moser@uibk.ac.at
mailto:sam.staton@cs.ox.ac.uk
https://doi.org/10.46298/entics.16885
https://doi.org/10.46298/entics.proceedings.mfps41
https://creativecommons.org/licenses/by/4.0/

82 Modular abstract syntax trees (MAST)

well-typed syntax trees are expressed. It supports context-aware holes, called metavariables. Despite its
mathematical sophistication, it lends itself to formalisation and computational representation [8,9,31,25].
This approach is robust to generalisation, e.g. to polymorphic [37], and dependently-typed [33] settings.

This work concerns another such generalisation: support for second-class sorts [11], as employed by
common calculi such as the Call-by-Value A-calculus and Levy’s Call-by-Push-Value [68,67]. Typically
we consider separate syntax for values and for computations, but variables in the language only stand
for values, leaving the sorts of computations ‘second-class’ w.r.t. substitution. Supporting the syntactic
needs of these calculi is essential for the applicability of this theory to formalisation and computational
representation of programming languages. After all, common programming languages and their syntactic
representations are overwhelmingly Call-by-Value.

We make these ideas and motivation precise through a comprehensive case-study of a Call-by-Value
A-calculus (CBV) with records/products, variants/coproducts, and a simple inductive type of natural num-
bers, with various flavours of recursion: structural, unbounded, and general recursion. Fig 1 presents the
raw terms of this calculus. Each type A has two sorts of terms associated with it: values V' and unre-
stricted terms M. We can embed values into unrestricted terms through the term constructor val, and
use them wherever we may use a term. Values enjoy a first-class status w.r.t. binding and substitution:
we only have value variables and may only substitute values for variables. This distinction partitions the
abstract syntax into first-class sorts for values and second-class sorts for computations. Our contribution
is to modify the classical theory to allow this distinction between these two classes of sorts.

As a concrete yard-stick for this new theory, consider fragments of the calculus. For example, a fragment
involving only functions and records, but not natural numbers. Each such fragment makes a different set
of semantic demands on its class of models. For example, functions require certain exponentials, natural
numbers require a parameterised natural number object, recursion requires parameterised fixed-points,
etc. So long as we consider a fragment in isolation, we can simply aggregate all the required structure
into one definition, define the semantic interpretation function, and establish its basic properties directly.
However, once we consider multiple fragments simultaneously, we quickly need a modular representation
of the syntax, its semantics, and their properties. A concrete example of a property that typically requires
tedious reproof is the semantic substitution lemma, which states that the semantics of a substituted term is
the semantics of the term composed with the semantics of the subsitution: [M[0]] = [M] o [#]]. Without
a modular theory encompassing both syntax and semantics, proving this lemma requires a separate tedious
inductive argument for each fragment. The theory we develop here will allow us to prove it modularly
for each fragment of the calculus, and combine these results together to 27 = 128 different substitution
lemmata for 128 different languages in Lemma 7.4.

This problem is a semantic counterpart to Wadler’s Expression Problem . We do not purport to solve
the Expression Problem, which concern the design and implementation of abstract syntax and its evaluator
in an existing programming language. We review the immediate literature and draw some connections
in the Related Work Sec. 9. Our approach is closest to Swierstra’s 4 la carte solution to the Expression
Problem. Like him, we use coproducts of signature functors [85].

The classical theory phrases the universal property of capture-avoiding substitution over the abstract
syntax as follows. The abstract syntax is a presheaf indexed by sorts and simply-typed contexts. Both
the syntax and its semantic models form algebras for signature functors over this presheaf category, which
allow them to be aware of binding constructs. Both the syntax and its semantic models also form monoids
w.r.t. a monoidal tensor product whose unit is the presheaf of variables. This tensor product is the input
to capture-avoiding substitution, pairing a value with its closure, subject to the structural properties
of substitution. Tensoring with a pointed presheaf then provides closures that may contain syntactic
or semantic representations of variables. The algebra structure and the substitution monoid must be
compatible. Phrasing this compatibility requires a pointed strength for the signature functor. It is this
strength that yields the theory its modularity. It explains how to propagate variable-aware closures under
each syntactic construct, independently from all the other language constructs and their semantics.

3 Philip Wadler, The Ezpression Problem, Java Genericity mailing list, 1998:
https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt .

2

https://homepages.inf.ed.ac.uk/wadler/papers/expression/expression.txt

Fiore, Kammar, Moser, and Staton 8-3

A,B,C == type VW z= value
p base X variable
| A— B function | ix: AM function abstraction
| (C:Aliel) record (I finite) | (C:V]iel) record constructor
| (G :Aliel] variant (I finite) | AC.V variant constructor
| N natural number | » number literal
M,N,K, L == term
valV value
| letx; =M;;...;x,=M,in N sequencing
| M@N function application
| (C,: My,....,C, 1 M,) record constructor
| case M of (Cixq,...,Cx,) = N record pattern match
| ACM variant constructor
| case M of {C,-xi = M,|i € I} N variant pattern match
| unrollM | rollM number (de)constructor
| fold M by {x = N} bounded iteration
| fori= MdoN unbounded iteration
|

let rec AT, Ay =My;...; T, A,=M,in N recursion

Fig. 1. Syntax of cBV

Contribution

Generalising the theory to account for second-class sorts involves refining these ingredients further. We
generalise compatible monoids to compatible actions. In this sense, we extend Fiore and Turi’s [40] treat-
ment of value-passing process calculis (cf. Related Work Sec. 9). The terms of first-class sorts and their
semantics still form a monoid, allowing us to collapse towers of substitutions into first-class terms or deno-
tations. This monoid acts on terms of second-class sorts and their semantics, but those no longer form a
monoid, but an action. Just as monoidal categories are the natural categorical setting for monoids, acte-
gories are the natural categorical setting for actions. We dub the resulting theory Modular Abstract Syntax
Trees (MAST). This simple change propagates throughout the theory and requires reformulating it from
start to finish. Fortunately, the following relatively recent development makes our work straightforward.

Bicategorical foundations. Fiore, Gambino, Hyland and Winskel [35] characterised the substitution
tensor product as l-cell composition in a Kleisli bicategory over profunctors. While technical, this bicat-
egory captures the structure of the tensor as it operates on heterogeneously sorted structures: one set of
sorts for syntactic classes, and one set of sorts for the context of bound variables. In the same way that
monoidal categories come from one object bicategories, actegories come from a choice of two objects in a
bicategory. This observation avoids the many calculations direct treatments incur.

Evaluation. To evaluate MAST, we study fragments of the CBV calculus in Fig 1. MAST’s modularity
allows us to formulate succinctly their syntax and semantics, deriving 128 substitution lemmata.

Skew monoidal structure. In an earlier version of this work, we observed that the presheaves indexed
by both kinds of sorts and by contexts of first-class sorts have a substitution tensor with an associator
and unitors. Unfortunately, the left unitor is not invertible. This failure means the tensor is left-skew
monoidal [87]. Moreover, it is right-unital and associative, meaning both the right-unitor and associator
are invertible. Adapting the theory is straightforward, but requires redeveloping it completely. Fiore
and Szamozvancev’s [31,32] recent skew monoidal theory of abstract syntax has been influential to our

3

84 Modular abstract syntax trees (MAST)

work. Skewness in their development has a different source. Nonetheless, we reused their results verbatim
thanks to our shared categorical abstractions. While our recourse to actegories and actions avoids the
need for skew monoidal structure, we can connect the two approaches. We prove that sufficiently well-
behaved actegories induce skew monoidal categories, and moreover the category of actions in the actegory
is isomorphic to the category of monoids in the skew monoidal category. When working concretely, the
skew structure provides a uniform list of proof-obligations, avoiding the need to split the structure into
the components of its first-class and second-class sorts.

Alternative. Instead of re-developing the theory, in practice one can take a concrete semantic structure

M with second-class sorts, and complete it to obtain a model M of the classical theory, in which the second-
order sorts can appear in contexts. We are not interested in this alternative. First, it leads to unnecessarily

complicated models (i.e., the hypothetical M) which contain formal /syntactic extensions needed to account
for variables of second-class sorts that programs will never exhibit. Second, we would expect proponents
of this alternative to prove this kind of completion is always possible. Doing so would require to either

empirically complete all known models, or, more satisfyingly, define a completion construction M M.
In this work, we define models for second-class sorts, i.e., the structure for M, and moreover show they
have the same abstract theory as those with first-class sorts. This development lays the foundation for

such wholesale completion construction M — M, which we leave to further work.

Paper structure. While the theory is technical, applying it concretely involves few self-contained in-
gredients. Sections 2-6 cover these ingredients in a tutorial style. We accompany each concept with
motivating explanations and concrete examples (more than 25 examples overall). This development cul-
minates in the Special Representation Thm 6.4 which characterises the presheaf of abstract syntax with
holes in terms of O-actions. This theorem enables us to prove dozens of substitution lemmata. Sec. 7
reports on a case study: extensions to CBV. Sec. 8 provides a detailed technical outline of the main ingre-
dients in the bicategorical development and presents the General Representation Thm 8.3 for O-actions.
Thm 8.3 implies the Special Representation Thm 6.4 directly, but abstracts away from the concrete syn-
tactic details and technicalities of presheaves using skew monoidal products and actions. Sec. 9 surveys
closely related work. Sec. 10 concludes. = We prepared an accompanying technical report [38], which
is not published as part of this article. It contains the same contents of this article expanded with Ap-
pendices A-D, which include further technical details. Appendix A provides omitted proofs concerning
our case study. Appendix B expands on our bicategorical development, including: the full definition of a
bicategory; how to obtain monoidal actions from bicategories; and the existence of the closed structure for
substitution tensors. Appendix C provides the technical details behind our development of monoidal cat-
egories, including: actegories, strong functors; and connections to skew monoidal categories. Appendix D
gives the full proof for the General Representation Thm 8.3 for MAST, based on parameterised initiality
as outlined in Szamozvancev’s thesis [86]. We will refer to these Appendices throughout this article.

2 Heterogeneous sorting systems and structures

The first component in the theory specifies the available sorts of syntactic classes of interest. The first-class
sorts, unlike the second-class sorts, can appear in contexts and binding positions. Formally, a heterogeneous
sorting system R = (FstR,SndR, Sortg, fstg, sndR) consists of:

+ a set Fstg whose elements are the first-class sorts;

+ a set Sndg whose elements are the second-class sorts;

. fstg sndg
+ a coproduct diagram: Fstg —— Sortg «——Sndg

We denote by b= [],c,(c; : g;) the coproduct diagram with apex b and injections: (cl- ta; — b)ie[' So, for
a sorting system R, we have Sortg = (fstg : Fstg) LI (sndg : Sndg). We call the apex Sortg the total set of
sorts. We omit the sorting system R and write Fst, Snd, and Sort when R is unambiguous. When we don’t
specify a set for the apex, we will use the disjoint union and its injections as the apex. A homogeneous
sorting system is a sorting system which only has first class sorts: Sndg = @ so that fstg : Fstg = Sortg. In

this way, MAST generalises the classical theory from homogeneous sorting systems to heterogeneous ones.
Example 2.1 The homogeneous sorting system CBN for the call-by-name A-calculus has the simple types

4

Fiore, Kammar, Moser, and Staton 85

as first-class sorts and no second-class sorts, i.e., Sort.gy := Fst zy = SimpleType. The sorting system
CBV for the call-by-value A-calculus has both a first-class sort for A-values and a second-class sort for
A-computations for each simple type A € SimpleType:

Sort ., := {A,comp A|A € SimpleType} = (val := (AA.A) : SimpleType) LI (comp : SimpleType)

Here, the total set of sorts includes two versions of each simple type A: an untagged version, representing
the sort of A-values, and a tagged version comp A representing the sort of A-computations. We take the
inclusion val A := A as the left coproduct injection, and the tagging function comp as the right injection.

The sorting systems CBN and CBV codify that in CBV only values may be substituted for variables, and
OBN does not make this distinction and all expressions can be substituted for variables.

Example 2.2 Each sorting system R restricts to a homogeneous system R|¢, = (FstR, ﬂ).

Every set of first-class sorts determines a category of contexts and renamings in the following way.
Given a set .S, we write S, := List.S for the set of finite sequences I' € S, with elements in .S which we
call the S-sorted contexts. We will need to refer to positions in a given context. For example, the third
position in the context I' := [A,A — B, B] has sort B. To simplify such references, we will label these
positions with distint meta-level variable names, and omit the brackets when other symbols delimit the
context unambiguously. For example, we will write ' :==x : A,f : A — B,y . B, and refer to the third
position by y. This presentation makes it seem as if we use a nominal representation of binding, whereas in
fact we use a nameless (i.e., de Bruijn [28]) representation, indexing context positions by ordinals. We thus
refer to the set VI" of positions in a given context I' as the set of its variables, and will use the meta-level
labels to refer to its elements. We write (x : a) € ' when the element a appears in position x € VI.

A renaming p : I’ —» A is a function —[p] : VI « VA satisfying (y[p] : s) €’ < (y : s) € A. The
choice of direction (from I" to A) is a matter of taste. One mnemonic for our choice is the fictional typing
judgement I' - p : A. Renamings compose as functions in opposite order with the identity function acting
as the identity renaming, and collect into a category Sp of contexts and renamings between them.

Example 2.3 The following is a renaming from the context to itself:

p:Us=Ix:p,f 10— Prg:Pr— by :fl->T x[pl:==x flpl:=g glpl:==f ylpl=x

Thus a renaming may permute the order, e.g., permuting the variables in positions f and g, identify some
variables, e.g., x and y, or weaken the context, e.g., y is not in the image.

Example 2.4 Each category S, has chosen finite products. The terminal object is the empty context
1 := [] with the unique renaming (_) : I' = 1 being the empty function VI « V[]. The product of two
contexts is their concatenation, with the left/right projection sending the i*" position from the left /right
to the i*h position to the left/right. Letting T := [x; : sq,...,X, : S, and A = [X,11 © Sprts e s Xpom * Snaml:

x;[m]=x; Xppi=1X;[m5]
C#A=1[x s5,...,% 1S l I+ A— :

o Yn+m

n+m]

Let R be a sorting system. Consider the set Sortgy as a discrete category. An R-structure P is a presheaf
P € PSh (SortR X (FstR)'_), i.e., a functor P : Sortg X (FstR)ip — Set indexed by sorts and contexts and
contravariant in renamings. If I is a set, an I-family F is a presheaf over the discrete category induced
by I, and an R-family is a family over Sortg X (FstR)l_. Thus an R-family F assigns to each sort s € Sortg

and context I' € (FstR)l_ a set FI'. So an R-structure P is an R-family equipped with a functorial action:
. — p o _
—[plp : PI' < PA plidlp =p (gloDlpl = qloop]l (s€Sort,pe PI',q€ PE, and'— A— E)

Let R-Struct be the category of R-structures and natural transformations @ : P — Q between them. This
category is our central semantic domain. Through it we will define constructions and universal properties
for most other concepts. Each R-structure P amounts to two presheaves:

P|¢ € PSh (Fst X Fst®) P|.,q € PSh (Snd X Fst®)

86 Modular abstract syntax trees (MAST)

which we call the first-class and second-class fragments of P, respectively. In a homogeneous sorting
system, the second-class fragment of every presheaf trivialises to the empty functor from the empty category
to Set, and we will identify such presheaves with their first-class fragment. In this way, MAST presheaves
generalise the homogeneous presheaves of the classical theory.

Example 2.5 Let Sort = Fst be a homogeneous sorting system, i.e., a set of first-class sorts. The presheaf
of variables V € Fst-Struct is given by V. I":= {x|(x : 5s) €'} equipped with renaming x[ply := x[p].

Example 2.6 Let N\°BY be the cBv-structure comprising the values and terms of the CBv A-calculus:

N = {VITFV :val A} Agfnv]pAF == {M|C+ M : comp A} X[plpcey = X[p]
Its functorial action is given by the usual, syntactic, definition of renaming. Its first-class fragment supports

a natural transformation from the homogeneous presheaf of variables: var : V. — A“BV| .

Let C be a category with chosen finite products. Every functor F : § — C extends to a product-
preserving functor FE™ : S, — C via:

/4

E E E Xlel . E E .

FF“" = I I F, Fp = <FF“V—> FS> : Fan - FAnv (p:T' = A)
(x:s)el’ (x:5)€EA

The product-preservation condition provides the concatenation operation (4) : Plfznv X Pf“" = PI—I?:-}I:-VA'

The typical case is C := PSh (FstR)F. By considering each homogeneous presheaf P € Fst-Struct as a

functor Fstg — PSh (FstR)l_, we form the functor PE™ € (FstR)l_ — PSh (FstR)l_. We call the elements
e E PIF“VA, the P-valued I'-environments in context A. They are are I'-indexed tuples of PA elements of

the appropriate sorts, and can represent both semantic and syntactic substitutions. As with coproducts,

we write b = [],c,(¢; : a;) for the product diagram <bi> ai) , and (c[: ui)iel for the tuple whose i-th

. iel
component is u;.

Example 2.7 The following environment is in (ACBV)E;‘:V/} bipc] [x:B,f:p— Pl

(@a:x,b:x,c:Az: p.f@(f@z))

Remark 2.8 We chose a nameless representation for contexts since it simplifies some concrete aspects in
the development. As in the classical theory, this choice is not essential. For example, we can represent
contexts nominally as a list pairing variable names and sorts. To define V, we must disambiguate variables
with the same concrete name. These different choices give equivalent small categories of contexts and
therefore equivalent categories of presheaves. All of our concepts are defined by universal properties, and
so the same development can be carried out in any of those representations.

3 Signature combinators

One defining feature of the classical theory is how it deconstructs signatures with binding [2,75] into smaller
components. Formally, and following categorical logic and Goguen’s initial algebra approach to semantics,
we use endofunctors O : R-Struct — R-Struct to represent signatures. Each element op € (0X),I"
represents a language constructs of sort s. The presheaf X represents the sub-terms op may use and the
context I' represents the free variables in scope. Representing signatures with endofunctors enables some
degree of modularity. For example, the coproduct of signature functors O, LI O, gives terms in which we
can take operators from either O or O,. This decomposition allows us to study each operator on its own
and combine their properties modularly. In doing so, we abstract from sorting systems and their categories
of structures. Thus we define these combinators on more abstract presheaf categories.

6 The other trivialising case, Sortg := #11Snd, yields R-Struct = Set>™ and so MAST generalises multi-sorted algebra,
without accounting for equational presentations and their varieties. We will not make use of this fact further.

6

Fiore, Kammar, Moser, and Staton 87

Application, restriction, and extension

We often want to project out one or more subterms, or only define a language construct in a specific
collection of sorts. For example, in the simplest case we project out or define in a single sort:

(@s0) : R-Struct — PSh (FStR)I— X @5 := Xso (So (S SOrtR)
% : R-Struct < PSh (Fstg) (BY) =4 7% Y
S0 s ss 5) otherwise: 0

Example 3.1 The CBV inclusion of A-values into A-computations is: ValOp, X := % o, 4(X @ val A).

In a more general form of these combinators we restrict to, and extend along, a function f : I —» J
between sets, for any small category A, obtaining an adjoint pair of combinators %, = (| ,):

(|f):PSh(JxA)—>PSh(IxA\) (le),.:zXf,. (f : I - J in Set)
% : PSh(J XA PSh(I x A YY), = Y.
; (J XA) « PSh(I x A) (% Y), iegm ;

Example 3.2 Taking fst : Fstg — Sortg recovers the combinator (|¢;). We recover the combinators (@s)
and %, using the constant function s, := (4r.sp) : 1 — Sortg.

Products and coproducts

As in categorical logic and initial algebra semantics, the bread-and-butter combinators are products and
coproducts. Products allow us to express n-ary syntactic constructs. Coproducts allow us to combine
signatures into larger signatures. We will use both in many different settings, and so define them in their
utmost generality as [];,[I; : C! = C, where C has I-indexed products or coproducts, as appropriate.

Example 3.3 We combine the value inclusions in one functor: ValOp X := HAEsimpleType(valA : ValOp, X).
Example 3.4 Application in CBV has the signature:
AppOp X := H <(@) I » (X @comp(A — B)X(X @ compA)))
A,BESimpleType comp B

Scope shift

We use the following scope shift operation to express operators that bind variables:
I'> : R-Struct — R-Struct > X),A:=X,(A+1) (I € (Fstg),)

Aside. In the classical single-sorted and homogeneous theory, scope shift by one variable is presheaf ex-
ponentiation by the presheaf of variables. In our setting, (I'>) = (yp —), wherey : (FstR)F — PSh (FstR)F is

the Yoneda embedding and (G —) : R-Struct - R-Struct, for a single-sorted presheaf G € PSh ((FstR)F),
is the right adjoint to the functor (G®) : R-Struct — R-Struct given by: (G © P),I' := GI' x P,I.

Example 3.5 For abstraction: LamOp X := H (Ix : A): ® [x: A]l> X @ comp B).
A,BESimpleType A-B

Combining these examples, we have the full CBvV signature: CbvOps := LamOp LI ValOp LI AppOp. The
presheaf of syntax is then the initial algebra N°®Y = uX. ((vaOps X) I V). Using the same methodology,

one can mechanically translate, e.g., Aczel’s [2,75] binding signatures which express a wide class of syntax.

7

8-8 Modular abstract syntax trees (MAST)

4 Substitution tensors

The substitution tensor imposes semantic invariants on the input for syntactic or semantic substitution
operations, which will be of the form —[-]p : P ® Pl¢g — P where P is a R-structure standing for the

abstract syntax or its semantics. Let R,S,T be sets, and P € PSh (R X S,_), O € PSh (S X T,_) be two
heterogeneous presheaves. Their heterogeneous substitution tensor is the heterogeneous presheaf:

AeSp
P®Q ePSh(RXT.) (PR QO),I:= [PAXQEMT = < H P.A X anvr> /(~)
AeS,

This definition involves the Q-environment functor QF"™ : § — PSh (T,_) given by QFY := H(X: $)Eh PI.
The coend’s quotienting relation (~) is the least equivalence relation generated by relating the triples:

(A1 1lolpse) ~ (Agtieyy) (p: A > Ay 1€ PAy e €QT)

As we explained in the introduction, these identification represent invariants for substitution:

Example 4.1 Consider the syntax presheaf N“®Y. For brevity, we use the vernacular (ky), rather than
elaborate ((val k)@(valy)), syntax. Consider the following equivalences in N°®Y @ NBY:

- Assigning the same value to different variables (f, g below) relates to renaming the two variables to one
(f,g v+~ h). Formally, taking f[p] := h,glp]l:== h, t:= Ix.f(gx), and e:= (f : ky,g : ky) witnesses:

(Ax.f(gx),(f 1 ky. g kW]ifg:p—p = [Ax.h(hx),(h > kY)]ip:p—p
e (A ® ACBV)Va|(ﬁ_>ﬁ)[k B =B,y Pl

+ Weakening the context by unused variables relates to projecting only the used variables. Formally,
taking z[p] =z, t ;= Ax.z, and e:= (f : 1x.x,z . y) witnesses:

(Ax.z,(f © Ax.X,2 2 Wip.popzp = [Axz,(z2 0 W]zp € (NPY @ NPY) gy & Bl

+ Permuting the environment relates to permuting the variables. Formally, taking f[p] := g,glp] == f,
t:=Ax.g(f x), and e := (f : Ax.x, g : k) witnesses:

[Ax.f(gx),(f : ix.x, g : K)ifg:p—p = [Ax.g(f x),(f : k,g: /lx.x)][f’g:ﬂ_,ﬁ]
c (ACBV ® ACBV)V3|(ﬂ_>ﬂ)[k : ﬂ — ﬂ]

These examples are representative in the following sense. We can represent every renaming p : Ay = A,

as the composition: p : A, — A R A,, where: i : Ay > A, is a renaming with a surjective action on
variables, and 7 is a thinning, a renaming with an injective and relative-order-preserving action on variables.
Permuting the variables and then repeatedly identifying some, but not necessarily all, adjacent variables
of the same sort generates all renamings with surjective actions. Repeatedly thinning out a variable
generates all thinnings. Therefore (~) is the smallest equivalence relation that contains the following three
identifications (cf. Ex. 4.1):

« Identifying two variables vs. environments containing the same value in their positions.
+ Weakening by a thinning vs. projecting according to a thinning.
« Permuting two variables in the term vs. permuting the values in their positions.

The substitution tensor product has the following left/right unitors and associator maps:

£:VQP—P r:PRV— P 2: PRO)®L—PRO®L)

£lx,ely = e, rp. pl, = pl7] allp.ala el = [p, (las-el A2>(e]
xX1)EA; | A,

Fiore, Kammar, Moser, and Staton 89

While these mediators satisfy familiar-looking pentagon and triangle laws, they are best understood as
part of a bicategory whose 0-cells are small categories, 1-cells are generalised heterogeneous preshaves, and
2-cells are natural transformations between them. Fiore, Gambino, Hyland and Winskel [35] introduced
and investigated this bicategory, and we expand on this bicategorical perspective in §8.1.

Let R be a heterogeneous sorting system. The substitution tensor then provides a two-argument
functor (®) : R-Struct X Fstg-Struct — R-Struct. We understand it abstractly through actions. Formally,
a monoidal action (V, A) consists of:

1

« A monoidal category ¥V = (2, ®,I1,a,7 ,r), we will typically write r’ :==r~!; and

« A V-actegory A = (A, >§,a,r)7 i.e., a functor and isomorphisms, natural in a € A and x,y € V:
M :AXYVY > A a,,,:@¥x)Ry—>ad(x®y) r,:avl—a

satisfying the following equations:

xRa)»bRc)
> . I x¥DRa>xdA®a)
(xP@DD)DC pontagon XD (@ ® (B) Jction
a®id\ - Sid®a r2id\ = /idwe
(xR (@®@b)Dc x(a®b)®c)
T xMa

Take R-Struct,, := PSh (SndR X (FstR)F) as the heterogeneous structures with second-class sorts only:

Theorem 4.2 FEach heterogeneous sorting system R gives a monoidal action (FstR-Struct,R-Structsnd):

« The monoidal category of homogeneous Fstg-structures equipped with substitution tensors, the presheaf
of variables, and their associator and unitors:

Fst-Struct = (PSh (Fstg x (Fstg),).(®).V,a,2,r)
« The Fstg-actegory of the second-class-sorted structures equipped with substitution tensors and mediators:
R-Struct,,; = (PSh (Sndg X (Fstg),).(®).a,r)

The theorem is a direct consequence of the bicategorical development [35] (cf. Prop. 8.1). The monoidal
category is the one from the classical theory. Identifying the actegory structure is the technical innovation in
MAST. The projections into the first-class and second-class components form an isomorphism of categories

((l¢s)s (lsng)) © R-Struet— Fst-Struct x R-Struct,,,. We will use its inverse in the sequel:

(= -) : Fst-Structh-Structsndi R-Struct (P.OWM¢t =P (P.OWng=Q L={ Llsg, Llsng)

Since each monoidal category acts on itself, and actegories have componentwise products, we can and
will extend the action, through this isomorphism, to an action of the homogeneous structures on all
R-structures: (®) : R-Struct X Fstg — R-Struct, satisfying: (P® Q)l¢q = Pliq ® O. However, the
Representation Thm 6.4 in the sequel needs the action from Thm 4.2, not the extended action (9).

We will use the following two well-known constructions to combine actegories compositionally:

Example 4.3 Every monoidal category V is a V-actegory through its own monoidal tensor, i.e., taking:
(a® b) :=(a® b). The actegory axioms are a subset of the monoidal ones.

Example 4.4 Given a sequence of V-actegories (A;,(®),Vi,al,r'), we define the product V-actegory

componentwise as follows, validating the axioms componentwise:

i’

@ (J[arxc-J[Aa Gra=(x%a), a=(a), r=(r)
iel iel

9

8-10 Modular abstract syntax trees (MAST)

Let (¥, A) be a monoidal action. A (V, A)-action (M, A) consists of:

« A YV-monoid M, i.e., a triple (,e, e) consisting of an object M € V and two morphisms > M <—M®M
satisfying the follovvlng three equations:

®id MM (¢ .
1oM %9 e®id MoM /— —\ M®I id®e MeM

(M ® M) ® M associativity M .
left — - = — right
f 'nglt (.) a\ /(.) r uglt (.)
- M@ M®M) MM -
- id ® () -

- An M-action A in A, i.e., a pair (A,+) consisting of an object A € A and a morphism « : A M — A
satisfying the following two equations:

action

(é Y M) D M associativity é action
a\, = A% f;i}ll{/
AdM®M) AXM
[
id ® ()

Generalising the classical theory, we use monoids and actions with respect to the substitution tensors
to axiomatise syntactic and semantic capture-avoiding substitution operations. We therefore use the more
suggestive notation M = (M, —[—],var) for monoids in Fst-Struct and A = (A, —[—]) for their actions in

R-Struct,y, which we call substitution actions.

Example 4.5 The first-class fragment of the syntax presheaf A“®Y has a ¢CBv-monoid structure given by
capture-avoiding simultaneous substitution on values [V, 0] = V[0]. The inclusion of variables in values is

the map var : V A—):i (N\°PY) 4. This monoid acts on the second-class fragment through capture-avoiding
substitution on computations [M, 8] — M[0]. The five axioms become the familiar substitution lemmata:

x[0] = 0, V10D [e]l =V [0[s]] vV [id] =V (M [0]) [o] = M [0[c]] M [id] =

We will derive capture-avoiding substitution and its meta-theory from the Representation Thm 6.4.

Example 4.6 Let C be a Cartesian-closed category with chosen finite products [] and exponentials b7.
Every choice of interpretation [[f]] for the base types equips C with a CBV-action structure by first extending
the interpretation to types and contexts, and then defining the carrier presheaf by:

[4 - B] = [B]" irp=J] 14l M, T = C(IT. [AD Al =CUTT . 14D
(x:A)el’

T
Define the unit by projection (varB;F y) I = H(x:A)er [A] — [B]); and substitution by composition:

f 0 y)(B)EA f
(81 = TAD [T = [BDy: meal = (1M1 —T],,. pcs 181 = 181 [4])
We explore the richer strong-monad models for CBV in our case study in Sec. 7.

The isomorphism (—, —)) : Fst-Struct x R-Struct,, — R-Struct lets us re-package substitution actions
in terms of R-structures. A substitution structure S = (8, —[—Ig, varg) is an R-structure S equipped with
morphisms varg : V — S|, and —[-] : S® S|, — S forming a monoid (Sl¢st - var, (—l¢s)[=]g) and an

10

Fiore, Kammar, Moser, and Staton 8-11

action of it (Slsnd ,(—|Snd)[—]s). L.e., this monoid and its action form a substitution action. Thus we will
speak of substitution actions when we refer to a pair of structures—a homogeneous monoid and its action
on a heterogeneous structure over second-class sorts. We will speak of substitution structures when we
want to emphasised the combined heterogeneous structure over both first-class and second-class sorts.

5 Signature functors

So far we have specified functors O, their algebras, and actions. We can equip the abstract syntax with
this structure, and its denotational semantics with this structure. We can even characterise the abstract
syntax as an initial algebra (ﬂX (0x)U1 ((V,@)),roll) for the signature, and the denotational semantics
as the unique (O L {V, 0)-algebra homomorphism. This characterisation, however, does not account for
neither the syntactic nor semantic substitution lemmata. The missing ingredient is a structural map, a
tensorial strength for the signature functor. The strength specifies how to avoid unintended capture when
moving under each operator in the signature. More precisely, it specifies how to change an environment
containing the free variables in scope when we propagate it to the arguments of each language construct.
It is this information, phrased w.r.t. arbitrary environments, that gives MAST much of its modularity. The
overall signature functor is a coproduct of signature functors, each with their own strength. Each strength
determines how to substitute through each language construct independently from the other language
constructs. To define the strengths, the classical theory uses pointed tensors and their actions, which we
adapt to heterogeneous structures in this section.

To describe scope changes, the classical theory uses a point-free way to consider those homogeneous
prehseaves P € Fst-Struct that can, moreover, encode variables [x : 5] p € P[x : s]. Since we have that

Vi =Y[x:5 € PSh (FstR), the Yoneda lemma represents ([[x]| P)sertR via a natural transformation:
var 1 V> P vargrx = [[x o sl p [[x : 5] LF] € PI’ [x : sl p:=varg.gx

In MAST we follow the same technique. We start by organising these presheaves into a monoidal category
of their own. Let V = (2, (®),]I,a,t’,r) be a monoidal category. Recall the coslice category V* := I/V:

« pointed objects A: pairs (é, var, : I — A) consisting of an object A in V and a V-arrow var, A
var, : I — A called the point; and I /=v lf
- arrows f : A — B are point-preserving V-morphisms f : A — B (cf. diagram on right). varB\A B

The forgetful functor — : V" — V sending pointed objects and morphisms to their underlying obje_cts
and morphisms is faithful. The tensor product (®) lifts along — to the following pointed tensor:

!

(®) : V'XV' >V A®'B:A®B var,gp=I1— IQI

var, ® var

" ARB (AL AV®'(BL B = f®g

This definition for f®g relies on a simple point-preservation argument (cf. §C.1).

The initial pointed object is given by I equipped with its identity: I° := (]I, idl) € V°. The unique
point-preserving morphism to any pointed object A is given by the point: [] :=var, : I* - A.

The pointed objects inherit the monoidal structure from V (see §C.1 for the proof):

Proposition 5.1 (Fiore [33]) Every monoidal category V yields a monoidal category of pointed objects
P = (2’,(@'),]1',&6’,1‘). Le., the mediators preserve points, hence lift to V".

Example 5.2 Let A € R-Struct® be a pointed structure. Its point var, is uniquely determined, through
the Yoneda lemma, by the tuple of variable interpretations ([x : s]l 4 = (var,) .. S]x)sert. Given any other

pointed structure B, the variable interpretation for AQ'B is [[x : 5] 4g-p = [[]x]]A , (x : []x]]B)][

x:s]
Example 5.3 If A is a V-actegory, then the monoidal category of pointed objects V* acts on A by:

(@R, A) =(a® A). The V*-actegory axioms hold straightforwardly. We denote this V*-actegory by A,. In
particular, we have an R-Struct’-actegory R-Struct, given by the R-structures.

11

812 Modular abstract syntax trees (MAST)

Let A, B be two V-actegories, and consider any functor F : A — B. A tensorial strength for F from
A to B is a natural transformation str : (Fa)® 4 b — F(a ?p b) satisfying the two axioms:

L (F0D@eb) Fx
/ stren; \
(FORa)DD) oeestl F(x9(a® b)) U/ rengti\L ¥
str ®id g = M Fa triaélgle
(F(x®a) Db —> F(x @)D b) (Fx) L ——> F(x D 1)

A strong functor F : A — Bis a functor F : A — B equipped with a strength, str ., for F from A to B.

The strong functors w.r.t. the pointed monoidal structure are central to the modularity of both the
classical theory and MAST. As we will soon see, the strength of the signature functor will provide the
structure that allows us to propagate syntactic and semantic substitutions through each term constructor.

Definition 5.4 An R-signature functor is an R-Struct’-strong functor: O : R-Struct, — R-Struct,.

Each signature functor explains, through its strength, how to propagate substitutions to its subterms:

Example 5.5 The strength for the abstraction signature (Ex. 3.5):

LamOp := {[(Ax LAY e XAl X @ A'A,B € SimpIeType}}

LamOp

StUrp 4p—cr

[Ax : Atel, = Ax : B. [t,e [r Dl Iy B]] +|—(varA)F+[x:B]x]
A+4[x: B]

Thus, to propagate the environment e under the binder, we weaken it. The strengths for the other cBV
signature functors from Exs. 3.3 and 3.4 propagate the environment as it is:

strValOp [vaI t, e]A = val [I, e]A StrAPPOP [[1 @[2, e]A = [tl’ e]A @ [[2, e]A

These rules are identical to the syntactic rules one may use to define capture-avoiding substitution, but
crucially the environment e is taken from any pointed presheaf, not just the presheaf of abstract syntax.
It is this additional generality that allows the classical theory and MAST to combine signatures modularly,
as well as account for both syntactic and semantic substitution.

It is straightforward to show the transformations in the previous example are strengths from first
principles. However, this fact follows compositionally. We will spend the remainder of this section building
up the machinery to derive this strength compositionally.

Example 5.6 Recall the scope shift combinator (>I') : R-Struct — R-Struct that we use to describe
binding constructs, such as abstraction. We define its strength strII}A T P)R.A—-T'>(PR.A) by:

stri2 [t € P(A #T),e € AYME|, =

/4

- Tl . Aml Env =
tePS(A-li-F),(ex [.:.<—.:-H—F]> (Dl s € ABY (24 T)
(y:r)er

(x:s5)EA
A4T

Le., in order to propagate the environment under a scope-shift, we extend it by the environment that
sends every variable (y : r) € A to its representation [[y] in A, suitably weakened into the context E 4 T.

When the operators in a signature do not bind variables themselves but are merely compatible with
binding, we can exhibit a strength w.r.t. the simpler action (&) thanks to the following result, which
appears implicitly in Fiore’s [33] work (see §C.2 for the straightforward proof):

12

Fiore, Kammar, Moser, and Staton 8-13

Lemma 5.7 Let V be a monoidal category; A,B two V-actegories; and F : A — B a strong functor.
Then the following morphisms exhibit F as a strong functor: F, : A, — B,.

strf

20 (Fx)®.a = (Fx)® a—> F(x D a) = F(x?.a)

The next few examples all use this lemma to derive strengths.
Example 5.8 Recall the restriction combinator (|;) : R-Struct — PSh (I X Fst,_) and its specialisation
that projects out a single sort (@s,) : R-Struct — PSh (Fst,_) (where s, € Sort) that we use it to signify
a sub-term of sort s,. Define strl’ : P|, ® 0 - (P ® 0)|; by strsl”F [t EPAec QE"”F]A = [t,e],, and

derive a strength for the projection str®o : (P @ S) @ 0O - (P ® Q) @ s, from it. Similarly, recall
the extension combinator +; : PShI X (FstR)F — R-Struct that lets us construct nodes at a specific
subset of sorts I C SortR. Then ((»; P) ® O);, = 0 when s ¢ I, and so we can define the strength

strj;’ 2 ($p) ® 0 = ¥ pgp vacuously in those sorts:

str ¢ (3) ® 0), =0 PPOO), stryp, (3)®0),=(PQ),=%(POOQ), (s¢I37)
Example 5.9 Let (A) be a family of V-actegories. The projection functors x; : [lic, A= A ; have

(i) = id, » 4 since: (Itj (xi)i) W, a=x;a= nj(xi)i R a. For a V-actegory

B and a family of strong functors F; : B — A;, the tupling functor (F l.)’. : B =[], A; has the following

the identity as a strength str

F
[1; A;-morphism as strength: str() ((F x) % a— F.(x® a)>

Example 5.10 Recall the I-ary sums [[, : C! — C and J-ary products [, : €/ — C that let us alternate
between I-indexed operator nodes and include J-ary branching factor in categories with I-coproducts/J-
products. The product has strength, and coproducts, if they distribute over (®), also have a strength:

I (m;%id), ., [(t wid] o,
strils ij X —— H(xj@a) strllr - Hx H(x % a)

jedJ jedJ iel iel

When C = R-Struct, the substitution tensor (®) distributes over coproducts (cf. Prop. 8.2), and so the
following pointwise formulae describe these strengths:

fH’Q [7,e]p = ([tj,e]A)jGJ strlls - [G:1),ely=(:[t,elp)

As is well-known, strong functors compose, and their combined strength is given by (see Lemma C.2):

G strf
str9°F 1 (GFx)® a— G(Fx 2 a)— GF(x ? a)

This fact and the signature combinators covers all our examples. E.g., cf. the strength from Ex. 5.5.

6 Compatible actions and structures

We define the substitution structure of interpretations of the syntax that ensures they are compatible
with the operations in the signature, culminating in the Special Representation Thm 6.4, concluding the
tutorial. Actions also give additional perspectives on the compatibility condition (§6.1).

Definition 6.1 Let O be an R-signature functor, M = (M, —[=Im> varM) a substitution structure. We say
that an O-algebra [—] : OM — M is compatible with M, when:

13

8-14 Modular abstract syntax trees (MAST)

M= ou M® M| h®h|fstN®N|
oM — oM var v o M@ M| .
lgebr M it M -
l hOmimirpaiﬁsm lN (-1 A gi/ak ey n;)lrlesgv(;ilo%n
M N M - N
> 7 N ; |
Fig. 2. Definition of an O-substitution structure homomorphism 2 : M - N
oMM
(OM)®. va rM compatibility OM
[-] ®.id = S
M@, vary M
—[-1u

An O-compatible substitution sturucture M = (M, —[=Iyp, varyg, [=lly), or O-structure for short, consists
of a structure M = (M, —[~]y;, vary) and an O-algebra [—[ly; : OM — M, compatible with M.

Example 6.2 Recall the substitution structure M for ¢Bv in a Cartesian-closed category C (Ex. 4.6).
The interpretation of the ¢BvV A-calculus equips it with a LamOp-, ValOp-, and AppOp-algebra structures:

Iix : Ay <ﬂF,x AL [IB]]) = <[[F]]Lryf> 1B “A”> Ivalll v <[[F]]—f> HA]]> =

eval

(- 1m0t @ (r0= gm0)| = (02 100 x 1) = 131)
M

The compatibility axiom for LamOp amounts to the following equation, for each 8 € C([I7 , [A]]) = Mi“"l“:

(Hy)yxid f
curry ([Ax : AJ f)o (0y)y = curry(ﬂr]] x [A] —— [A] — [13]])

It follows from the naturality curry. The compatibility axioms for ValOp and AppOp hold immediately.

We combine compatibility conditions from fragments to the whole ¢BV language (cf. §C.3 for the proof):

Lemma 6.3 Let M be a substitution structure and (Oi)iel and ([-]; : OM = M),c; be families of R-

signature functors and algebras for them. The cotupled algebra: [ﬂ—]],-]iel i e OM = M is compatible
with M iff every algebra O; is compatible with M.

An O-substitution structure homomorphism h : M — N is a morphism 2 : M — N that is both
an O-homomorphism and an action homomorphism in the sense of Fig 2. Let H € R-Struct be an R-
structure, whose elements we think of as holes. An O-structure over H is a pair (M, -1 meta) consisting
of a O-structure M and a morphism ? : H - M, which we will call the metavariable interpretation map.
A morphism of O-structures 2 : M,?) - (N,?) over H is an O-structure homomorphism 2 : M - N
preserving the metavariable interpretation. We let J := {V,0) be the R-Struct-structure of variables: its
first-class fragment is the presheaf of variables, and its second-class sets are empty.

Theorem 6.4 (special representation) Let O be an R-signature functor, and H an R-structure. Con-

sider any initial algebra SOH = <<SgtH 50 >> = uX.(OX)UJI U H® Xs) given by:

[-] : O(3°H) —» S°H var : V — 50 H ?-[-]: H® $2 H » S°H
14

Fiore, Kammar, Moser, and Staton 8-15

There is a unique morphism —[—] : S°H ® SgtH — $OH, called simultaneous substitution, satisfying:

id ® (~[-])
OSH®S R
gy O 1O [-]) 185 H H® (S, He S H) " H®Ss H

O5H) & S / op ~ var ®id a/ \? —[-]
() ® fst case O H®S. H s H metavariable
= case (® fst) ® fst case SH

[-] ®id X J -1
SH® sttH — SH fstH ® sttH _’ stt @ -[-D ®\ /[_']
[] SH® stt
Equipping FoH = (SOH, —[-1], var, []—]]) with ? : H—> H® V—> H® SOH SOH yields the free

O-substituion structure over H. We call morphisms 6 : H; — $OH, simple metavariable substitutions,
and we call their Kleisli extension —[0] : S°H; — $PH, metavariable substitution by 6.

This theorem lets us prove substitution lemmata wholesale (cf. Lemma 7.4), concluding the tutorial.

6.1 On pointed strengths and compatibility

The compatibility condition Def 6.1 is technical, involving all MAST components. It deserves to, but often
does not, take the centre spot in accounts of this theory. In concrete examples, one can see how these
components contribute to the modularity of the theory. Each syntactic construct, specified through a
signature functor O;, carries its own strength. Each model exhibits a substitution structure, as well as
an interpretation for each of these functors through an O;-algebra structure. Compatibility expresses
a semantic condition on the interaction between semantic substitution and the semantics of each O; in
isolation, without referring to the rest of the syntax. We will now give a few more results, brought about
thanks to the action-based perspective, that also explain the abstract role strength and compatibility have.

First, we relate substitution actions with the pointed monoidal structure. The difference between
monoids in a monoidal category ¥V and monoids for its associated pointed monoidal category V* is the
point of the monoid and the point-preservation of the unit and multiplication. This difference is irrelevant:

Proposition 6.5 Let V be a monoidal category. The forgetful functor — : V* = V lifts to an isomorphism
between their categories of monoids:

Monoid V' —_Monoid? M := (M,

—[—]M,v_ar> h=h M :=((M,var),—[-],var) h':=h

Given a V-actegory A, the categories of M-actions in A and M*-actions in A, are also isomorphic.

The proof in §C.3 is straightforward. For monoids, we show that the pointed structure of a pointed
monoid must be its unit, and validating the point preservation axioms. The proof for actions is immediate.
Next, we explicate the abstract role the pointed strength serves, proved by direct calculation (cf. §C.3):

Proposition 6.6 Let V be a monoidal category, A be V-actegory, and O : A, — A, a pointed-strong
functor. For every V-monoid, O lifts to the following functor over M-actions:

str _[]A

Oy : M-Action A — M-Action A OyA :=OyA:=0A —[-]g 4 : OA®M—> OA®M)—— A

Putting these two results together gives a new perspective on the pointed strength and on compatible
algebras. The monoidal category of homogeneous structures Fst-Struct acts on the category of heteroge-
neous structures R-Struct, and so (Fst-Struct)” acts on R-Struct,. Given a substitution structure S, the
following process produces an (Fst-Struct)’-action on S in R-Struct,. Moving to the first-, and second-,
order fragments, we get a substitution action (Slfst, Slsnd). The monoid S|¢, acts on itself and on S|4,

15

8-16 Modular abstract syntax trees (MAST)

and therefore the monoid S|, acts on both Sl|¢, in Fst-Struct, and S|y in R-Struct, . Pairing these
up as gives an S|¢ -action on (SlfSt , Slsnd) in Fst-Struct, X R-Struct,y . Combining them through the

isomorphism (—,—)) : Fst-Struct X R-Struct 4 — R-Struct exhibits an S|i-action on S in R-Struct,.
Let -] : OS — S be any O-algebra structure. It is compatible precisely when it is an S|¢q-action
homomorphism [—] : O SlfstS — S, recasting compatibility as substituion-preservation in a precise way.

7 Case study: the Call-by-Value A-calculus

We use algebraic signatures to modularly describe extensions to the CBV type system, and signature
functors to modularly describe extensions to its terms. Starting with a semantics based on strong monads,
we extend a basic calculus with sequential composition, functions, products, coproducts, an inductive
datatype of natural numbers, iteration, and recursion. These require 7 checks that each additional bunch
of semantic definitions is well-defined and compatible with the substitution structures in the corresponding
algebra. In return, the MAST theory lets us deduce 27 = 128 different substitution lemmata, for each
language fragment. Note that not all models can interpret each fragment, and so one cannot deduce the
substitution lemma for a fragment from the lemma for the full language. The development is similar in
spirit to Swierstra’s 4 la carte methodology [85,41], but it also provides semantic substitution lemmata.
We use this opportunity to also summarise the standard denotational semantics for these features.

7.1 The full calculus

Fig 1 presents the abstract syntax of all the features we will consider without explicating their typing
judgements nor their binding structure. Fig 3 presents the typing judgements. Our base calculus includes
a construct for sequencing, which evaluates the intermediate results in order, binding them to variables.
Extending the calculus with records adds tuples of labelled fields, which we eliminate with a pattern
matching construct. Extending the calculus with variants adds tagged sums, which we eliminate with a
pattern matching construct. Extending the calculus with natural numbers adds natural number literals
as values, the iso-recursive constructor roll and deconstructor unroll, and a bounded iteration eliminator.
We further extend the calculus with unbounded iteration fori = M do N, which initialises i to M, and
then iterates N until it is done. Finally, we extend the calculus with higher-order recursion through
the let rec construct. It extends the body’s (N) context with n mutually-recursive functions fi,..., f,.
Here we assume some predefined mapping from contexts I' and tuple-types (I'), identifying each position
(x : A) € I" with a label x. For example, sending its position to its corresponding numeral.

7.2 Simple types a la carte

To develop these calculi and their models fully modularly, we first need to treat their sets of types mod-
ularly. We will use the classical & la carte methodology, for initial algebra semantics in Set, to mix and
choose the collection of simple types we work with in each case. We will typically work with respect to an
ordinary signature functor L : Set — Set that has an initial algebra L(uL) — uL. This functor specifies
the signature for the simple types given by Typey, := uL. For any set Type, whether inductively given by
such a signature functor or not, define the sorting system CBVyy,, as the coproduct diagram:

comp
FstCBVType = Type C SortCBVType = {A,comp A|A € Type} «———Type =: SndCBVType

We will also work with respect to a MAST CBVyy,e-signature functor O, and define an O-monoid, which by
the Special Representation Thm 6.4 satisfies the Substitution Lemma 7.4.

Example 7.1 In the simplest case, all we have are base types. The signature functor for types is the
constant functor Base : Set — Set, Base X := Base. It has the identity function id : Base — Base as its
initial algebra, thus Base = uBase =: Type. Summarising, the set of types is the set of base types.

16

Fiore, Kammar, Moser, and Staton 8-17

(x:A)el I~V:A I'x;:Aq,....x,: A,FN :comp B for all i <m: I')x;:Aq,....x;:A;FM; :comp A,

I'x:A I'tval Vicomp A I'Hlet x,=M;...;x,=M,inN :comp B
I''x:AFM :comp B I'M :comp(A— B) I'FN:comp A
I'ix:A.M:A—B I'FM @N :comp B

forall 1 <i<n: THEM;:A; I'EM :comp (C,: Ay,....C, 0 A,) I'x:A;,....x,:A,FN :comp B
I'H(Cp 0 My,....C.0 M,):icomp (Cy: Ay,....C, 0 A,) I'case Mof (Cx,...,C,x,)=N :comp B
A=(C,: Aiel) M :comp A, TEM:{C,: A i€l for all 1 <i < n: T,x;:A;-M,:comp B
THA.C; M :comp A I'kcase Mof { Cx;=M;|i€l } N :comp B
I'M :comp N I'=M:comp{0: (_), (I+): N} T'M :compN Lox:{0: (), (I+): AJFN:comp A
[En:N TunrollM : [0 (_), (1+): N THrollM icomph T'Hfold M by{x=N}:comp A
7\
r I
I'=M :comp A Ii: A-N:comp{done : B,continue : A} I,f :(I'})—A,....f,:(I';)>A,FN:B forall 1 <i<n: A#I'\FM, :A,
I'Hfor i=MdoN :comp B I'Hlet rec /1T Ay=M;...;f,I',: A,=M,inN:B

Fig. 3. Type system of CBV, omitting analogous rules for value records and variants.
Example 7.2 To accommodate function types, take the functor FunTy := X — X X X : Set — Set. Then:
Base HFunTy X = {[f|f € Base} H {[(—) : X X X}

Its initial algebra is Type, with [—] : (Base HFunTy)Type — Type where [f] := f; [(—)] (A, B) := A — B.

Example 7.3 Next, we deal with records and variants uniformly. Let X be a set. A row in X is a function
(C[- xi)iel from a finite set of field/constructor labels {C,-|i € I} to X. Letting Label be the set of field
labels, define Row : Set — Set by Row X := [| IC;,, Label X!. The functors for record and variant types are:
RecordTy, VariantTy := Row : Set — Set.

The collection of types CBVTypeg,. defined inductively in Fig 1 is the initial algebra for the functor:
FullCBV := Base LI((—) : FunTy) I ((—) : RecordTy) LI ({{—|} : VariantTy) I (N : NatTy) : Set — Set

We want to work with more than 2* = 16 collections of types, given by various restrictions of this collection,
depending on the typing needs of each language fragment. As a running example, consider the term former
for higher-order recursive definitions. For each function signature f[x; : A;,...,x, : A,]: B, we will need
to identify the function type (x, : A;,....x, : A,) — B. In fragments that contain both records and all
function types, this construct will need to identify the compound type (x; : A;,...,x, : A,) — B. But in
fragments that only contain higher-order recursion without records, we will fuse function application with
record creation. To allow such flexibility, we use the following concepts. We define a typing need to be a
signature functor R : Set — Set. For higher-order recursion, we use the typing need RecNeed X := X X X.
A fulfillment of a typing need R in a set Type is then a relation (F) : RType + Type, which we will write
as k F A : R for every k € R(Type) and A € Type satisfying (k, A) € (F). A fulfillment explains which
types satisfy the typing need. For example, the fullfillment of the typing need for higher-order recursion
RecNeed in the set of types for the full calculus is given by the relation defined by:

([x; : Ap,.ooox, t AL B) F ((x; ¢ Ap,...,x,: A,) — B) : RecNeed (A,...,A,, B € cBVTypeg,..)

Note that we apply two type constructors in this fulfillment: the function type constructor (—) and the
record type constructor ((—)). In the fulfillment for fragments that include higher-order recursion but not

17

8-18 Modular abstract syntax trees (MAST)

strong monad

id
W= <]1xxﬁ>xﬂ>Tx> axTx = <a><xu—><l>b><x—f>Ty> idxreVaxx
s

m uXxid Lstrong monad monadic unit
1xTx cartesian unit Tx naturality axXTx ———»Ty
= bXTx =Ty =
%) »=f
a idx f g
ll@xb)xx—ax(bxx)—> axTy— Tz
(@axb)yxTx » Tz
trong monad
al Sasgog'jti(\)zigr T»‘: g
ax(bxTx) - »aXTy
id X (3= f)

Fig. 4. Strong monad laws

records, we will fulfill this need by the single type-constructor for n-ary functions ((—) — —) that these
fragments include. We will use the following typing needs, and only them, in our case study:

+ When we need the unit type, we impose the typing need EmptyRecord := 1 := {x}, fulfilled by the empty
record type, when the fragment includes records, and by the unit type otherwise: x E (_) : EmptyRecord.

+ When we need to deconstruct natural numbers, we impose the typing need:
NatConstVariant := (N : 1) LI (Maybe : Id)

We will fulfill it in fragments with the natural numbers and bounded iteration over them by specifying
the natural number type and an option type for each type:

Nx E N : NatConstVariant MaybeA F {0: (_),(1+): A]} : NatConstVariant (A € Type)

When the fragment doesn’t include all variant or record types, we will ensure it includes the single
type-constructor {{0: (_),(1+): —].

« To type the bodies of while-loops, we impose the need NatConstVariant := (done : Id, continue : Id)
fulfilled by a binary variant type:

(done : A, continue : B) F {|{done : A,continue : B| : NatConstVariant (A, B € Type)

+ To type recursive function definitions, we impose RecNeed X := X, X X, our running example.

7.8 The substitution structures

Let Type be a set whose elements represent types. A strong-monad model (C , -1 ,T) consists of:

+ A locally-small Cartesian category C with chosen finite products.
+ An interpretation function [[—] : Type — C.

- A strong monad [61] T over C, i.e., an assignment of:
- an object Tx to every x € C;
- a morphism return, : x — Tx to every x € C;
- amorphism =, ., f 1 aXTx — Ty to every a,x,y € C and f : axx — Ty;
satisfying the four equations [70] in Fig 4, w.r.t the cartesian monoidal structure (C,(x),1,a,#,r).

18

Fiore, Kammar, Moser, and Staton 8-19

Each such strong-monad model induces a substitution structure M in CBVyype-structures. First, let:

(”y)y:BeA
= 0-15" =TT 141 [a] = =05 = i ——= [al

(x:A)el’

Le., interpret contexts as products and their renamings as tupled projections. The CBVyyye-structure M:

lcompA] =T [A] ~ MT=c([[],[s]) M (r <”—A) : ([[r]]—f> [[s]]> - <[[A]]M>)= [[s]]>

—s

Le., M I":= C([['] , [A]l) and McompAF := C([T, T [A]) so the semantics of computations are Kleisli arrows
for the monad T. The monoid’s unit interprets variables by projecting the appropriate component:

var 1V — M| vargpy = <[IF]] = <H(X:A)€F [[M])g HB]]>

To define substitution, we use the isomorphism which internalises tupling:

E = (ﬂyo(_))(y:B)GA : C([[FH R [[A]])—i < H C([[F]] R [[B]])) — Mlinvr

(y:B)eA

We express the functorial action of ME“V through this isomorphism as follows:

ME (urui umu) - <uru—9> 18,12 nA2u>

A—A, I’

We then define substitution —[-]y; : M ® M — M by pre-composition:
f 0
[Al— (s) [[T]— [A]

Appendix A details the proof that this definition forms a substitution structure.

- ([[r]]i INEA [[s]])

M,s,I’

7.4 The CBV customisation menu

We will now consider some fragments of the full cBv calculus. Fig 5 list the constructs in each fragment,
which fragments of the type system they require, and what model structure they need. We will treat the
base, sequential, and functional fragments. The other fragments admit a similar treatment. We define each
fragment, and then explain how to combine fragments together into one calculus and its model class of
interest. Together, these combinations describe 27 = 128 different calculi, and their denotational semantics.
Thanks to MAST and the Special Representation Thm 6.4, the substitution operation and denotational
semantics for each combination satisfy a substitution lemma. Formally, let Ext be the set of 7 extensions
listed in the ‘name’ column. For each fragment & C Ext, we specify:

- a simple signature L, : Set — Set, which we define 4 la carte as L, := Base LI ||
set Type, == uL, and sorting system CBV, := CBVyyp, ;

L, inducing the

extee g

- a fulfillment (F&) : R, Type, + Type, for each typing need R, : Set — Set and extension ext € &;

* a CBVyype-signature functor O, := Base I [Hexiee O describing the syntactic constructs in this fragment;

+ additional structure or properties we require of the substitution structure M for a strong-monad model
(C, -1 ,T). These requirements impose structure and properties of the type interpretation function
[—[: Type, = C, typically via universal properties involving categorical structures over the model.

19

8-20 Modular abstract syntax trees (MAST)
name syntactic constructs typing needs additional model needs
base returning a value: val strong monad over a Cartesian
category
sequential sequencing: let
functions abstraction and application function Kleisli exponentials
(Ax. . A), (@) (—)
records constructors and pattern match record
(Cii =C 0 =) (C:-lie)
case—of (C;x,,...,C,x,) = —
variants constructors and pattern match variant distributive category
A.C—, case—of {Cx; = —|iel} 1C : ~lier]
natural the zero and successor constructors, naturals, empty binary coproducts distributed
numbers literals, empty record, record, and the over by the products, and a nat-
(de)constructors, and bounded variants ural numbers object
iteration, the pattern matching
N
0,(1+),n,(), unroll, roll 0: (L)
fold—by {x = -} {[T ’]}
case—of {0 = —, 1+x = —} (I+): =
while the constructors, unbounded iteration the variants binary coproducts, distribu-
tive products, and the monad
done, continue, for i = — do — done : — has a complete Elgot struc-
ture [5,4,3,29,16,48]
continue : —
recursion relevant record constructor, function the functions uniform parameterised monadic
application, recursion fixed-points [51,81], Kleisli ex-
((x; : =|i € I) =) ponentials

(=), (@),let rec

Fig. 5. A customisation menu of CBv fragments

20

Fiore, Kammar, Moser, and Staton 8-21

let xy @ Ag = (py € PcompAOA)

eq Xy - Al = (pl € PcompAl(A’x() : AO))
oy .

strP’A’F :
X, - An = (pn (S PcompA,,(A’XO . Ao, cees Xpq - An—l))

| i0(4 € Peomp (A X0 2 Ag,...x, 2 A,)).0 € AEnT

letxy : Ay = [Poﬁ]A
Xq - Al = [p1,9 + (xo s vary xO)]A,xoiAo
X, 0 Ay = [P 04 (xg : vary xg, ..., x,_ : vary x"—l)]A,xO:Ao,..-,xn_l:An_l

in g € Poopp- 04 (X 1 vary xo,....x, : var, x,)

Fig. 6. Pointed strength for the sequential signature functor

We then fix such a substitution structure M, and further specify:

+ a compatible O-algebra for M making it an O-structure.

Base fragment

All our fragments include the base fragment: the signature functor L, includes the set of base types and
so Type, includes them. There are no typing need for the base fragment, and it contributes no tuples to
the fulfillment relation. The base calculus has, for each type A € Type,, one operator coercing A-values to
A-computations. Its binding signature functor and its derived strength are:

Base X := H (val, : o (X @A) strer [val(p € P4A), 0 € AZ™T| = val [p, 6]

AETypey,

The base requirement of a model is for it to be a strong-monad model M := (C, 0= ,T). Define its Base-
algebra structure as follows, and see calculation (A.1) in the appendix for the compatibility condition:

”valA -5 [[A]]H - <[[r]]i JA] = []A]]>

M

Sequential fragment
This fragment does not extend the language with new types nor does it impose any typing requirements,

and so L1 := R.q := 0. The fulfillment relation is then the empty relation (ijrqag) : Ryeq Type, := 0 - Type,.

The sequential fragment has, for every non-empty context [x, : Ag,...,x, : A4,] € (TypeE)F and type
B € Type,, one sequencing operator let x, = My;...;x, = M, in N:

(letxo TAy=5...:x, A, =_in _: B)

S N VA 1 I

n
n
[XO . Al’ ,xi_l . Ai—l] > X @ CompAi
n€N [xy: Ag,....x,: A, 1€(Type,), BEType, compB| \i=0

i=

X([xg : Ay,....x, ¢ A,]> X @ comp B)

with its induced tensorial strength given in Fig 6. Given a strong-monad model M := (C, -1 ,T), we
require no additional semantic structure of it. We use the monadic bind to interpret the let construct, and
to ease dealing with the intermediate results bound to xi,...,x,, we use the following derived semantic

sV
21

8-22 Modular abstract syntax trees (MAST)
fun
St 4 pr [AX A (D € Pompp(A,x 1 A)),0 € CMT|, = Ax A [p,(0,x : varx)], .,
striye g [(P € Peompa—pA) @ (g € Poompal) .0 € CI™T, = [p, 0]y @ [g,6]4

Fig. 7. Pointed strength for the functional-fragment signature functor
structure. Consider the Cartesian strength of the monad:

»’:a b. axhid

str,, : axX Thb——— T(a x b)

We use it to define, for every f : a X x - Ty a morphism that keeps the intermediate result:

(m2.1) str (< f)
<fi:axx—— xXTy— T(x X y) << f axXTx—— T(xXy)

Define the Oieq—algebra structure as follows. Given A, ..., A4,, B, let:

A= [XO . Ao,...,xn . An] A = [XO . Ao,...,

1

Xi_1 Al foralli=1,...,n

and then define, suppressing canonical isomorphisms such as A; X A; = A,

let xg Ay = [[] 25T I49)
A1— [IF]]XHA]]HT[IAJ] =

A, = I x (4,]]—>T[[A]l in [IF-|+A]]—>T[]B]]
(f) (* fl (* fn
[[F]]—> [T xT [[Ad]—) [T X T [A,] = - — [T] XT [A4,]]—> [T] xT [[A]]—> T [1B]
We prove that this O} '-algebra is compatible with substitution in §A.3.

Functional fragment

For this fragment we extend the set of types—a& la carte—using the following simple signature functor
for this fragment to add function types: Li““X = {x = y|lx,ye X} =@ X x X. We impose no typing
typing requirements for this extension (Rg,, = 0) and the fulfillment relation for these fragments is empty
((Fi““) " Reyn Type s, = @ -+ Type,). These fragments extend the base language with function abstraction
and application, which we add using the following signature functor:

ox =] ((/lx A): @ [x: A]l> X @ comp B> 5 ((@) : (X @ comp(A — B)) X (X @ comp A))
A,BETypey, A—B B

Its derived strength is given in Fig 7. We require models M for fragments with fun € £ must be equipped
with a choice of Klesili exponentials ((Ty)x, eval : (Ty)*xx — Ty), for every pair of objects x, y € C. Define

the Oi““—algebra structure by:

H/lx LA <[[r]] x [A]-5 T [[B]])H <[[r]]L”> [A — B]])

H([[F]]LTHA—»BD @([[F]]iT[[A]])” =

(f) >=<<[1FHX[1A—>BJ]1> nrn—”>TﬂAﬂ) v
[T]—— [XT [A — B] T ([A — B] x [[A])—— T [B]

22

Fiore, Kammar, Moser, and Staton 8-23

We prove that this O} %-algebra is compatible with substitution in §A.4.

We demonstrated the various moving parts in using MAST to define syntax and semantics & la carte.
The other fragments follow a similar treatment, defining signature functors Record, Variant, Nat, While,
and Rec, each with their typing needs and model structure and properties, as in Fig 5. We omit these
details. We conclude by reaping the fruit of our labour: the standard substitution lemma for denotational
semantics. While substitution lemmata are not hard to prove, they are tedious to establish formally. The
Special Representation Thm 6.4 justifies omitting them from most technical developments:

Lemma 7.4 (substitution) For every term A+ M : A and substitution (T 0, : B)(y,B)GA, we have:

(M (o1 = [M] o ([6,]),

Proof. By the homomorphism property of the denotational semantics:

[M (1] = [(—[=DIM. 6131 = (~=D [[M]. ([8],) e, |, = 1M1= ([6]), O

8 Technical development outline

Our development is relatively straightforward thanks to several abstractions: bi-categories and the right-
closed actegorical structure of substitution (§8.1) and the General Representation Thm 8.3 (§8.2) which
abstracts from the concrete details of presheaf categories and their tensors. We also relate this development
to the pre-proceedings manuscript, which used skew monoidal structures (§8.3). In this section, we sum-
marise how these abstract components intertwine, and relegate the remaining details to Appendices B-D.

8.1 Bicategorical development

Fiore, Gambino, Hyland, and Winskel [35] package the sophistication involved in the classical substitution
tensor product in a bicategory we denote by Prof_. Its vertices/0-cells are small categories A,B,C,....
The category S of S-sorted contexts is the finite-product completion of S, and extends to categories. The
arrows/l-cells P : A + B in Prof, are Kleisli profunctors P : A + B, , i.e. presheaves P € PSh(A® x B,),
equivalently functors P : AXB® — Set. Its faces/2-cells @ : P = Q are natural transformations, with their
usual vertical and horizontal composition. Arrows P : A + B and Q : B + C compose diagrammatically
using the same formula as the substitution tensor product, and the profunctor of variables, suitably
generalised, is the identity V : A + A. One recovers the classical setting by restricting to the full
sub-bicategory over a set of sorts R, since a one vertex bicategory is a monoidal category.

Proposition 8.1 Let B be a bicategory. FEvery two 0-cells A, B € B induce an actegory (B(A, A), B(B, A)).
Its monoidal category is given by the endo-1-cells X : A — A and their 2-cells. It acts on the 1-cells
P : B — A and their 2-cells through 1-cell post-composition and horizontal composition.

The proof is in §B.2. We obtain Thm 4.2 from Prop. 8.1 by taking B := Prof_, A := Fst, and B := Snd.

23

8-24 Modular abstract syntax trees (MAST)

8.2 The representation theorem

Adapting the classical proof for the representation theorem is straightforward

thanks to its level of generality. Let (V,.A) be an actegory, and a € A and x € V. (@ x)Rx
Recall that a right exponential of a by x is an object a «» x equipped with a curryf ®id L |eval
universal morphism eval : ((@ <» x) ® x) = a, i.e., for every arrow f : bR x - a bR x —a

there is a unique arrow curryf : b — (a «<» x) making the diagram on the right

commute. To distinguish the special case when the monoidal category acts on itself, we’ll use the notation
x «® y for a right exponential of x by y. An actegory (V, A) is closed when all right-exponentials exist.
In that case, (®) distributes over coproducts in .A. We prove the following result in §B.3.

Proposition 8.2 The actegory of R-structures is right-closed: (Plgy < Ol¢gt)] = IAGFstF(PSA)QEWF.

We prove the following generalisation of the classical theory in Appendix D. It implies the Special
Representation Thm 6.4. Like its classical counterpart, it abstracts from the technical details of R-Struct,.

Theorem 8.3 (general representation) Let (V, A) be a closed actegory with finite coproducts. Letting
S =V X A be the product V-actegory and J = (]I,@) € S, take any pointed-strong functor O : S, - S,,
object h € S, and initial algebra structure ([[—]] 05> 5var 1 1 -5.,7-[-]1:h®5, — S) over the
object S = (Sl, Sz) = U(x1,%,).(0(x1, %) HT U (h @ xy). There is a unique S-morphism, called simultaneous
substitution, —[-] : $ ® §; — 5 satisfying analogous equations to Thm 6.4. The free O-action over h is

r' ?—[-]

4®
then Foh = (S, —[-], var, [[—]]) equipped with the arrow ? : h— h ®]Iﬁ h® $1—> S.

8.8 Skew-monoidal categories

In an earlier version of this article, we developed MAST by recourse to the following structure:

(®) : R-Struct X R-Struct — R-Struct P Q=P Ol¢;, J €R-Struct J]I := {x|(x : 5) €'}

This structure has been used, e.g., by Goncharov et al. [49] and by Greg Brown as the universe of syntax for
cBPV. It falls short from being a monoidal category: while we can define the mediator maps, the putative
left unitor £ : J @ P — P is not invertible in the presence of second-class sorts. For example, for each
s € Snd, we have J 4 ,I' =0, and so: (J@1)gq,[= IA Jeng SAXT = IA @x1 =@ 2 1. Therefore, even though
R-Struct fails to be a monoidal category, this structure exhibits it as a skew monoidal category (cf. §C.4).
Moreover, both the associator (a : (P Q@ Q) Q@ R - P ® (Q ® R)) and right unitor (r' : P - P J)
are invertible, in a situation we call an associative and right-unital skew monoidal category. To our
surprise, the general representation theorem of the classical theory remains true even under the weaker
assumptions that the left unitor is not invertible. That development took advantage of results by Fiore
and Szamozvancev [32] about skew monoidal categories for the classical theory. We show how to recover
the skew situation, and its special representation theorem, from our actegorical perspective.

Let (¥, .A) be an actegory. Assume A has an initial object 0 preserved by the action (®) : AXV — A:
the unique morphisms [] : 0 — 0 a are invertible for each a € V. Tensors of closed actegories preserve 0.

Proposition 8.4 Let (V, A) be an actegory. If A has an initial object 0 and the action (R) : AXY - A
preserves it, then S := (2 X A, (®),J,a, r’, f) 18 an assoctative right-unital skew monoidal category, where:

@) :SxS—>S (ax)@((},y) =@®bx®b) J:=(L0) a=(a) r=(r"r") ¢:=(21)

We have a carrier-preserving isomorphism between the categories of (V, A)-actions and S-monoids. More-
over, if (¥, A) are (right-)closed, then S is right-closed.

See §C.4 for the proof. The general representation theorem for the skew setting does not follow from
Prop. 8.4 and Thm 8.3. The actegorical angle is natural, however, and extends previous work [40].

24

Fiore, Kammar, Moser, and Staton 8-25

9 Related work

The two POPL-Mark challenges [13,1] galvanise the programming-language community to hard problems
in formalisation. Both challenges emphasise representation and manipulation of syntax with binding and
substitution. We do not target mechnisation and computational realisation of abstract syntax with binding
and substitution, but we note the ample work of this nature. All modern mechanisation systems support
libraries or features for abstract syntax with binding [79,12,89,41,82,83,74,43,44,80, e.g.]. These generate
specialised functions, lemmata, and proofs given a description of the syntax, instead of proving a general
theory of syntax and substitution. We direct the reader to Allais et al.’s related work section [9] which
surveys: non-de Bruijn approaches to binding [42,21,19]; alternative binding structure [91,77,20,45,50];
more work on automation [76,60]; universes of syntax and generic programming [59,58,14,64,95,24,71]. To
those we add HOAS [56,73], monadic [10] and functorial [15] representations.

The presheaf approach [33,11,39,37,84] lends itself to mathematical operational semantics [88,47] and
G. structural operational semantics (GSOS) [49]. Fiore and Turi [40] considered a special case of our
heterogeneous situation in which the constructs for first-class sorts can be described independently from
the second-class sorts in terms of actions. In our situation, we have mutual dependency between terms
of first-class and second-class sorts, e.g., CBV terms include values, and functions, which are values, are
abstracted terms. McBride varies the indexing category e.g., thinnings/order-preserving embeddings to
implement co-de Bruijn representations [69]. In a different direction, Fiore and Saville reduce the free
O-monoid to the existence of certain list objects [30].

Fiore and Szamozvancev reformulate [32,86] and implement [31] the classical theory in terms of homo-
geneous families, i.e., sort-and-context indexed sets without a given functorial action. These families have
an associated tensor without a quotient (P @ Q),I" := [[, P,A X H(x:r)e A Q.I'. The theory compensates for
the missing quotient by demanding additional axioms for substitution. Their tensor product (@) is skew,
and it is neither unital nor associative.

Close to the presheaf approach is the familial approach of Hirschowitz et al. [54,17,53,55], which also
uses a skew tensor for technical reasons involving operational semantics and bisimilarity. Ahrens also uses
families rather than presheaves [6] including an implementation [7] in UniMath [90]. The introductory
text by Lamiaux and Ahrens [63] provides many connections between these approaches and related work.

Fiore, Gambino, Hyland, and Winskel’s Kleisli bicategories [35] follow their earlier work [36] generalising
Joyal’s species of structure [57]. Olimpieri et al. [72,22] used these, e.g., when studying intersection type
systems. More recently, Fiore, Galal, and Paquet introduce a bicategory of stable species [34]. Ahrens et
al’s aforementioned implementation [7] also uses such bicategorical ideas.

The Expression Problem concerns the design of an abstract syntax tree datatype for simply-typed ex-
pression language without binding and an implementation of an evaluator. Wadler attributes the problem
to [78]. In Wadler’s formualtion, the challenge is to extend the language with new term constructions
without recompiling the code for the previous versions. Wadler reviewed several existing solutions, in-
cluding object oriented ones by Cook [23]; Krishnamurthi et al. [62]; and Zenger and Odersky [92,93,94],
before presenting a solution based on recursive generics in Java.

10 Conclusion

We have extended the classical theory of abstract syntax with binding and substitution with second-class
sorts through actegorical structure. This extension is straightforward thanks to the existing bicategorical
perspective. Our tutorial separates the concepts needed to employ the theory from its underlying technical
machinery and development. We expect similar results from an analogous case study on Levy’s CBPV.
There the basic calculus comprises of returners and sequencing, and one can extend it with value products
and coproducts, thunks, computation products, and functions. Thus, with MAST one could deduce 2° = 64
different substitution lemmata by checking the compatibility conditions for 6 signatures. We want to
develop a corresponding algorithmic theory using familial skew actions [32] and implement it. We are
also interested in developing a multi-categorical perspective. It may avoid the need for quotients, arising
through the tensor product and represent the multi-category [52,18,65,66,27,26]. This perspective might
simplify the algorithmic theory. This work was supported by the Air Force Office of Scientific Research
under award number FA9550-21-1-0038, ERC Grant BLAST, two ARIA SGAI TAl.1 grants, a Royal

25

8-26 Modular abstract syntax trees (MAST)

Society University Research Fellowship, as well as FWF Project AUTOSARD P 36623. For the purpose
of Open Access the authors have applied a CC BY public copyright licence to any Author Accepted
Manuscript version arising from this submission. We thank the chairs and editor for their patience, and
the anonymous referees and these people for interesting and useful discussions and suggestions: Nathanael
Arkor; Bob Atkey; Greg Brown; Vikraman Choudhury; Yotam Dvir; Nicola Gambino; Sergey Goncharov;
Nick Hu; M. Codrin Iftode; Meven Lennon-Bertrand; Paul B. Levy; Cristina Matache; Justus Matthiesen;
Conor McBride; Sean K. Moss; Filip Sieczkowski; Peter M. Sewell; Stelios Tsampas; Zoe Stafford; Dmitrij
Szamozvancev; and Jacob Walters.

References

[1] Abel, A., G. Allais, A. Hameer, B. Pientka, A. Momigliano, S. Schifer and K. Stark, Poplmark reloaded: Mechanizing
proofs by logical relations, Journal of Functional Programming 29, page €19 (2019).
https://doi.org/10.1017/50956796819000170

[2] Aczel, P., A general Church-Rosser theorem. University of Manchester, Technical report, Technical report (1978).

[3] Aczel, P., J. Addmek, S. Milius and J. Velebil, Infinite trees and completely iterative theories: a coalgebraic view, Theoretical
Computer Science 300, pages 1-45 (2003), ISSN 0304-3975.
https://doi.org/https://doi.org/10.1016/S0304-3975(02)00728-4

[4] Adamek, J., S. Milius and J. Velebil, Elgot algebras, Logical Methods in Computer Science Volume 2, Issue 5, 4 (2006),
ISSN 1860-5974.
https://doi.org/10.2168/LMCS-2(5:4)2006

[5] Addmek, J., S. Milius and J. Velebil, Fquational properties of iterative monads, Information and Computation 208, pages
1306-1348 (2010), ISSN 0890-5401. Special Issue: International Workshop on Coalgebraic Methods in Computer Science
(CMCS 2008).
https://doi.org/https://doi.org/10.1016/j.ic.2009.10.006

[6] Ahrens, B., Modules over relative monads for syntax and semantics, Mathematical Structures in Computer Science 26,
page 3-37 (2016).
https://doi.org/10.1017/50960129514000103

[7] Ahrens, B., R. Matthes and A. Mortberg, Implementing a category-theoretic framework for typed abstract syntaz, in:
Proceedings of the 11th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2022, page
307-323, Association for Computing Machinery, New York, NY, USA (2022), ISBN 9781450391825.
https://doi.org/10.1145/3497775.3503678

[8] Allais, G., R. Atkey, J. Chapman, C. McBride and J. McKinna, A type and scope safe universe of syntazes with binding:
their semantics and proofs, Proc. ACM Program. Lang. 2 (2018).
https://doi.org/10.1145/3236785

[9] Allais, G., R. Atkey, J. Chapman, C. Mcbride and J. Mckinna, A type- and scope-safe universe of syntazes with binding:
their semantics and proofs, Journal of Functional Programming 31 (2021).
https://doi.org/10.1017/50956796820000076

[10] Altenkirch, T. and B. Reus, Monadic presentations of lambda terms using generalized inductive types, in: J. Flum and
M. Rodriguez-Artalejo, editors, Computer Science Logic, 13th International Workshop, CSL 99, 8th Annual Conference
of the EACSL, Madrid, Spain, September 20-25, 1999, Proceedings, volume 1683 of Lecture Notes in Computer Science,
pages 453-468, Springer (1999).
https://doi.org/10.1007/3-540-48168-0_32

[11] Arkor, N. and D. McDermott, Abstract Clones for Abstract Syntaz, in: N. Kobayashi, editor, 6th International Conference
on Formal Structures for Computation and Deduction (FSCD 2021), volume 195 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 30:1-30:19, Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany (2021),
ISBN 978-3-95977-191-7, ISSN 1868-8969.
https://doi.org/10.4230/LIPIcs.FSCD.2021.30

[12] Aydemir, B., A. Charguéraud, B. C. Pierce, R. Pollack and S. Weirich, Engineering formal metatheory, in: Proceedings of
the 35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’08, page 3-15,
Association for Computing Machinery, New York, NY, USA (2008), ISBN 9781595936899.
https://doi.org/10.1145/1328438.1328443

26

https://doi.org/10.1017/S0956796819000170
https://doi.org/https://doi.org/10.1016/S0304-3975(02)00728-4
https://doi.org/10.2168/LMCS-2(5:4)2006
https://doi.org/https://doi.org/10.1016/j.ic.2009.10.006
https://doi.org/10.1017/S0960129514000103
https://doi.org/10.1145/3497775.3503678
https://doi.org/10.1145/3236785
https://doi.org/10.1017/S0956796820000076
https://doi.org/10.1007/3-540-48168-0_32
https://doi.org/10.4230/LIPIcs.FSCD.2021.30
https://doi.org/10.1145/1328438.1328443

Fiore, Kammar, Moser, and Staton 8-27

[13] Aydemir, B. E., A. Bohannon, M. Fairbairn, J. N. Foster, B. C. Pierce, P. Sewell, D. Vytiniotis, G. Washburn, S. Weirich
and S. Zdancewic, Mechanized metatheory for the masses: The poplmark challenge, in: J. Hurd and T. Melham, editors,
Theorem Proving in Higher Order Logics, pages 50—-65, Springer Berlin Heidelberg, Berlin, Heidelberg (2005), ISBN
978-3-540-31820-0.

[14] Benton, N., C.-K. Hur, A. J. Kennedy and C. Mcbride, Strongly typed term representations in coq, J. Autom. Reason.
49, page 141-159 (2012), ISSN 0168-7433.
https://doi.org/10.1007/s10817-011-9219-0

[15] Blanchette, J. C., L. Gheri, A. Popescu and D. Traytel, Bindings as bounded natural functors, Proc. ACM Program. Lang.
3, pages 22:1-22:34 (2019).
https://doi.org/10.1145/3290335

[16] Bloom, S. L. and Z. Esik, Iteration Theories: The Equational Logic of Iterative Processes, Springer Publishing Company,
Incorporated, 1st edition (2012), ISBN 3642780369.

[17] Borthelle, P., T. Hirschowitz and A. Lafont, A cellular howe theorem, in: H. Hermanns, L. Zhang, N. Kobayashi and
D. Miller, editors, LICS ’20: 35th Annual ACM/IEEE Symposium on Logic in Computer Science, Saarbriicken, Germany,
July 8-11, 2020, pages 273-286, ACM (2020).
https://doi.org/10.1145/3373718.3394738

[18] Burroni, A., T-catégories (catégories dans un triple), Cahiers de Topologie et Géométrie Différentielle Catégoriques 12,
pages 215-321 (1971).
http://eudml.org/doc/91097

[19] Charguéraud, A., The locally nameless representation, Journal of automated reasoning 49, pages 363-408 (2012).

[20] Cheney, J., Toward a general theory of names: binding and scope, in: Proceedings of the Srd ACM SIGPLAN Workshop
on Mechanized Reasoning about Languages with Variable Binding, MERLIN ’05, page 33—40, Association for Computing
Machinery, New York, NY, USA (2005), ISBN 1595930728.
https://doi.org/10.1145/1088454.1088459

[21] Chlipala, A., Parametric higher-order abstract syntaz for mechanized semantics, in: Proceedings of the 13th ACM
SIGPLAN International Conference on Functional Programming, ICFP ’08, page 143—-156, Association for Computing
Machinery, New York, NY, USA (2008), ISBN 9781595939197.
https://doi.org/10.1145/1411204.1411226

[22] Clairambault, P., F. Olimpieri and H. Paquet, From Thin Concurrent Games to Generalized Species of Structures , in:
2023 38th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1-14, IEEE Computer Society,
Los Alamitos, CA, USA (2023).
https://doi.org/10.1109/LICS56636.2023.10175681

[23] Cook, W. R., Object-oriented programming versus abstract data types, in: J. W. de Bakker, W. P. de Roever and
G. Rozenberg, editors, Foundations of Object-Oriented Languages, pages 151-178, Springer Berlin Heidelberg, Berlin,
Heidelberg (1991), ISBN 978-3-540-46450-1.

[24] Copello, E., N. Szasz and A. Tasistro, Formalization of metatheory of the lambda calculus in constructive type theory
using the barendregt variable convention, Mathematical Structures in Computer Science 31, page 341-360 (2021).
https://doi.org/10.1017/50960129521000335

[25] Crole, R. L., The representational adequacy of Hybrid, Math. Struct. Comput. Sci. 21, pages 585-646 (2011).
https://doi.org/10.1017/30960129511000041

[26] Cruttwell, G. S. H. and M. A. Shulman, A unified framework for generalized multicategories (2010). 0907 . 2460.
https://arxiv.org/abs/0907.2460

[27] Dawson, R., R. Paré and D. Pronk, The span construction, Theory Appl. Categ. 24, pages No. 13, 302-377 (2010), ISSN
1201-561X.

[28] de Bruijn, N., Lambda calculus notation with nameless dummies, a tool for automatic formula manipulation, with
application to the church-rosser theorem, Indagationes Mathematicae (Proceedings) 75, pages 381-392 (1972), ISSN
1385-7258.
https://doi.org/https://doi.org/10.1016/1385-7258(72)90034-0

[29] Elgot, C. C., Monadic computation and iterative algebraic theories**the material reported on here evolved from research
which was intiated at the university of bristol and supported by the science research council of great britain., in: H. Rose
and J. Shepherdson, editors, Logic Colloguium ’73, volume 80 of Studies in Logic and the Foundations of Mathematics,
pages 175-230, Elsevier (1975).
https://doi.org/https://doi.org/10.1016/S0049-237X(08)71949-9

27

https://doi.org/10.1007/s10817-011-9219-0
https://doi.org/10.1145/3290335
https://doi.org/10.1145/3373718.3394738
http://eudml.org/doc/91097
https://doi.org/10.1145/1088454.1088459
https://doi.org/10.1145/1411204.1411226
https://doi.org/10.1109/LICS56636.2023.10175681
https://doi.org/10.1017/S0960129521000335
https://doi.org/10.1017/S0960129511000041
0907.2460
https://arxiv.org/abs/0907.2460
https://doi.org/https://doi.org/10.1016/1385-7258(72)90034-0
https://doi.org/https://doi.org/10.1016/S0049-237X(08)71949-9

8-28 Modular abstract syntax trees (MAST)

[30] Fiore, M. and P. Saville, List Objects with Algebraic Structure, in: D. Miller, editor, 2nd International Conference on
Formal Structures for Computation and Deduction (FSCD 2017), volume 84 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 16:1-16:18, Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl, Germany (2017),
ISBN 978-3-95977-047-7, ISSN 1868-8969.
https://doi.org/10.4230/LIPIcs.FSCD.2017.16

[31] Fiore, M. and D. Szamozvancev, Formal metatheory of second-order abstract syntaz, Proc. ACM Program. Lang. 6 (2022).
https://doi.org/10.1145/3498715

[32] Fiore, M. and D. Szamozvancev, Familial model of second-order abstract syntax (2025). Unpublished.

[33] Fiore, M. P., Second-order and dependently-sorted abstract syntaz, in: Proceedings of the Twenty-Third Annual IEEE
Symposium on Logic in Computer Science, LICS 2008, 24-27 June 2008, Pittsburgh, PA, USA, pages 57-68, IEEE
Computer Society (2008).
https://doi.org/10.1109/LICS.2008.38

[34] Fiore, M. P., Z. Galal and H. Paquet, Stabilized profunctors and stable species of structures, Log. Methods Comput. Sci.
20 (2024).
https://doi.org/10.46298/LMCS-20(1:17)2024

[35] Fiore, M. P., N. Gambino, M. Hyland and G. Winskel, Relative pseudomonads, Kleisli bicategories, and substitution
monoidal structures, Selecta Mathematica New Series 24, pages 2791-2830 (2018).
https://doi.org/10.1007/s00029-017-0361-3

[36] Fiore, M. P., N. Gambino, M. H. Hyland and G. Winskel, The cartesian closed bicategory of generalised species of
structures, Journal of the London Mathematical Society 77, pages 203-220 (2008).

[37] Fiore, M. P. and M. Hamana, Multiversal polymorphic algebraic theories: Syntaz, semantics, translations, and equational
logic, in: Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’13, page
520-529, IEEE Computer Society, USA (2013), ISBN 9780769550206.

[38] Fiore, M. P., O. Kammar, G. Moser and S. Staton, Modular abstract syntaz trees (mast): substitution tensors with second-
class sorts (2025). https://arxiv.org/pdf/2511.03946v1.
https://arxiv.org/abs/2511.03946v1

[39] Fiore, M. P., G. D. Plotkin and D. Turi, Abstract syntaz and variable binding (extended abstract), in: Proc. 1/ LICS
Conf., pages 193-202, IEEE, Computer Society Press (1999).

[40] Fiore, M. P. and D. Turi, Semantics of name and value passing, in: 16th Annual IEEE Symposium on Logic in Computer
Science, Boston, Massachusetts, USA, June 16-19, 2001, Proceedings, pages 93-104, IEEE Computer Society (2001).
https://doi.org/10.1109/LICS.2001.932486

[41] Forster, Y. and K. Stark, Coq d la carte — a practical approach to modular syntaz with binders, in: 9th ACM SIGPLAN
International Conference on Certified Programs and Proofs, CPP 2020, New Orleans, USA, ACM (2020).

[42] Gabbay, M. J. and A. M. Pitts, A new approach to abstract syntaz with variable binding, Form. Asp. Comput. 13, page
341-363 (2002), ISSN 0934-5043.
https://doi.org/10.1007/s001650200016

[43] Gacek, A., A Framework for Specifying, Prototyping, and Reasoning about Computational Systems, Ph.D. thesis,
University of Minnesota (2009).

[44] Gacek, A., D. Miller and G. Nadathur, A two-level logic approach to reasoning about computations, Journal of Automated
Reasoning 49, pages 241-273 (2012).

[45] Ghani, N., M. Hamana, T. Uustalu and V. Vene, Representing cyclic structures as nested datatypes pages 173-188 (2006).

[46] Goguen, J. A., J. W. Thatcher, E. G. Wagner and J. B. Wright, Initial algebra semantics and continuous algebras, J.
ACM 24, page 68-95 (1977), ISSN 0004-5411.
https://doi.org/10.1145/321992.321997

[47] Goncharov, S., S. Milius, L. Schroder, S. Tsampas and H. Urbat, Towards a higher-order mathematical operational
semantics, Proc. ACM Program. Lang. 7, pages 632-658 (2023).
https://doi.org/10.1145/3571215

[48] Goncharov, S., C. Rauch and L. Schroder, Unguarded recursion on coinductive resumptions, Electronic Notes in Theoretical
Computer Science 319, pages 183-198 (2015), ISSN 1571-0661. The 31st Conference on the Mathematical Foundations
of Programming Semantics (MFPS XXXI).
https://doi.org/https://doi.org/10.1016/j.entcs.2015.12.012

28

https://doi.org/10.4230/LIPIcs.FSCD.2017.16
https://doi.org/10.1145/3498715
https://doi.org/10.1109/LICS.2008.38
https://doi.org/10.46298/LMCS-20(1:17)2024
https://doi.org/10.1007/s00029-017-0361-3
https://arxiv.org/pdf/2511.03946v1
https://arxiv.org/abs/2511.03946v1
https://doi.org/10.1109/LICS.2001.932486
https://doi.org/10.1007/s001650200016
https://doi.org/10.1145/321992.321997
https://doi.org/10.1145/3571215
https://doi.org/https://doi.org/10.1016/j.entcs.2015.12.012

Fiore, Kammar, Moser, and Staton 8-29

[49] Goncharov, S., S. Tsampas and H. Urbat, Abstract operational methods for call-by-push-value, Proc. ACM Program. Lang.
9, pages 1013-1039 (2025).
https://doi.org/10.1145/3704871

[50] Hamana, M., Initial algebra semantics for cyclic sharing structures, in: P.-L. Curien, editor, Typed Lambda Calculi and
Applications, pages 127-141, Springer Berlin Heidelberg, Berlin, Heidelberg (2009), ISBN 978-3-642-02273-9.

[61] Hasegawa, M. and Y. Kakutani, Azioms for recursion in call-by-value, in: F. Honsell and M. Miculan, editors, Foundations
of Software Science and Computation Structures, pages 246260, Springer Berlin Heidelberg, Berlin, Heidelberg (2001),
ISBN 978-3-540-45315-4.

[52] Hermida, C., Representable multicategories, Advances in Mathematics 151, pages 164-225 (2000), ISSN 0001-8708.
https://doi.org/https://doi.org/10.1006/aima.1999.1877

[53] Hirschowitz, A., T. Hirschowitz and A. Lafont, Modules over monads and operational semantics, in: Z. M. ndré, editor,
5th International Conference on Formal Structures for Computation and Deduction, FSCD 2020, June 29-July 6, 2020,
Paris, France (Virtual Conference), volume 167 of LIPIcs, pages 12:1-12:23, Schloss Dagstuhl - Leibniz-Zentrum fir
Informatik (2020).
https://doi.org/10.4230/LIPICS.FSCD.2020.12

[64] Hirschowitz, A., T. Hirschowitz, A. Lafont and M. Maggesi, Variable binding and substitution for (nameless) dummies,
CoRR abs/2209.02614 (2022). 2209.02614.
https://doi.org/10.48550/ARXIV.2209.02614

[65] Hirschowitz, A. and M. Maggesi, Modules over monads and initial semantics, Information and Computation 208, pages
545-564 (2010), ISSN 0890-5401. Special Issue: 14th Workshop on Logic, Language, Information and Computation
(WoLLIC 2007).
https://doi.org/https://doi.org/10.1016/j.ic.2009.07.003

[56] Hofmann, M., Semantical analysis of higher-order abstract syntaz, in: Proceedings. 14th Symposium on Logic in Computer
Science (Cat. No. PR00158), pages 204-213 (1999).
https://doi.org/10.1109/LICS.1999.782616

[57] Joyal, A., Une théorie combinatoire des séries formelles, Advances in Mathematics 42, pages 1-82 (1981), ISSN 0001-
8708.
https://doi.org/https://doi.org/10.1016/0001-8708(81)90052-9

[58] Keuchel, S., Generic programming with binders and scope (2011).

[59] Keuchel, S. and J. T. Jeuring, Generic conversions of abstract syntax representations, in: Proceedings of the 8th ACM
SIGPLAN Workshop on Generic Programming, WGP 12, page 57-68, Association for Computing Machinery, New York,
NY, USA (2012), ISBN 9781450315760.
https://doi.org/10.1145/2364394.2364403

[60] Keuchel, S., S. Weirich and T. Schrijvers, Needle & knot: Binder boilerplate tied up, in: Proceedings of the 25th Furopean
Symposium on Programming Languages and Systems - Volume 9632, page 419-445, Springer-Verlag, Berlin, Heidelberg
(2016), ISBN 9783662494974.
https://doi.org/10.1007/978-3-662-49498-1_17

[61] Kock, A., Monads on symmetric monoidal closed categories, Archiv der Mathematik 21, pages 1-10 (1970).
https://doi.org/10.1007/BF01220868

[62] Krishnamurthi, S., M. Felleisen and D. P. Friedman, Synthesizing object-oriented and functional design to promote re-
use, in: E. Jul, editor, ECOOP’98 — Object-Oriented Programming, pages 91-113, Springer Berlin Heidelberg, Berlin,
Heidelberg (1998), ISBN 978-3-540-69064-1.

[63] Lamiaux, T. and B. Ahrens, An introduction to different approaches to initial semantics (2024). 2401.09366.
https://arxiv.org/abs/2401.09366

[64] Lee, G., B. C. D. S. Oliveira, S. Cho and K. Yi, Gmeta: A generic formal metatheory framework for first-order
representations, in: H. Seidl, editor, Programming Languages and Systems, pages 436—455, Springer Berlin Heidelberg,
Berlin, Heidelberg (2012), ISBN 978-3-642-28869-2.

[65] Leinster, T., fc-multicategories (1999). math/9903004.
https://arxiv.org/abs/math/9903004

[66] Leinster, T., Higher Operads, Higher Categories, London Mathematical Society Lecture Note Series, Cambridge University
Press (2004).

[67] Levy, P. B., Call-by-push-value: A subsuming paradigm, in: Proceedings of the 4th International Conference on Typed
Lambda Calculi and Applications, TLCA ’99, page 228-242, Springer-Verlag, Berlin, Heidelberg (1999), ISBN 3540657630.

29

https://doi.org/10.1145/3704871
https://doi.org/https://doi.org/10.1006/aima.1999.1877
https://doi.org/10.4230/LIPICS.FSCD.2020.12
2209.02614
https://doi.org/10.48550/ARXIV.2209.02614
https://doi.org/https://doi.org/10.1016/j.ic.2009.07.003
https://doi.org/10.1109/LICS.1999.782616
https://doi.org/https://doi.org/10.1016/0001-8708(81)90052-9
https://doi.org/10.1145/2364394.2364403
https://doi.org/10.1007/978-3-662-49498-1_17
https://doi.org/10.1007/BF01220868
2401.09366
https://arxiv.org/abs/2401.09366
math/9903004
https://arxiv.org/abs/math/9903004

8-30 Modular abstract syntax trees (MAST)

[68] Levy, P. B., Call-By-Push-Value: A Functional/Imperative Synthesis, volume 2 of Semantics Structures in Computation,
Springer (2004).

[69] McBride, C., Everybody’s got to be somewhere, in: R. Atkey and S. Lindley, editors, Proceedings of the 7th Workshop
on Mathematically Structured Functional Programming, MSFPQFSCD 2018, Ozford, UK, 8th July 2018, volume 275 of
EPTCS, pages 53—69 (2018).
https://doi.org/10.4204/EPTCS.275.6

[70] McDermott, D. and T. Uustalu, What makes a strong monad?, Electronic Proceedings in Theoretical Computer Science
360, page 113-133 (2022), ISSN 2075-2180.
https://doi.org/10.4204/eptcs.360.6

[71] Morris, P., T. Altenkirch and C. McBride, Ezploring the reqular tree types, in: J.-C. Fillidtre, C. Paulin-Mohring and
B. Werner, editors, Types for Proofs and Programs, pages 252—-267, Springer Berlin Heidelberg, Berlin, Heidelberg (2006),
ISBN 978-3-540-31429-5.

[72] Olimpieri, F., Intersection Types and Resource Calculi in the Denotational Semantics of Lambda-Calculus, Theses, Aix-
Marseille Universite (2020).
https://theses.hal.science/tel-03123485

[73] Pfenning, F. and C. Elliott, Higher-order abstract syntaz, in: Proceedings of the ACM SIGPLAN 1988 Conference on
Programming Language Design and Implementation, PLDI '88, page 199-208, Association for Computing Machinery,
New York, NY, USA (1988), ISBN 0897912691.
https://doi.org/10.1145/53990.54010

[74] Pientka, B., Beluga: Programming with dependent types, contextual data, and contezts, in: M. Blume, N. Kobayashi and
G. Vidal, editors, Functional and Logic Programming, pages 1-12, Springer Berlin Heidelberg, Berlin, Heidelberg (2010),
ISBN 978-3-642-12251-4.

[75] Plotkin, G. D., An illative theory of relations, Situation Theory and its Applications pages 133-146 (1990).

[76] Polonowski, E., Automatically generated infrastructure for de bruijn syntazes, in: S. Blazy, C. Paulin-Mohring and
D. Pichardie, editors, Interactive Theorem Proving, pages 402-417, Springer Berlin Heidelberg, Berlin, Heidelberg (2013),
ISBN 978-3-642-39634-2.

[77] Poulsen, C., A. Rouvoet, A. Tolmach, R. Krebbers and E. Visser, Intrinsically-typed definitional interpreters for imperative
languages, Proceedings of the ACM on Programming Languages 2, pages 1-34 (2018), ISSN 2475-1421.
https://doi.org/10.1145/3158104

[78] Reynolds, J. C., User-Defined Types and Procedural Data Structures as Complementary Approaches to Data Abstraction,
pages 309-317, Springer New York, New York, NY (1978), ISBN 978-1-4612-6315-9.
https://doi.org/10.1007/978-1-4612-6315-9_22

[79] Schéfer, S., G. Smolka and T. Tebbi, Completeness and decidability of de bruijn substitution algebra in coq, in: Proceedings
of the 2015 Conference on Certified Programs and Proofs, CPP 2015, Mumbai, India, January 15-17, 2015, pages 6773,
ACM (2015).

[80] Sewell, P., F. Z. Nardelli, S. Owens, G. Peskine, T. Ridge, S. Sarkar and R. StrniSa, Ott: Effective tool support for the
working semanticist, Journal of Functional Programming 20, page 71-122 (2010).
https://doi.org/10.1017/50956796809990293

[81] Simpson, A. K. and G. D. Plotkin, Complete azioms for categorical fized-point operators, in: LICS, pages 30—41 (2000).
http://www.computer.org/proceedings/1ics/0725/07250030abs.htm

[82] Stark, K., Mechanising Syntax with Binders in Cogq, Ph.D. thesis, Saarland University (2020).

[83] Stark, K., S. Schéfer and J. Kaiser, Autosubst 2: Reasoning with multi-sorted de bruijn terms and vector substitutions,
8th ACM SIGPLAN International Conference on Certified Programs and Proofs, CPP 2019, Cascais, Portugal, January
14-15, 2019 (2019).

[84] Sterling, J. and D. Morrison, Syntaz and semantics of abstract binding trees, CoORR abs/1601.06298 (2016). 1601.06298.
http://arxiv.org/abs/1601.06298

[85] Swierstra, W., Data types d la carte, Journal of Functional Programming 18, pages 423-436 (2008).
https://doi.org/10.1017/50956796808006758

[86] Szamozvancev, D., Categorical models of second-order abstract syntaz, Ph.D. thesis, University of Cambridge (2025).

[87] Szlachanyi, K., Skew-monoidal categories and bialgebroids, Advances in Mathematics 231, pages 1694-1730 (2012), ISSN
0001-8708.
https://doi.org/https://doi.org/10.1016/j.aim.2012.06.027

30

https://doi.org/10.4204/EPTCS.275.6
https://doi.org/10.4204/eptcs.360.6
https://theses.hal.science/tel-03123485
https://doi.org/10.1145/53990.54010
https://doi.org/10.1145/3158104
https://doi.org/10.1007/978-1-4612-6315-9_22
https://doi.org/10.1017/S0956796809990293
http://www.computer.org/proceedings/lics/0725/07250030abs.htm
1601.06298
http://arxiv.org/abs/1601.06298
https://doi.org/10.1017/S0956796808006758
https://doi.org/https://doi.org/10.1016/j.aim.2012.06.027

Fiore, Kammar, Moser, and Staton 8-31

[88] Turi, D. and G. D. Plotkin, Towards a mathematical operational semantics, in: Proceedings of Twelfth Annual IEEE
Symposium on Logic in Computer Science, pages 280-291 (1997).
https://doi.org/10.1109/LICS.1997.614955

[89] Urban, C., Nominal techniques in Isabelle/HOL, J. Autom. Reason. 40, pages 327-356 (2008).
https://doi.org/10.1007/510817-008-9097-2

[90] Voevodsky, V., B. Ahrens, D. Grayson et al., Unimath — a computer-checked library of univalent mathematics, available
at http://unimath.org.
https://doi.org/10.5281/zenodo.10849216

[91] Weirich, S., B. A. Yorgey and T. Sheard, Binders unbound, SIGPLAN Not. 46, page 333-345 (2011), ISSN 0362-1340.
https://doi.org/10.1145/2034574.2034818

[92] Zenger, M., Erweiterbare tubersetzer, Master’s thesis, University of Karlsruhe (1998).

[93] Zenger, M. and M. Odersky, Extensible algebraic datatypes with defaults, SIGPLAN Not. 36, page 241-252 (2001), ISSN
0362-1340.
https://doi.org/10.1145/507669.507665

[94] Zenger, M. and M. Odersky, Implementing extensible compilers (2001).
https://infoscience.epfl.ch/handle/20.500.14299/221735

[95] Erdi, G., Generic description of well-scoped, well-typed syntazes (2018). 1804.00119.
https://arxiv.org/abs/1804.00119

31

https://doi.org/10.1109/LICS.1997.614955
https://doi.org/10.1007/S10817-008-9097-2
http://unimath.org
https://doi.org/10.5281/zenodo.10849216
https://doi.org/10.1145/2034574.2034818
https://doi.org/10.1145/507669.507665
https://infoscience.epfl.ch/handle/20.500.14299/221735
1804.00119
https://arxiv.org/abs/1804.00119

	Introduction
	Heterogeneous sorting systems and structures
	Signature combinators
	Substitution tensors
	Signature functors
	Compatible actions and structures
	On pointed strengths and compatibility

	Case study: the Call-by-Value -calculus
	The full calculus
	Simple types á la carte
	The substitution structures
	The cbv customisation menu

	Technical development outline
	Bicategorical development
	The representation theorem
	Skew-monoidal categories

	Related work
	Conclusion
	References

