ELECTRONIC NOTES IN (N EM | |(:S VOLUME 5
THEORETICAL INFORMATICS «iit PROCEEDINGS OF

AND COMPUTER SCIENCE HTTPS://ENTICS.EPISCIENCES.ORG MFPS 2025

Strong Normalization Through Idempotent Intersection
Types: A New Syntactical Approach*™

Pablo Barenbaum®®! Simona Ronchi Della Rocca®? Cristian SottileP<?

& Dipartimento di Informatica, Universita di Torino, Italy
b 1CC, CONICET—Universidad de Buenos Aires, Argentina

¢ Universidad Nacional de Quilmes, Argentina

Abstract

It is well-known that intersection type assignment systems can be used to characterize strong normalization (SN). Typical
proofs that typable lambda-terms are SN in these systems rely on semantical techniques. In this work, we study A8, a variant
of Coppo and Dezani’s (Curry-style) intersection type system and we propose a syntactical proof of strong normalization for
it. We first design A%, a Church-style version of A, in which terms closely correspond to typing derivations. We then prove
that typability in A% implies SN through a measure that, given a term, produces a natural number that decreases along
with reduction. This measure provides a syntactical proof of SN. Finally, the result is extended to Af, since the two systems
simulate each other.

Keywords: Lambda calculus, Intersection types, Strong normalization

1 Introduction

Intersection types were introduced by Coppo and Dezani [12], with the explicit aim of increasing the typa-
bility power of simple types. Beyond the arrow connective of simple types (—), these systems incorporate
an intersection connective (A), which is commutative, associative and idempotent (i.e. AN A = A), which
means that intersection is essentially a notation for sets of types.

Intersection type assignment systems come in different versions, and are able to characterize semantical
properties of terms. For example, Coppo and Dezani’s original system characterizes strong normalization,
in the sense that a term is typable if and only if it is strongly normalizing. Recall that a A-term is strongly
normalizing if every reduction sequence starting from it eventually terminates.

There are many other intersection type systems characterizing other properties besides strong normal-
ization, such as head normalization [13,24], where we recall that a A-term is head normalizing if head

* Funded by the European Union through the MSCA SE project QCOMICAL (Grant Agreement ID: 101182520).
**We would like to thank the anonymous reviewers for their careful reading of the manuscript and their insightful
comments, which helped improve the quality of this paper.

! Email: pbarenbaum@dc.uba.ar

2 Email: ronchi@di.unito.it

3 Email: csottile@dc.uba.ar

REC’D APR 3,2025; PuB’D DEC 15,2025 PROCEEDINGS AVAILABLE ONLINE AT © P. BARENBAUM, S. RoncHI DELLA Rocca,
10.46298 /entics.16693 ENTICS MFPS 41 PROCEEDINGS C. SOTTILE @® CREATIVE COMMONS

https://entics.episciences.org
mailto:pbarenbaum@dc.uba.ar
mailto:ronchi@di.unito.it
mailto:csottile@dc.uba.ar
https://doi.org/10.46298/entics.16885
https://doi.org/10.46298/entics.proceedings.mfps41
https://creativecommons.org/licenses/by/4.0/

3-2 Strong normalization through idempotent intersection types

reduction (reducing at every step the redex in head position) eventually terminates. Furthermore, inter-
section types are a very powerful tool to reason about the interpretation of terms in various models of
A-calculus [3,30,5].

The existent proofs of the characterization properties are not straightforward: for both strong and head
normalization, the direction “typable implies normalizing” is generally carried out using semantical tools
like computability or reducibility candidates [29,24]. These semantical proofs are in some sense standard,
but it is not easy to extract from them an intuition about what is going on. Having an explicit measure
that decreases with g-reduction would be preferable. In the case of strong normalization, there are three
completely syntactical proofs, based on a decreasing measure [22,9,11]; we will briefly discuss them and
their relation with the present work at the end of this section.

A non-idempotent version of intersection types has been defined [20,21,15], where the intersection
connective is not idempotent (i.e. AN A # A), and thus becomes a notation for multisets of types. The
non-idempotent systems preserve some of the properties of the idempotent ones: they can characterize
strong and head normalization [7]. From a semantical point of view, they can describe relational models
of A-calculus [28]; even if this class of models is quite poor, with respect to the A-theories that they
induce, they are useful to explore quantitative properties of typable terms. Unlike what happens in the
idempotent case, the proof that these systems with non-idempotent intersection characterize strong and
head normalization can be carried out by an easy induction on the size of the typing derivation, which
decreases at every reduction step. This relies on the quantitative nature of non-idempotency, and in
particular on the fact that, in a derivation, the cardinality of the multiset of types of a variable x is an
upper bound of the number of occurrences of x in the typed term. Given that these proofs rely crucially on
the fact that intersection is non-idempotent, there is not much hope of extending them to the idempotent
case. But we think that it would be interesting to explore if there is a decreasing measure for idempotent
intersection types which is simpler than those in [22,9]. Here we present a positive answer to this problem,
namely a decreasing measure consisting of just a natural number.

1.1 Contributions

Recently, a proof of strong normalization for simply typed A-calculus has been presented [2], based on a
decreasing measure which can be defined constructively, by relying on a non-erasing notion of reduction
inspired by memory calculi [26,23,16,27,10]. Namely, each S-reduction step creates a “wrapper” containing
a copy of the argument, remembering all the erased subterms. An operation called full simplification is
defined to repeatedly perform the complete development of all the redexes of maximum degree in a term? .
A measure decreasing at every reduction step is then given simply by a natural number corresponding
to the number of wrappers that remain after full simplification. Here we adapt this technique to
idempotent intersection types.

The first step in order to do this job is to design an intrinsically typed version of intersection types,
which are usually presented as extrinsically typed systems instead. Let us recall that, in an extrinsically
typed (Curry-style) system, terms are untyped and there is a set of typing rules assigning types to them,
whereas in an intrinsically typed (Church-style) system, terms are decorated with types, and typing rules
are just a check of syntactical correctness. There are some attempts in the literature in this direction,
e.g. in [8,25,1], but they are not suitable for the application of the discussed techniques. In fact the big
difference between simple and intersection types, on which the power of the latter relies, is that, if M is a
term of A-calculus typable by intersection types and N is a subterm of M occurring once in it, a typing
derivation of a judgement I" -, M : A can contain n > 1 subderivations with object N. Since N can
contain redexes, performing a reduction inside IV corresponds to performing n reductions in parallel on
the derivation. The natural way to achieve this is to equip the Church-style intersection type system with
a parallel notion of reduction, and this is indeed what all the existing proposals do. At the same time, in
order to apply the cited method, we would need to reduce these subderivations independently from each
other.

4 In this context, the degree of a redex (A\x.t) s is the height of the type of the abstraction \z.t.

Barenbaum, Ronchi Della Rocca, Sottile 3-3

Our starting point is an extrinsically typed subset of A, called Af, defined through an intersection type
assignment system. This system is a variant of well-known systems in the literature that characterize strong
normalization. In order to build an intrinsically typed version of Af, we exploit the idea that idempotent
intersection represents a set of types, and we explicitly use sets both in the grammar of types and terms
of the typed language, so for example if ¢ and s are terms of type A and B respectively, then {t, s} is a set
of terms which can be assigned the set of types {A, B}. Following this idea, we formulate an intrinsically
typed version of A& called A}, where sets of types are decorations for sets of terms. While these two
systems can be dealt with independently from each other, they are shown to simulate each other. The new
typed language A} enjoys all the good properties we expect, such as subject reduction and confluence.
More importantly, it is suitable for the application of a method extending that of [2]. As a matter of fact,
using the notion of complete development by degree, and relying on an auxiliary memory calculus A,
we define a measure which is a natural number decreasing at every reduction step in A%. Then, we prove
that, for every term M in A&, there is a term ¢ in A}, such that an infinite reduction sequence in M entails
an infinite reduction sequence in ¢, thus obtaining a new proof of strong normalization for A%. Finally, we
complete the picture by proving that A} gives type to all the strongly normalizing terms, hence showing
that it has the same typability power of the original paper [12].

1.2 Comparison with related works

As we recalled before, there are three other syntactical proofs of strong normalization for idempotent
intersection types, namely [22,9,11]. Both [22,9] define an intermediate language, typed by intersection
types, equipped with a suitable non-erasing reduction rule. So, as known for AI (i.e. non—erasing) based
systems [4, §11.3], weak normalization there entails strong normalization. Using the property that the
normalization of both the reductions implies S-normalization, they prove weak normalization for terms
typable in the intersection type assignment system, and obtain strong normalization as a corollary. In both
papers, the normalization proofs are carried out by defining a measure that decreases when a particular
reduction strategy is chosen. The approach of reducing weak to strong normalization can be traced back
to at least Nederpelt’s and Klop’s theses [26,23].

In [22] the intermediate language is an intrinsically typed A-calculus extended with lists, the reduction
rule is the composition of a parallel S-rule and a commutation rule, and the measure is a multiset of
natural numbers decreasing under the innermost reduction. In [9] the intermediate language is a variant
of the Klop’s calculus, extrinsecally intersection typed, and the reduction is the S-reduction, but copying
its argument when it is going to be erased; the weak normalization proof is obtained through the weak
cut-elimination property of the type derivation, and the measure is a pair of natural numbers, decreasing
under the strategy choosing the innermost redex of maximum degree.

Since our work uses an approach in some sense similar to [22,9], we first highlight the novelties that
we consider important with respect to them.

e We share with [22] the use of an intermediate language which is intrinsically typed by intersection types,
but while their language is ad hoc, and its properties are not explored, A} is shown here to be the Church
version of the Curry-style system. Indeed, A% and A} simulate each other, and reduction corresponds
to cut-elimination in the derivation tree; we consider this to be an important result on its own.

* We do not need to define an ad hoc reduction rule; A% uses directly the S-reduction, in its typed version.

e The codomain of our measure is simpler than multisets and pairs in [22,9], consisting of a single natural
number.

¢ QOur technique provides a measure that decreases for every reduction strategy. There are proofs with
these characteristics for the A-calculus, such as Gandy’s proof and its derivatives [19,17], but not for
intersection types, as far as we know.

Despite these differences, their works and ours rely fundamentally on Turing’s remark that contracting a
redex cannot create redexes of higher or equal degree [18,6], which is the basis for Turing’s proof of weak
normalization of the simply typed A-calculus [18].

The approach of [11] is completely different: indeed, the normalization of intersection types here is not

34 Strong normalization through idempotent intersection types

the main result, but it is an intermediate step in the proof that computational power of intersection types
is the same as that of simple types. The authors define an embedding from intersection type to simple
type derivations which commutes with the g-reduction. So they do not define any decreasing measure.
Let us notice that the embedding translates terms to linear terms, and that the intersection is used in a
non commutative way, since the translation of A A B does not coincide with that of B A A.

One could define a measure for intersection types by combining the translation with one of the existing
measures for simply typed A-calculus, for instance the measure W in [2]. Due to information lost in the
translation, this would supply a natural number greater or equal than the one obtained in this paper.
Since decreasing measures serve as an upper bound for the longest reduction chain of terms, a tighter
measure provides a more accurate computational analysis and would therefore be generally preferred.

It is worth noting that even the combination with a simply typed A-calculus exact measure (e.g. [17])
would not yield a tighter (nor looser) measure than W. The loss of intersection type information that
occurs during the translation is a hard limitation for any measure based on it; they cannot be refined to
exactness. Our more coupled approach, since it operates within the intersection system, provides a finer
analysis of reduction and thus allows for further improvement, which is indeed one of the proposed future
works. We consider the refinability of our measure an advantage over measures based on such translation.

Organization of this paper

Section 2 presents the languages A8 and A}, their relations and properties. Section 3 constructs a
decreasing measure that entails strong normalization of A} by means of an auxiliary memory calculus
A, Finally, Section 4 shows how this can be used to prove strong normalization of A&, concludes, and
proposes future works.

2 An intrinsically typed presentation of idempotent intersection types

This section starts by presenting A% (2.1), an intersection type assignment system for A-terms, closely
related to other well-known systems that characterize strong normalization. In Section 2.2, we formulate
an intrinsically typed version of the system, called A}, and we study its properties, including subject
reduction and confluence. In Section 2.3 we establish a formal proof-theoretical connection between Af
and A}, and we prove that A% gives type to all the strongly normalizing terms. Recall that the set of
untyped A-terms A is defined as usual by the grammar M = x | Ae. M | M M. The sets of types

(A, B,...) and set-types (ff, B,.. .) are given mutually inductively as follows:
Au=al|A— A (A + @) g:::{Aj}jej

where a, b, . .. range over a denumerable set of base types, and A stands for a finite set of types®, where J
denotes a finite set of indices, and {A;},c s is the set {A4; | j € J}. When we write a set-type, we keep the
invariant that there are no repetitions, i.e. that if h # k then Ay # Ag, so that the set is of cardinality
|J]. Sometimes we will use the explicit notation {Ay,..., A, }. Note that a set-type is a finite set of types
that may be empty, but the domain of an arrow type is always a non-empty set-type.

Sometimes we write A — B for {A} — B. A typing context (I, A,...) is a function mapping each
variable to a set-type such that I'(x) # @ for finitely many variables x. We write dom(I") for the set of
variables which I' assigns to a non-empty set-type. We adopt the standard notation for typing contexts,
e.g. writing x7 : Ay, ..., zn ¢ A, for the context T' such that [(x;) = A; for each i € 1..n and I'y) =92
for every y ¢ {x1,...,2,}. We write ' U A for the typing context such that (I' U A)(x) = I'(z) U A(x)
for every z, and we write I' C A if I'(z) C A(z) for every z. Note in particular that I' C (I',z : A) if
x ¢ dom(T"). If J is a judgement, we write I > J to mean that II is a particular derivation proving J.

5 Note that A ::= {A;};es is not intended to be a grammatical production that determines a concrete syntax for
finite sets, but rather as a formation rule meaning that a set-type A is given by a finite set of types.

Barenbaum, Ronchi Della Rocca, Sottile 3-5

2.1 Eaxtrinsically typed system

We define a Curry-style intersection type assignment system, which is a variant of well-known systems in
the literature, starting with the one introduced by Coppo and Dezani [12].

Definition 2.1 (The A% type assignment system) The A% calculus is defined by means of two forms
of judgement:

1. I'to M : A meaning that the A-term M has type A under the context I.
2. TIFe M: A meaning that the \-term M has set-type A under the context T

The typing rules are as follows:

B_‘GA e-var (F l_eN:Aj)jeJ (Vh,kEJ h%]{? — Ah#Ak) o-many
Iz:Aroxz: B I'lFe N :{Aj}jes
I,o:AkFe M: B FFeM:A—-B A#@ Tl N:A
P e-I— e-E—
'teXx. M :A— B ' MN:B

Note that we restrict the codomain of contexts so that T'(x) # &, so rule e-I— cannot introduce an empty
set to the left of the arrow.

Example 2.2 LetI'=x: {{A,B} - C,A,B}. Then:

Ael(x) B eT(z)
{A,B} - C e€T'(x) FkFex: A evar T Fex: B e-var
e-var e-many
N'rez:{A,B} - C I'lez:{A B}
I'texzz:C e-E—

e v.xx:{{A,B} - C,A,B} = C el

Remark 2.3 The system A% presented above is not exactly the same system as that of [12], for two
reasons. First, A§ uses sets instead of intersections, writing {A, B} — C rather than (AN B) — C. This
can be understood only as a difference in notation, given that the intersection type constructor of [12] is
assumed to be associative, commutative, and idempotent. Second, A% allows sets (i.e. intersections) to
appear only to the left of the arrow (—) connective. For example, (AN B) — (C' AD) is a well-formed type
in the system of [12], whereas {A, B} — {C, D} is not a well-formed type in A. This means that types
in A% are strict types, in the sense introduced by van Bakel [31]. Despite these two differences, we will
prove that the original system of [12] and A% are equivalent in typability power, as they both characterize
strongly normalizable \-terms.

2.2 Intrinsically typed system

We define a Church-style presentation of the system, inspired by the linearization proposed by Kfoury
[21].

Definition 2.4 (The A} type assignment system) The sets of terms (t,s,...) and set-terms
(t,5,...) are given by the following grammar:

to=at| At t | tt tu={t;}jes

where J stands for a finite set of indices and {t;}jcs is the set {t; | j € J}. Note that set-terms are finite
sets of terms. When we write a set-term, we keep the invariant that there are no repetitions, i.e. that if
h # k then tp, # ti. The A} calculus is defined by means of two forms of judgement:

1. Tk t: A meaning that a term t is of type A under the context I'.

3-6 Strong normalization through idempotent intersection types

2. Tl t: A meaning that a set-term t is of set-type A under the context T.

The typing rules are as follows:

Be A _ (Thitj:A)jes (YhkeJh#k = Ay #Ap) |
p—y B 1-var 1—many
Iz: AR 2% : B ks {ti}jes : {Aj}jes
D,z:AbF;t:B 1 - 7 7
P AT i1y Iht:A-B Ths:Ad Ao
' Xxt.t:A— B ' t5: B

A term t is typable if T s t : A holds for some T, A. Similarly, a set-term is typable if T ks © : A holds

for some F,ff. Unless otherwise specified, when we speak of term (resp. set-term) we mean typable term
(resp. typable set-term). We write A} for the set of typable terms, i.e. AL := {t | t is typable}. The
notions of free and bound occurrences of variables are defined as usual. The set of free variables of type
A of a term t is written fva(t) and defined as the set of variables x such that z? occurs free in t. For

example, vy (A\yU{ABI=CY QAABY=C oA 2By — (2} when A # B. The set of free variables of a term
t is written fv(t) . Terms are considered up to a-renaming of bound variables.

Notation 2.5 Sometimes we write t s to stand for t {s}. We may omit type annotations over variables if
they are clear from the context.

Remark 2.6 Note that, in the rule i-many, we explicitly require that the function j — A; is injective (i.e.
Vh,k € Jh#k = Ap # Ay). For example, letI' = (x : {A,B},y : {A}). Then the following are valid
Jjudgments:

Ul {24} {A} Tk {a% 28} {4, B} Tl {2894 {4, B}
On the other hand, the following judgments are not valid:

Dl {z? gy} - {AY Tk {24, 24) - {4}

Example 2.7 The derivation of Example 2.2 can be encoded in A} as the following term, which has type
{{A,B} — C,A,B} — C in the empty context:

Ap{ABISCABY ({AB}SC (A4 By

Remark 2.8 Note that, in general, a set-term may be an empty set of terms, but the argument of an
application is always a non-empty set-term. We let set-types and set-terms to be empty to be able to
write expressions such as t = {t} U5 to mean that t is a set containing at least one element t, leaving the
possibility that § may be empty.

Remark 2.9 (Subterm property) Ift is typable, all of its subterms are typable.
Lemma 2.10 (Weakening and strengthening)
1. If Tkt A (resp. Flht_':%_f) and T'C A then AFit: A (resp. Alkif:j).

2. If D,z : {AYUB it :C (resp. T,x : {AYUBIrs £: C) and x ¢ fua(t), then T' 5 t : C (resp.
VI t:C), where I is (T,x : B) if B # @, and T otherwise.

Definition 2.11 (Minimal typing context) For each term t (resp. set-term t), its minimal typing
context is written (t) (resp. y(t)) and defined as follows:

(@) = x: {A} yOxht) =)\
Y(t5) =AW UYE) y{t. b)) = U (t)

where T'\ x is defined in such a way that (T'\ x)(x) = & and (I'\ z)(y) =T'(y) for x #y.

Barenbaum, Ronchi Della Rocca, Sottile 3-7

Lemma 2.12 (Type uniqueness) If 'y i t : Ay and T'9 k5 t : Ag then Ay = Ay. Furthermore,
v(t) C Ty and v(t) C Ty and y(t) ki t = Ay.

Remark 2.13 Sometimes we write t* to mean that ~v(t) ki t: A. Note that, by the previous lemma, there
is a unique A such that t4.

Observation 2.14 (Bijection between a set-term and its set-type) LetT'IF; §: A. Given A € A,
we know by rule i-many that there exists a derivation T -3 s’ : A’. This is the only derivation with type
A’ in the premises of the rule: otherwise, we would contradict the rule’s side condition by having different
derivations with the same type. Therefore, s' is unique. Given s’ € §, we know by rule i-many that it has
a type A'; by Lemma 2.12, this type is unique.

Definition 2.15 (Substitution in A) We define operations of capture-avoiding substitution for terms
and set-terms by mutual recursion. Let T' Ik §: A with §= {s;}icr, A ={Ai}ier, and T' by s; : A; for all
i € 1. we define tlz? := 5] recursively as follows.

a:Ai[a:g =35 = s
4yB[xA: =&=y"
B0l 1= 31 1= dgPteT = 5
(D)t =5 = tle? =Rt =5
{t1,...,tp}[z? =5 == {t1[z? = 3], ..., tu[z? = 5]}

Note that, in the first case, s; exists and is unique due to Observation 2.14.

Lemma 2.16 (Substitution Lemma) Let T,z : Ar;t:BandT I 5: A. ThenT +; t[gr:“T :=3]: B.

Proof. By induction on ¢, generalizing the statement to set-terms, where the interesting cases are:
1. If t = 2B, then T, z : At 2B . B with B € A. By Observation 2.14, there exists a unique s; € § such
that I' F; s; : B. Therefore, xB[x/Y := §] = s; of type B.
2. If £ = {t1,...,t,}, then B is indeed a set-type B = {B1,...,By}, and I',x : Al {t1,...,tn} :
{B1,...,Bp}. By IH, T 751-[:6“T := 5] : B; for all i such that 1 < i < n, so by i-many we have
ks {t [:15“T = 3,... ,tn[ac“Y i= 8]} : {B1,...,By}. Note that substitution preserves cardinality in

typed set-term derivations. If we had t;[z := 5] = t; [z := 5] with distinct i, j such that 1 <4,j < n,
they would have the same type by Lemma 2.12. This would imply that ¢; and ¢; have the same type,
which is impossible by rule i-many.

O

Definition 2.17 (Reduction in A}) A notion of reduction called i-reduction is defined over terms and
set-terms by the following rule, closed by congruence under arbitrary contexts:

—

A2) 5 =t = 3]

Note in particular that congruence rules allow reducing inside the argument of an application, i.e. §—; U
implies t § —; ti, and inside any of the elements of a set-term, i.e. t; —; t, implies {t1,... t;,.. ., tn} =
{t1,...,th, ..., ty}. We write =7 for the reflexive—transitive closure of —;.

Reduction in A} enjoys the following properties. See Appendices A.1.1 and A.1.2 for detailed proofs.
Proposition 2.18 (Subject reduction) Ift —; t' and T ki t: A then T H; t': A.

Proposition 2.19 (Confluence) Ift —I s and t —% u then there is r such that s =5 r and u —7 r.

3-8 Strong normalization through idempotent intersection types

2.8 Correspondence between Curry and Church-style systems

A typable term in the Church-style system A} does not necessarily represent a derivation tree in the
Curry-style system A%. To relate these systems, we consider the following notion:
Definition 2.20 (Refinement) We define a binary relation t T M between typable terms t € A} and

untyped M-terms M € A, as well as a binary relation t = M between typable set-terms t C AL and untyped
A-terms M € A, according to the inductive rules below. In that case, we say that t is a refinement of M.

te M tcM 5N (LEMiein n>0
A C At C e M tsC MN {ti,...,ta}C M

Observation 2.21
1. IftC My and t C My then My = M.
2. IftC M and SC N thent[xg::sf] C M|z := NJ.

Definition 2.22 (Uniformity and type erasure) A typable term t € A} is uniform if there exists
M € A such that t © M. Similarly, a typable set-term t C AL is uniform if there exists M € A such that
tc M.

Ift € A} is a uniform term, its type erasure t® € A is defined as the unique A\-term such that t C t°.

Similarly, if T C AL is a uniform set-term, t* € A is defined as the unique A-term such that t © t°. This
can be written as a recursive definition:

Nemy Qb= Antt (=105 {s1,...,s0)° = s

If t € A} is uniform, for each derivation Il 1> Tt t : A, we construct a derivation I1® > T ¢ t® : A
by erasing all the type annotations in terms. Similarly, each derivation II > T'IF; £ : A is mapped to a
derivation TI® 1> T Ik 8 : A.

Definition 2.23 (Type decoration) For each derivation I1 > T ¢ M : A, we construct a term t € A}

and a derivation II* > T' &5 t : A inductively as below. Similarly, for each derivation I1 > T I-g M : A we
construct a set-term t € AL and a derivation TI* > T' IF; £ : A.

Bed BeA .

- e-var = i-var
Iax:Abex: B Tz AR 2P B
L,z: Ao M: B Tx:AF;it:B

-I— i-I—

= e — —
TteAz.M:A— B ~s T Mt A— B

' M:A—>B TI,N:A . 't:A— B r\hngi,E
TF, MN:B eET T t5:B b
(TFe N Ajictn o-many (TFs si: Ajietn i many
Dlike N:{Ay,..., Ay} ~s Dk {s1y oo 8n) i {A1, . AR}

Theorem 2.24 (Correspondence)

L IfIl > T ke M : A, then there exists a uniform t € AL such that TF > T 5t : A and t © M.
Moreover, (I1*)® = II.

Barenbaum, Ronchi Della Rocca, Sottile 3-9

2. Ifll>T ks t: A andt is uniform then I1® > T k¢ t® : A. Moreover, (I1°)* = II.
Proof.

1. We generalize the statement to set-terms, i.e. if Il > T IFg M : A then there exists a uniform £ € AL
such that II* > ' I-; ¢ : A and £ © M. We proceed by induction on the derivation II. The only not

immediate case is when I > I' Ik M : A. Then this judgement has been obtained by rule e-many
with premises (I' F¢ M : A;)ic1.n; by IH there are derivations proving I' ke ¢; : A;, where ¢t; C M.
Then, by definition, {t1,...,t,} C M, and the proof follows by rule i-many. The other cases come
directly from the definition of type decoration.

2. We generalize the statement to set-terms, ¢.e. if II > I' IF; '+ A and tis uniform then IT¢ > T e 28 : A
We proceed by induction on the derivation II. The only not immediate case is when II > I' I t: A
Let t = {t1,...,tn}, then ¢t = M implies, by definition of uniformity, ¢; = M. The judgement has
been obtained by rule i-many, with premises I' 5 ¢; : A;, so by IH, I" k¢ t5 : A; where t; T t$. By
Observation 2.21.1, ¢; C t§ and ¢t; C M imply t§ = M, so I' ¢ ¢ : A; and the result follows by applying
rule e-many. The other cases come directly from the definition of type erasure.
O
Corollary 2.25 Given a term M € A, the following are equivalent:
1. There exist I'; A such that T't¢ M : A holds.
2. There exists a term t € A} such that t = M.
Furthermore, —3 and —; simulate each other:
Theorem 2.26 (Simulation)

1. If M = N and t T M, there exists s € AL such that t —T sandsC N.
2. Ift =i s and t C M, there exist N € A and s’ € A} such that M —3 N and s —} s’ and s’ T N.
Graphically:

M N t > =4
B i i

L L [l [l

t =s M 7N

Proof.

1. We proceed by induction on M. The case M = x cannot happen, in case M = Azx. N the proof
follows by IH. Let M = P @, so t = u7, where v C P and 7 C Q. The case P —g P’ is easy, by
IH. Let Q —p @', and let 7 = {rq,...,m,}, where, by definition, r; C @, for all 1 < ¢ < n. By IH,
there are ! such that r; —7 7}, such that ! = Q". So {r},....,7,} C @ and s = u{r},...,r,}. Let
P = X\z. P sot = (Ax?.t)7, where ' C P', and let M —5 P'[z := Q]. By Observation 2.21.2,
t'[zd =7 C Pz := Q], and since t —F t/[z4 := 7], s = t'[z4 := 7).

2. We generalize the statement to set-terms, i.e. if £ —; § and ¢ C M, there exist N and § such that
M —3 N and § =7 § and § © N. The proof is by induction on terms. Let t={t1,...,tn,u}, and
§={t1,...,tn, v}, where v —; u’. By IH, there are N and u” such that M —3 N, «' =} «” and
u” C N. Note that t;, T M for all ¢ € 1..n. Now let ¢ € 1..n. By point 1, M —g N and t; T M imply
there is ¢, such that ¢; —% ¢, and ¢, C N; then it suffices to take § = {t/,...,#,,,4”}. The other cases
follow by TH, using Observation 2.21.2 in case t = (A\z?.#/) @, and s = /[z* := .

O

Some comments are in order. If V is a redex subterm of M, then a derivation tree for M in A may
contain more than one subderivation with subject N. Contracting N with usual S-reduction corresponds
to reducing in parallel all the occurrences of N in all the subderivations. In A}, this corresponds instead
to performing the reductions one at a time.

3-10 Strong normalization through idempotent intersection types

Example 2.27 Let M = (Ar.xx) ([1), A= B — B, and I = \x.z. Consider the derivation II:

r:{A—= A A Fexa: A I—eII:'A—>A Felf:A

_ e-man
Fodror (ASAA S ASET TR T {AS A A) Y
Fo M : A e

Then we have that TI* > b t = A, where t = (\ztA2AA z2) {(I1)A>A, (I11)A}. Note that:

1. t is a uniform term, and in particular t © M.

2.t =5t = A\etA2AAY g 2) (TA2A (T 1)A}, where ty is not a uniform term.

8. t—ityg=IDAZAI A wherets T TI(I1) and M —g TI1(I1).

4.ty =Tty = WtAPAA 1) (1474 TAY, where ty is a uniform term; in particular ty = (Az.xx)]

and M —5 (Ax.xx)l .

Lemma 2.28 (Head subject expansion) If I" k5 t[xg = §)51..8, : B and ' IF; §: ff, then T' k5
(\zA.1)58...5, : B.

Proof. By inductiononn. Let n =0,s0 T 3 t[:n“Y := §] : B. We continue by induction on ¢. The interest-
ing case is that of ¢ = yB, where B € A. Then I‘,:r“T ;i 2B : B, by rule (i-var), and T' F; ()\:U“T. +P)5: B
by rules (i-I—) and (i-E—). The remaining cases are straightforward, by IH and substitution defini-
tion. Let n > 0. Let ' F; t[a:"T = §]51...5, 4 : Band ' |5 §: A Then, by the rules of the system,
'k~ t[az"Y := §]§81...5, 4 : B comes from I' F; t[au“Y = §]51...8, : C—BandT I @ C_", for some C. By IH,
I'k; (A\z?.t)§5,...5, : C — B, and the result follows by rule (i-E—). O

Lemma 2.29 (Strong Normalization typability) Let M € A be strongly normalizing. Then there is
t € A} such thatt ” M and I' 5 t: A, for some I and A.

Proof. The proof relies on the following inductive definition of the strongly normalizing terms (SN).

MiESN 1< <n Mec SN
oM. M, e N oM o M e SN SN2
Mz :== N] M;..M, € SN N €SN
SN3

(Az. M) N M,...M, € SN

Let us consider rule (SN1). By induction there are ¢; such that t; — M; and I'; b5 ¢; : A;, so T 14 i : ff,
So, by Lemma 2.10, and rule (i-E—), ({J;j<;<, i) U : {A] - .. > A, > B} plAi=e = =By
B. Let us consider rule (SN3). Let M|z := N]M;...M,, and N € SN. By IH, 3t,s,I,T’, A, B such that
tC Mz := N|Mj..M,, sC Nand ' F; ¢t : B, TV F; s: A. Note that I F; s : A implies TV Ik §: A,
where § = {s} and A= {A}. THit: BandtC Mz := N|M;..M,, imply t = t't;...t,,, where t; C M;
and t' can be written as t”[:c’éY := §]. By Lemma 2.10, TUT" 5 t”[z"Y =& t).ty: Band TUT" Ik §: A,
and the result follows by Lemma 2.28. The case of rule (SN2) follows directly by TH. a

3 Strong normalization via a decreasing measure

In this section, we prove strong normalization of the A} calculus by providing an explicit decreasing
measure, adapting the ideas behind the ¥V measure of [2] to the setting of idempotent intersection type
systems. The W measure is based on the fact that contracting a redex in the simply typed A-calculus

Barenbaum, Ronchi Della Rocca, Sottile 3-11

cannot create a redex of higher or equal degree, where the degree of a redex is defined as the height of the
type of its abstraction. This observation was already known to Turing, as reported by Gandy [19].

This section is organized as follows. In Section 3.1, we enrich the syntax of A by defining an auxiliary
memory calculus A¥™ which incorporates wrappers (5), and we study some technical properties that are
needed later. In Section 3.2 we define an operation called full simplification for A*™ terms, which iteratively
contracts in parallel all redexes of maximum degree, showing that this yields the normal form of the term.
Finally, in Section 3.3 we show that A} is SN by defining a decreasing measure W, which works by fully
simplifying a term in A} and counting the number of remaining wrappers.

3.1 The memory calculus AL

Definition 3.1 (The A" calculus) The sets of terms (t,s,...) and set-terms (1,5,...) are given by the
following grammar:
toa=a? | At | (D) to={t;}ics

where J stands for a finite set of indices. We write L for a list of wrappers, defined by the grammar
La=0| L(f}, and tL for the term that results from extending t with all the wrappers in the list, i.e.
t(O(51) ... (8n)) = t{51) ... (8n). Typing judgements are of the forms I' it : A and T IFiy t: A, where
types and typing contexts are defined as before. The typing rules extend the A type assignment system of
Definition 2.4 with a typing rule im-wrap:

A T,z:Abint: B
§€A im-var T — = im-I—
Iz: AP : B Ihig M2d.t: A—> B
Fhint:A—B Tlhwms: A A+o . Dhint: A rhmg‘;éim_wra
F"imtgi e F"lmt<§>A P
(F Fin tj:Aj)jej (Vh,k‘GJh#k - Ah?éAk) .
im-many

Ulbsn {t}jes - {Aj}jes
The operation of capture-avoiding substitution t[:L"‘Y := §] is extended by declaring that (15(7?[))[%"‘Y =35 =

tlz? = §](11’[96“Y := 3]). Reduction in the AM-calculus, called im-reduction, is defined over terms and
set-terms by the following rule, closed by congruence under arbitrary contexts:

Az L E i tr = F(AL

Abstractions followed by lists of wrappers, i.e. terms of the form (Ax.t)L are called wrapped abstractions
or w-abstractions for short. A redex is an expression matching the left-hand side of the im rule, which

must be an applied w-abstraction. The height of a type A (resp. set-type /D is written h(A) (resp. h(ff))
and defined as follows:
h(a) :=0
h(A — B) := 1+ max{h(A),h(B)}
h({A1,...,An}) := max{h(41),...,h(An)}

We write type(t) for the type of t, which is uniquely defined for typable terms. The degree of a w-
abstraction is the height of its type. The degree of a redex is the degree of its w-abstraction. The max-
degree of a term t € AX is written dmax(t) and defined as the mazimum degree of the redexes in t, or 0
if t has no redexes. This notion is also defined for set-terms (Smax(t)) and lists of wrappers (Smax(L)) in a
similar way. The weight of a term t € AX is written w(t) and defined as the number of wrappers in t.

Example 3.2 In order to illustrate how the system works, and, especially, how wrappers are handled,
we show two possible reductions for a term involving self-application and reductions inside the argument.

3-12 Strong normalization through idempotent intersection types

We underline the contracted redex and highlight the new introduced memory at each step for clarity. Let
A=a—a; AY=A— A; 1% =\l g 14 = \o{A g A% = \oftA% g

(a8 AT I, 1A

(I I (IA T ({IAY TA, TAT))
| (AtAhAY A% gAY TAY A Ja(Tay)
(I I (IATO) (LAY TA, 19T })

(IA% TA)(LAL%) ({17 (IAY, Io(1%) }) ;
Qb4 A2 [IAT4), 1 (1) }

(LAY (T @) ({TA(TAY, T°(1%) }) .-

~—

(IATAY (1) ({TATA), 19(1%) })

1T (I T (I (AT, 1T)
Example 3.3 The following reductions show how erased subterms are memorized by wrappers.
1. Azt B (B 2MwB) = B (OatBr 2N wB) i BN (wB))
2. AW Ay B) 240B = OB 2N (EMw? s A wB) (24

Remark 3.4 Fach step t —; s in the Al -calculus (without wrappers) has a corresponding step t —iy s’
in the AR -calculus (with wrappers), contracting the same redex but creating one wrapper. For example, the
step (Ax.zxx)I —; 211 has a corresponding step (Ax.zxx) I —in (21 1){I). In particular an erasing

reduction step in A} is mapped a non-erasing one in AX. For example, ()\acg. zB)y’LY —; 2P, while
Az, 2B) yA =i 2B (yA).

The following properties hold for the A calculus. Subject expansion also holds for this calculus, but
it is not needed as part of the technical development. See Appendices A.2.1 and A.2.2 for detailed proofs.

Proposition 3.5 (Subject reduction) Ift =iyt and T tipt: A, then T by t/ 2 A.

Proposition 3.6 (Confluence) If t; —73, ta and t; —%, ts3, there exists a term ty such that to —7, t4
and t3 —>im ty.

3.2 Simplification by complete developments

We now introduce the operations of simplification and full simplification of a term. The simplification
computes the result of the complete development of the redexes of a given degree, i.e., reduces in parallel
all the redexes of that degree. The full simplification iteratively applies the simplification of a term,
starting with the maximum degree and decreasing down to degree 1. Both operations are well-defined by
recursion: simplification on the structure of terms, and full simplification on the maximum degree of the
term. Turing’s observation (redex contractions cannot create redexes of higher or equal degree) is a key
underlying property that ensures that full simplification works as intended, i.e., it computes the normal
form of a term. The subsequent lemmas show it.

Definition 3.7 (Simplification) For each integer d > 1 we define an operation written Sg(—), called
simplification of degree d, that can be applied on terms (S4(t)), set-terms (Sq(t)), and lists of wrappers

Barenbaum, Ronchi Della Rocca, Sottile 3-13

(S4(L)), mutually recursively as follows:

Sy(x?) = 24

S0 1) == Az sy(t)

t)S4(3) otherwise
S(13)) = Su(t) (S4(5))
Sa({t1,...,tn}) = {Sa(t1),...,Saltn)}
Sq(O(t1) ... (£,)) == O(Sq(f1)) . .. (Sa(tn))

If t € AF™ is a term and D = OSmax(t), the full simplification of t is written S.(t) and defined as
S*(t) = Sl(. . SD_l(SD(t)> .)
Lemma 3.8 (Soundness of simplification) Ift € A™ and d > 1 then t —%, Sq(t).

Proof. Straightforward by mutual induction on the term ¢, set-term ¢ and list of wrappers L, generalizing
the statement to set-terms and lists of wrappers, i.e. £ =%, Sq(f) and L —%, Sq(L). a
Lemma 3.9 (Creation of abstraction by substitution) Lett € AX® and §C A such that t is not a
w-abstraction but tlz? := 3 is a w-abstraction. Then t = xPL with B € A.

Proof. Let us write ¢ as of the form ¢ = 'L where t’ is not a wrapper. Note that ¢ is not an abstraction,
because by hypothesis ¢ is not a w-abstraction. Moreover, ¢’ cannot be an application, because if t’ = t; to
then tfz? == 3] = ¢[24 = JLA = &) = (t1[z¥ = §to[z? = §)(L[z" = 5]) would not be a w-
abstraction. The only remaining possibility is that ¢’ is a variable, so t’ = y®. If it is a variable other than
x, i.e. y # x, then t[x“Y =3 = t’[x“Y = :§](L[ac“Y =3]) = yB(L[at“Y := §]) would not be a w-abstraction. So

-

we necessarily have that y = 2P with B € A, which concludes the proof. O

Lemma 3.10 (Bound for the max-degree of a substitution) Let I' Ik, § : [f, where dmax(5) < d
and h(A) <d. If T,z : Abigt: B and Smax(t) < d then Smax(tlz? := 3]) < d.

Proof. We generalize the statement for set-terms, claiming that ', = : A IFip £ : B and 6max(f) < d imply

5max(ﬂaj’éY := §]) < d. The proof proceeds by simultaneous induction on the structure of the term ¢ or
set-term ¢. The interesting cases are when the term is a variable or an application. The remaining cases
are straightforward by resorting to the IH. If ¢ is a variable, t = y©, we consider two subcases, depending
on whether y = x or not.

1. If x = y, then C = B and since I',z : Abimz: B holds, we have that B € A. Hence there is a
term sg € & such that I' iy sg : B, and 28[24 := 5] = 5. In particular, by definition we have that
Omax(50) < dmax(S5), and by hypothesis we have that dmax(5) < d, so (5max(t[x‘4 =3]) = (5max(:L'B[acA =
5]) = Omax(s0) < d, as required.

2. If £ # y, then Smax(t[z? := 5]) = Imax(¥C[24 := 5]) = Imax(¥C) = max(t) < d.

If ¢ is an application, ¢ = u7, note that u is a subterm of ¢ S0 dmax(u) < dmax(t) < d, and similarly
Smax(7) < Omax(t) < d. Thus applying the IH on each subterm we have that dmax(u[z? := 5]) < d and that
Smax(F[z? := 5]) < d. We consider three subcases, depending on whether 1. u is a w-abstraction, 2. u is

not a w-abstraction and u[z? := 3] is a w-abstraction, or 3. u and u[z® := 3] are not w-abstractions:

1. If w is a w-abstraction: then u = ()\yé.u’)L is of type C — D. Let k be the degree of the w-

3-14 Strong normalization through idempotent intersection types

abstraction u, i.e. the height of its type, k = h(C — D). By definition, dmax(t) = Omax(u?) =
max{k, dmax (1), Omax(7)}. Since dmax(t) < d by hypothesis in particular we have that k < d. Moreover,

note that u[z? := 5] = (. u/[z? := 3))(L[z? := 3]), so u[z? := 5] is a w-abstraction, and it is of
degree k because substitution preserves the type of a term. Therefore:

Smax(t[z := 3]) = Smax(u[z? = 5] M = 3))
max{k, Smax(u[z? := 5]), Smax (Flz? := 5])} < d

The last step is justified because we have already noted that £ < d and cFrnax(u[x’LY :=5]) < d and
Smax(Flz? := 8]) < d.

2. If u is not a w-abstraction and u[z* := §] is a w-abstraction: then by Lemma 3.9 u must be of the
form 2°L with A € C. Let k be the degree of the w-abstraction u[z“ := 5]. Then k is the height of
the type of u[z? := 3], that is, k = h(C) < h(4) < d. To conclude, note that:

-

A

Smax(t[z = 5]) = Gmax(ufz? = 3] lef_f =))
= max{k, Omax(u[z? := 3]), Omax (Flz? := 3]} < d

The last step is justified because we have already noted that k£ < d and (5rnax(u[ac“T = 5]) < d and
Smax (Pl 1= 8]) < d.

3. If w and u[a:"T := §] are not a w-abstractions: then

Smax(t[z? i= 5]) = Smax(uz? = s-];mﬁ =3)
= max{dmax(u[z? := 5]), Omax(Flz? :=3))} < d

The last step is justified because we have already noted that Smax(u[z? := 3]) < d and 5max(ﬂx5 =
s)) < d.
O

Lemma 3.11 (Simplification does not create abstractions) Suppose that t € AN is not a w-
abstraction and Omax(t) < d and h(type(t)) > d. Then Sy(t) is not a w-abstraction.

Proof. We proceed by induction on ¢. The interesting case is when ¢ is a redex of degree d. We claim that
this case is impossible. Indeed, suppose that ¢t = ()\x s)Lu, where Az, s is of type A — B so that t is
of type B. The degree of the redex is d = h(A — B) and h(type(t)) = h(B) < d. However, by hypothesis,

h(type(t)) > d, from which we obtain a contradiction. The remaining cases are straightforward resorting
to the IH. 0O

Lemma 3.12 (Simplification decreases the max-degree) If d > 1 and dmax(t) < d then
Omax(Sa(t)) < d.

Proof. We proceed by simultaneous induction, generalizing the statement for set-terms (Smax(f) < d
implies dmax(Sq(f)) < d) and lists of wrappers (dmax(L) < d implies dmax(Sq(L)) < d). The interesting
cases are when t is a variable or an application. The remaining cases are straightforward by IH. If ¢ is
a variable, t = 24, then Smax(Sa(z4)) = Smax(z?) = 0 < d because d > 1 by hypothesis. If ¢ is an
application, t = s, we consider two cases, depending on whether s is a w-abstraction of degree d or not:

1. If s = ()\xg. s')L is a w-abstraction of degree d: then note that s’ is a subterm of ¢ which implies that
Omax(8") < O0max(t) < d, and this in turn implies by TH that dmax(S4(s’)) < d. Similarly, we can note

Barenbaum, Ronchi Della Rocca, Sottile 3-15

that dmax(L) < d so by IH dmax(S4(L)) < d, and that 6max() < d so by IH 5max(Sd(7)) < d. Since the
term is well-typed, the type of the w-abstraction s = (Az#. s')L is of the form A — B, while the type
of @ is A. Moreover, h(A — B) = d by hypothesis, so in particular h(A) < d. From this we obtain by

Lemma 3.10 that Smax(Sq(s')[z4 := Sq(@)]) < d. Finally, we have:

dmax(Sa(sw)) = 5maX(Sd<3/)[xA := S4(u)](Sq())Sa(L))
— 1< {Gman(8a(8") 27 = Sa(@)]), bma(Sa(@)), S (Sa(L))} < d

2. If s is not a w-abstraction of degree d: since s is a subterm of ¢ we have that dmax(s) < dmax(t) < d so
by TH dmax(Sa(s)) < d. Similarly, dmax(Z) < dmax(t) < d so by TH 0max(Sq(%)) < d. Let the type of s
be of the form A — B and let k := h(/f — B). We consider two cases, depending on whether k < d
ork>d.

If kK =h(A — B) < d: then by Lemma 3.8 we have s =, S4(s) and by Subject Reduction (3.5)

the type of S4(s) is also A — B. Hence:
5max(Sd(t)) = 5max(sd(5 ﬁ)) = (5max(sd<3) Sd(ﬁ)) = max{k, 5max() max()} <d

On the other hand, if k = h(ff — B) > d, we claim that s cannot be a w-abstraction. First, note
by hypothesis that s is not a w-abstraction of degree k = d. Second, s cannot be a w-abstraction of
degree k > d, as we would have that s 4 is a redex of degree k, s0 dmax(s %) > k. This would imply that

d < k < dmax(s @) < d, a contradiction. Since s is not a w-abstraction, its type is A= Bof height k£ >
d, and dmax(s) < d, by Lemma 3.11 we have that S4(s) is not a w-abstraction. Hence S4(s) S4(%) is not

a redex, and Omax(Sq(t)) = Omax(Sa(s@)) = dmax(Sq(s) Sq(@)) = max{dmax(Sq(s)), dmax(Saq(%))} < d.
O

Proposition 3.13 (Full simplification yields the normal form) Lett € AX™. Then t —%, S«(t) and
S«(t) is in —ip-normal form.

Proof. Let d be the max-degree of ¢ and define S<x(t) := Sg1(...Sq-1(S4(t))...) for each k such that
0 < k < d. Note that S-4(t) = t and Ss(t) = S«(t). To show that t =3, S.(t), note that S<x(t) =i,
Sk(S=x(t)) = Ssg—1(t) for each 1 < k < d by Lemma 3.8, so:

t= S>d(t) _>§m S>d—l(t) _>1m . _>1m S>k(t) _>§m ce _>>:i(im S>0(t) = S*(t)

To show that S.(t) is a —ip-normal form, we claim that for each 0 < k < d we have that omax(S>x(t)) < k.
We proceed by induction on d — k. If d — k = 0, we have that k = d, $0 dmax(S>4d(t)) = dmax(t) = d,
since d is the max-degree of t. If d — k > 0, we have that 0 < k < d. By IH, dmax(Ssk+1(2)) < k+ 1.
Then dmax(S>x(t)) = Omax(Sk+1(Ssk+1(t))) < k+ 1 by Lemma 3.12. This means that dmax(Ssx(t)) < k, as
required. a

3.3 The decreasing measure

The W-measure for A} is defined in two steps: computing the normal form in AX, and counting the
number of wrappers in it. The first step was taken care of in the previous sectlon The second one is
simple, it just requires to analyze the resulting term of the full simplification.

The core of this section is proving that the measure decreases, i.e., t —; s implies W(t) > W(s). The
proof is carried out by observing how —; and —;, differ, and how wrappers in A are handled. Confluence
holds in A, so terms share normal form, and therefore full simplification, with all their reducts. The
intuition behind the proof is that, if we have ¢ —; s, then the corresponding step ¢t —i, s’ is responsible
for the presence of at least one wrapper in S, (t) that is absent from S,(s).

3-16 Strong normalization through idempotent intersection types

Definition 3.14 (Forgetful reduction) We define a binary relation t > s between typable terms as the
closure by congruence under arbitrary contexts of the axiom t(8) > t.

Remark 3.15 Ift is in —ig-normal form and t > s then s is also in —iy-normal form.

Remark 3.16 Iftr> s then w(t) > w(s).

Lemma 3.17 (Reduce/forget lemma) Lett —; s be a step in the A} -calculus (without wrappers) and
consider its corresponding step t —in s'. Then s’ > s.

Proof. Straightforward by induction on ¢. O

Lemma 3.18 (Forgetful reduction commutes with reduction) Ift; —%, to and t;1>"t3 there exists
ty such that to >7 ty and t3 —%, ty.

Proof. It suffices to prove a local commutation result, namely that if ¢ —i, to and 1 > t3 there exists t4
such that to > t4 and t3 —1, t4. Graphically:

t1 —in t2
v vt
t3 _>§n ty

We proceed by induction on ¢;.

1. t; =z this case is impossible, since = does not reduce.

2. t; = Az #): then tp = Az ¢, and t3 = Aad. £}, with #| —in £} and] > ¢;. By IH there exists t} s.t.
th —in th and th >T). By congruence, the following holds

At =i Axdl
v vt

Ay = Ay
Axtty = Axtty

3. t1 = t11 15_12. We consider two subcases here, depending on ¢;; being a w-abstraction and on which
redex is contracted. _
3.1 t; = ()\xA. t11)Lt12 and the contracted redex is at head position. Then

- -
—

Az t11)Lt1e —in tin[z? = t12){f12)L
\Y
(>\$A-t/11)L/ 7?12

where since there is a single t>-step, only one of ¢}, L', or t_’12, can be different from ¢1, L, or 12,
respectively. If the I>-step occurs in £1; or L, then the same step can be reproduced from t5. Else,
considering 1o can appear more than once in ty, the >-step may have to be reproduced several
times, hence the >". Then we have that

-
—

()\{L‘A. t11)L FlQ —7im tll[l'A = 512} (t12)L
v vt
(Az A,)L Ty —in tln[wg = ol (f)L

3.2 t1; is not a w-abstraction or the contracted redex is not the one at head position. We consider
two subcases.

Barenbaum, Ronchi Della Rocca, Sottile 3-17

3.2.1 Both steps occur in the same subterm. It suffices to resort to the IH:

titiz —vim thit12 titiy —im tiitly
v vt v vt
iy =5 Hihe tutly =5 tuf
3.2.2 The steps occur in different subterms. Then the diagram can be closed immediately:
t11t12 —>in t’llt_iz t11t12 —>in tllﬂg
Y Y% Y% Y%
tuthy = it itz = it

4. t = tll(ﬂg). We consider three general subcases:
4.1 Both steps occur in the same subterm. It suffices to resort to the IH:

ti1(ti2) —im thy(f12) t11(ti2) —in t11(fs)
v vt v vt
t (fi2) =5 1 (h2) ti(fla) —5m ti(fh)
4.2 The steps occur in different subterms. Then the diagram can be closed immediately:
t11<{12> —im t11<{12> tn(fm) —im t11(75_’12>
\Y \Y \Y \Y
t11(f) —am 111(T1a) thi(t2) —m 111(01a)
4.3 The r>-step occur at the root. We perform the —;, step, or not.
t11(tiz) —in t19(t12) t11{t12) —rin t11(fhe)
\Y \Y \Y Y
tin —im th t11 = t11
5. t1 = {s1,...,sn}. We consider two subcases.

5.1 Both steps occur in the same subterm. It suffices to resort to the IH:

{s1,...,8iy...,Sn} —in {S1,...,8,...,5n}
v VA
{s1,...,s!, ... sn} =0 {s1,--,8), ... sn}

5.2 The steps occur in different subterms. Then the diagram can be closed immediately. Indeed, let
1,7 € l.n:

{s1,.--,Sis- s SjyeaySnt —im {S15--01 85,00, 85, ..., Sn}
\Y \Y%

{8150 80,880t —im {81,580 585, Sn)

Lemma 3.19 (Properties of the full simplification)
1. If t —in s then Su(t) = Si(s). 2. Ift > s then S.(t) >T S.(s).

Proof. We prove each item separately. First, suppose that ¢t —i, s. By the fact that full simplification
yields the normal form of a term (Proposition 3.13), we know that ¢ =%, S.(¢) and s =, S«(s), where both
S«(t) and S.(s) are in —jp-normal form. By Confluence (Proposition 3.6) we conclude that S.(t) = S.(s).

Second, suppose that ¢t>s. By the fact that full simplification yields the normal form of a term (Propo-
sition 3.13), we know that ¢ —3, S.(¢), where S.(¢) is in —jp-normal form. Since forgetful reduction
commutes with reduction (Lemma 3.18), we have that there exists a term u € AX such that s =%, u and
S«(t) >T u. By Remark 3.15, since S.(t) is in —jp-normal form, u is also in —jz-normal form. Moreover,

3-18 Strong normalization through idempotent intersection types

s —7n S«(s) where S.(s) is in —ip-normal form by Proposition 3.13. So by Confluence (Proposition 3.6)
we have that S.(s) = u. Then we have that S.(t) >1 u = S,(s), as required. O

Definition 3.20 (The W-measure) The measure of a term t € A} is defined as the weight of its full
simplification, where we recall that the weight is the number of wrappers in a term:

W(t) = w(Ss (1))

Theorem 3.21 (The W-measure is decreasing) Let t,s € AL be typable terms of the A} -calculus
(without wrappers). If t —; s then W(t) > W(s).

Proof. Let t —; s and consider the corresponding step ¢ —i, §’. By the reduce/forget lemma (3.17)
we have that s’ > s. By Lemma 3.19 (1) we have that S.(¢) = S.(s’). By Lemma 3.19 (2) we have that
S«(s") >T S.(s). Hence S.(t) >* S.(s). By Remark 3.16 we conclude that W(t) = w(S.(t)) > w(S«(s)) =
W(s). O

Corollary 3.22 A} is strongly normalizing.

4 Conclusion

In this section we provide a proof of the fact that Af characterizes strong normalization, based on the
correspondence between it and AY. This proof justifies the design of Ag, showing that it is a variant of
the original system in [12], w.r.t. the typability power. Note that we make use of A% to prove the second
item for uniformity purposes; it can also be proved entirely within Af.

Corollary 4.1 A% characterizes strong normalization.

Proof.

e Let M € A be a A-term typable in the A system, i.e. such that I' ¢ M : A. By the Correspondence
Theorem (2.24.1), there is a term t € A} typable in the A} system such that I' -5 ¢ : A and ¢t C M.
By Corollary 3.22, ¢ is strongly normalizing. From the Simulation Theorem (2.26), we can observe that

an infinite reduction sequence M —3 M; —3 Ms —4g ... would induce an infinite reduction sequence
t =7 t1 =7 t2 =7 ..., and this would contradict strong normalization of AL. Hence M is strongly
normalizing.

e Let M € A be strongly normalizing. By Lemma 2.29, there is t € A} such that t T M and T' b ¢ : A,
for some I' and A. Then t is uniform, and, by Theorem 2.24.2, I' I-; ¢ : A implies I' I t® : A. Since
t® = M, the proof is given.

O

As we said in Section 1, this is not a completely new result. The novelty of our work comes from the
technique we propose and the simplicity of its output. The strong normalization property for idempotent
intersection type systems has already been proved in various papers using both semantical and syntactical
approaches, and the fact that Af is a variant of them can be considered folklore. The semantical approach
relies on arguments like computability or reducibility candidates (e.g. [29,5]), while the syntactical ones are
based on a measure that decreases with the S-reduction; as far as we know, there are three other syntactical
proofs [22,9,11]. Here we supply a further syntactical proof, which uses as key ingredient a Church version of
idempotent intersection types that has good proof-theoretical properties. The notion of measure obtained
is simpler than [22,9], being a natural number, and operates directly within the intersection system,
allowing for refinement where measures based on the translation in [11] are constrained.

In the future, we would like to explore the possibility of providing an exact decreasing measure, i.e. a
measure whose result is an exact upper bound for the length of the longest reduction chain starting from
the term. While this refinement can be easily done for simple types, through a modification of the method
in [2], the extension to intersection types presents challenges. In this case, the number of reduction steps

Barenbaum, Ronchi Della Rocca, Sottile 3-19

in the derivation tree in general is bigger than the number of S-reductions in the term, so it would be
necessary to change the operational behaviour of A

Moreover, it would be interesting to study if the techniques given in this paper can be adapted to
intersection type systems that characterize solvable terms, such as that of [14], for which no syntactic
proofs of normalization have been proposed, as far as we know.

References

[1] Barbanera, F., M. Dezani-Ciancaglini, U. de’Liguoro and B. Venneri, YACC: yet another church calculus - A birthday
present for herman inspired by his supervisor activity, in: V. Capretta, R. Krebbers and F. Wiedijk, editors, Logics and
Type Systems in Theory and Practice - FEssays Dedicated to Herman Geuvers on The Occasion of His 60th Birthday,
volume 14560 of Lecture Notes in Computer Science, pages 17-35, Springer (2024).
https://doi.org/10.1007/978-3-031-61716-4_2

[2] Barenbaum, P. and C. Sottile, Two decreasing measures for simply typed A-terms, in: M. Gaboardi and F. van Raamsdonk,
editors, 8th International Conference on Formal Structures for Computation and Deduction, FSCD 2023, July 3-6, 2023,
Rome, Italy, volume 260 of LIPIcs, pages 11:1-11:19, Schloss Dagstuhl - Leibniz-Zentrum fiir Informatik (2023).
https://doi.org/10.4230/LIPICS.FSCD.2023.11

[3] Barendregt, H., M. Coppo and M. Dezani-Ciancaglini, A filter lambda model and the completeness of type assignment, J.
Symb. Log. 48, pages 931-940 (1983).
https://doi.org/10.2307/2273659

[4] Barendregt, H. P., The Lambda Calculus: Its Syntazx and Semantics, volume 103 of Studies in Logic and the Foundations
of Mathematics, North-Holland, Amsterdam (1984).
https://doi.org/10.1016/c2009-0-14341-6

[5] Barendregt, H. P., W. Dekkers and R. Statman, Lambda Calculus with Types, Lambda Calculus with Types, Cambridge
University Press (2013), ISBN 9780521766142.
https://doi.org/10.1017/CB09781139032636

[6] Barendregt, H. P. and G. Manzonetto, Turing’s contributions to lambda calculus, in: B. Cooper and J. van Leeuwen,
editors, Alan Turing - His Work and Impact, pages 139-143, Elsevier (2013).
https://doi.org/10.1016/C2010-0-66380-2

[7] Bernadet, A. and S. Lengrand, Complexity of strongly normalising lambda-terms via non-idempotent intersection types,
in: FOSSACS 2011, pages 83-107 (2011).
https://doi.org/10.1007/978-3-642-19805-2_7

[8] Bono, V., B. Venneri and L. Bettini, A typed lambda calculus with intersection types, Theoretical Computer Science 398,
pages 95-113 (2008).
https://doi.org/10.1016/3.tcs.2008.01.046

[9] Boudol, G., On strong normalization in the intersection type discipline, in: M. Hofmann, editor, Typed Lambda Calculi
and Applications, 6th International Conference, TLCA 2003, Valencia, Spain, June 10-12, 2003, Proceedings, volume
2701 of Lecture Notes in Computer Science, pages 60-74, Springer (2003).
https://doi.org/10.1007/3-540-44904-3_5

[10] Bucciarelli, A., D. Kesner and D. Ventura, Strong normalization through intersection types and memory, in: M. R. F.
Benevides and R. Thiemann, editors, Proceedings of the Tenth Workshop on Logical and Semantic Frameworks, with
Applications, LSFA 2015, Natal, Brazil, August 31 - September 1, 2015, volume 323 of FElectronic Notes in Theoretical
Computer Science, pages 75-91, Elsevier (2015).
https://doi.org/10.1016/J.ENTCS.2016.06.006

[11] Bucciarelli, A., A. Piperno and 1. Salvo, Intersection types and lambda-definability, Math. Struct. Comput. Sci. 13, pages
15-53 (2003).
https://doi.org/10.1017/50960129502003833

[12] Coppo, M. and M. Dezani-Ciancaglini, An extension of the basic functionality theory for the A-calculus, Notre Dame J.
Formal Log. 21, pages 685-693 (1980).
https://doi.org/10.1305/NDJFL/1093883253

[13] Coppo, M., M. Dezani-Ciancaglini and P. Sallé, Functional characterization of some semantic equalities inside lambda-
calculus, in: H. A. Maurer, editor, Automata, Languages and Programming, 6th Colloquium, Graz, Austria, July 16-20,
1979, Proceedings, volume 71 of Lecture Notes in Computer Science, pages 133-146, Springer (1979).
https://doi.org/10.1007/3-540-09510-1_11

https://doi.org/10.1007/978-3-031-61716-4_2
https://doi.org/10.4230/LIPICS.FSCD.2023.11
https://doi.org/10.2307/2273659
https://doi.org/10.1016/c2009-0-14341-6
https://doi.org/10.1017/CBO9781139032636
https://doi.org/10.1016/C2010-0-66380-2
https://doi.org/10.1007/978-3-642-19805-2_7
https://doi.org/10.1016/j.tcs.2008.01.046
https://doi.org/10.1007/3-540-44904-3_5
https://doi.org/10.1016/J.ENTCS.2016.06.006
https://doi.org/10.1017/S0960129502003833
https://doi.org/10.1305/NDJFL/1093883253
https://doi.org/10.1007/3-540-09510-1_11

3-20 Strong normalization through idempotent intersection types

[14] Coppo, M., M. Dezani-Ciancaglini and B. Venneri, Functional characters of solvable terms, Math. Log. Q. 27, pages
45-58 (1981).
https://doi.org/10.1002/MALQ. 19810270205

[15] de Carvalho, D., Ezecution time of A-terms via denotational semantics and intersection types, Math. Struct. Comput.
Sci. 28, pages 1169-1203 (2018).
https://doi.org/10.1017/50960129516000396

[16] de Groote, P., The conservation theorem revisited, in: M. Bezem and J. F. Groote, editors, Typed Lambda Calculi and
Applications, International Conference on Typed Lambda Calculi and Applications, TLCA ’93, Utrecht, The Netherlands,
March 16-18, 1993, Proceedings, volume 664 of Lecture Notes in Computer Science, pages 163-178, Springer (1993).
https://doi.org/10.1007/BFb0037105

[17] de Vrijer, R., Ezactly estimating functionals and strong normalization, in: Indagationes Mathematicae (Proceedings),
volume 90, pages 479-493, North-Holland (1987).
https://doi.org/10.1016/1385-7258(87)90012-6

[18] Gandy, R. O., An early proof of normalization by A.M. Turing, in: J. Seldin and J. Hindley, editors, To H.B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, pages 453-455, Academic Press (1980).

[19] Gandy, R. O., Proofs of strong normalization, in: J. Seldin and J. Hindley, editors, To H.B. Curry: Essays on Combinatory
Logic, Lambda Calculus and Formalism, pages 457-477, Academic Press (1980).

[20] Gardner, P., Discovering needed reductions using type theory, in: M. Hagiya and J. C. Mitchell, editors, Theoretical Aspects
of Computer Software, International Conference TACS 94, Sendai, Japan, April 19-22, 1994, Proceedings, volume 789
of Lecture Notes in Computer Science, pages 555-574, Springer (1994).
https://doi.org/10.1007/3-540-57887-0_115

[21] Kfoury, A. J., A linearization of the lambda-calculus and consequences, J. Log. Comput. 10, pages 411-436 (2000).
https://doi.org/10.1093/L0OGCOM/10.3.411

[22] Kfoury, A. J. and J. B. Wells, New notions of reduction and non-semantic proofs of beta-strong normalization in typed
lambda-calculi, in: Proceedings, 10th Annual IEEE Symposium on Logic in Computer Science, San Diego, California,
USA, June 26-29, 1995, pages 311-321, IEEE Computer Society (1995).
https://doi.org/10.1109/LICS.1995.523266

[23] Klop, J. W., Combinatory Reduction Systems, Ph.D. thesis, Utrecht University (1980).
https://eprints.illc.uva.nl/id/eprint/1876/

[24] Krivine, J., Lambda-calculus, types and models, Ellis Horwood series in computers and their applications, Masson (1993),
ISBN 978-0-13-062407-9.

[25] Liquori, L. and S. Ronchi Della Rocca, Intersection-types a la church, Inf. Comput. 205, pages 1371-1386 (2007).
https://doi.org/10.1016/J.1C.2007.03.005

[26] Nederpelt, R. P., Strong normalization in a typed lambda calculus with lambda structured types, Phd thesis, TU Eindhoven
(1973).
https://doi.org/10.6100/IR145802

[27] Neergaard, P. M. and M. H. Sgrensen, Conservation and uniform normalization in lambda calculi with erasing reductions,
Inf. Comput. 178, pages 149-179 (2002).
https://doi.org/10.1006/inco.2002.3153

[28] Paolini, L., M. Piccolo and S. Ronchi Della Rocca, Essential and relational models, Math. Struct. Comput. Sci. 27, pages
626-650 (2017).
https://doi.org/10.1017/50960129515000316

[29] Pottinger, G., A type assignment for the strong normalizable lambda-terms., in: J. Hindley and J. Seldin, editors, To H.B.
Curry: Essays on combinatory logic, lambda calculus and formalisms, pages 561-577, Academic Press (1980).
https://doi.org/10.1109/LICS.1995.523266

[30] Ronchi Della Rocca, S. and L. Paolini, The Parametric Lambda Calculus - A Metamodel for Computation, Texts in
Theoretical Computer Science. An EATCS Series, Springer (2004), ISBN 978-3-642-05746-5.
https://doi.org/10.1007/978-3-662-10394-4

[31] van Bakel, S., Complete restrictions of the intersection type discipline, Theor. Comput. Sci. 102, pages 135-163 (1992).
https://doi.org/10.1016/0304-3975(92)90297-S

https://doi.org/10.1002/MALQ.19810270205
https://doi.org/10.1017/S0960129516000396
https://doi.org/10.1007/BFb0037105
https://doi.org/10.1016/1385-7258(87)90012-6
https://doi.org/10.1007/3-540-57887-0_115
https://doi.org/10.1093/LOGCOM/10.3.411
https://doi.org/10.1109/LICS.1995.523266
https://eprints.illc.uva.nl/id/eprint/1876/
https://doi.org/10.1016/J.IC.2007.03.005
https://doi.org/10.6100/IR145802
https://doi.org/10.1006/inco.2002.3153
https://doi.org/10.1017/S0960129515000316
https://doi.org/10.1109/LICS.1995.523266
https://doi.org/10.1007/978-3-662-10394-4
https://doi.org/10.1016/0304-3975(92)90297-S

Barenbaum, Ronchi Della Rocca, Sottile 3-21

A Technical appendix
A.1 Proofs of Section 2 — An intrinsically typed presentation of idempotent intersection types
In this section we give detailed proofs of the results about the Al-calculus stated in Section 2.

A.1.1 Subject reduction
Proposition A.1 (Subject reduction) Ift —;t' and Ty t: A then T ;¢ A.

Proof. We generalize the statement, proving also that if f—;Pand Tk ¢ A then T Ik 7 A. The
proof proceeds by induction on the definition of —;.

1. If t is a redex, i.e, t = ()\l’é. s) i, then the derivation proving I' -5 ¢ : A is:
Iax: Blis: A

Fl—i/\xg.szg—)A Fli—iﬁ:é
Tk (B s)id: A

By Substitution Lemma 2.16, I, = : Blis:A implies I' F; s[:né =) : A.
Otherwise, it can be t = A\z.s, where s —; s, or t = s, where either s —; s’ or @ —; @'; in all
these cases the proof follows by IH.
2. t —; ¥ means t = {t1,..,t,}, and = {t,,...,t,}, and there is i such that t; —; t}, and t = t;, for
j # 1. Then the proof follows by ITH.
O

A.1.2 Confluence
Confluence will be proved by the methodology of parallel reduction.

Definition A.2 1. The parallel reduction =; is defined on terms and set-terms by the following rules,
closed under contexts.

.’I}A =i Z’A
AxAt =; At if t=5t
ts E gl t's if t =3 t' and §:>i

s
(Amg. t)s = t’[ac“Y =48] if t=3t and s=;§
{t1, . ot} =5 {th,.. L} if ;= /(1 <i<n)
Note that =; is non-deterministic, since, when the term is a —; redex, either the third or the

fourth rule can be applied. Roughly speaking, =3 corresponds to reduce simultaneously a subset of the
visible redexes by the —; reduction.

2. The complete development of a term t, is the following function, which denotes the result of the
simultaneous reduction of all visible redexes in a term.

C(z?) == g4
chxA.t) :== Az?.c(t)
c((Azh.) §) == c(t)]a" := ¢(3)]
C(t3) := C(t)C(8) ift is not an abstraction
C({t1,...,tn}) := {C(t1),...,C(tn)}

The =-; reduction enjoys the following properties, whose proof is easy.

3-22 Strong normalization through idempotent intersection types

Proposition A.3 1. t —; t' implies t =5 t'.
2. t =3 t' implies t =5 t'.
3. —71 is the transitive closure of =;.
Lemma A.4 (Substitution) Lett =-; t' and §=; §. Then t[x"Y =35 =i 75’[:1:"Y =4
Proof. By induction on t. a
Lemma A.5 t =; t' implies t' =; C(t).

Proof. By induction on ¢. Let t = (/\x“f.u)é". So t' is either ()\xg.u/)y or u’[gc“Y := §'], where § =; § and

u =3 u'. By IH, v/ =; C(u) and § =; C(5). In both cases, t' —; C(u)[a;“Y := C(8)] = C(¢), in the former
case by IH, in the latter by IH and Lemma A.4. The other cases come directly from IH.]

The =-; reduction enjoys the diamond property, i.e.,
Lemma A.6 Ift=-;t; andt =; to, then there is t3 such that t1 =3 t3 and to = t3.
Proof. By Lemma A.5, t3 = C(t). O
Proposition A.7 (Confluence) Ift =% s and t =% u then there is r such that s =% r and u —7 r.

Proof. By Proposition A.3.3 and Lemma A.6. a

A.2 Proofs of Section 8 — Strong normalization via a decreasing measure

In this section we give detailed proofs of the results about the AX-calculus stated in Section 3.

A.2.1 Subject reduction
Lemma A.8 (Substitution) Let ', x : Abimt:B and T lksp 5: A. Then T g tlzA := 3] : B.
Proof. By induction on t, generalizing the statement to set-terms. We consider only the wrapper case,

since the remaining cases are exactly like those in Lemma 2.16. Lett = t1 (t}) Then T, x : A l—m t1 (t_é) B
concludes with im-wrap, so by inversion we have that I',x : Abtimti:Band D,z : A Il—lm . C. By IH,

[bin tifz? := 5] : B and T IFiy ta[z? = 5] : C By 1m—wrap it follows that T Fig ti[zd = &(ta[z? =
s]) : B. By deﬁmtzon of substitution (t{t2))[z4 := 5] = t1[z? := 5{ta[z? := 3]), hence we conclude that
T Fin (t1(82))[z? := 3] : B. 0

Proposition A.9 (Subject reduction) Ift =iyt and T ki t: A, then T by t' 2 A.

Proof. Simultaneously by induction on the reduction relation —iy.

—

1. In the case t = ()\xé. S)LU —ip s[mg := @]{u)L = t' we have that ¢ must be typed with the following
derivation scheme, where n is the amount of wrappers in L:

F,x:ékims:C)
= — im-T—
I'Fin \2P.s: B—C 1I;

im-wrap

n

im-wrap

Dhiy AP sL: B = C Tl @
T Fi (A5 s)Li: C

1

Hence from Lemma A.8, since I', x : Btins:Cand T bip @ : B we obtain T’ }—lm sz B ._ u) : C.
Then from the corresponding n + 1 applications of the im-wrap we obtain I' F;, s[x B.—

Barenbaum, Ronchi Della Rocca, Sottile 3-23

.Ift:)\xﬂs—nm)\x#s—t’withs—)lms then A = B’%Candfl—m)\xﬂ :B = C. By
inversion of im-I— it follows that F z: B Fin s: C. Then by IH we have that I', x : B Fin 8" : C, and
by im-I— we conclude I iy \eB s B = C.
Ift =sU —ip 8’4 =t with s =3, §', then we have that ' b3, s : A and, by inversion of im-E—, it
follows that I' iy s : B — A and I' Iki, @ : B. Then by IH we have that I' i s’ : B — A, and by
im-E— we conclude I' i, s’ : A.
It =sU —ip st =t with 4@ —3, @', then we have that I' 3, s@ : A and, by inversion of im-E—, it
follows that I' iy s: B — A and I' ki, @ : B. Then by IH we have that I Ik, @’ : B, and by im-E—
we conclude I' i s @ : A.
LI E = {t1,. .ty ytn} —im {1, th o tn) = t with i € 1.n, n > 1 and t; —>in t!, then we
have that T' ks {t1, ... ti ... tn}: {A1, ..., 4;, ... Ay }. By inversion of rule im-many, it follows that
I'bigty c Ar,.o0 T i 6 0 Ay, T Fig ty 0 Ay Then by IH we have that T' by ¢ @ A;, and by
im-many we conclude T Iy {t1,. .., t;, oty i {AL LA AT
It = s{U) —in §'(@) = ¢ with s =, 8/, then we have that T' b, s(@) : A and, by inversion of
im-wrap, it follows that I' iy s : A and T' IFy, @ : B. Then by IH we have that T' i, s’ : A, and by
im-wrap we conclude T 3, s'(@) : A.
It = s(u) —in s(@') = ¢ with @ —i, @, then we have that T' by, s(@) : A and, by inversion of
im-wrap, it follows that I' ki s : A and T Il—lm @ : B. Then by IH we have that I ki, @ : B, and by
im-wrap we conclude T 3, s(@’) : A.

O

A.2.2 Confluence

We extend the proof of Proposition 2.19 by adding the cases involving wrappers and modifying those
involving i—redexes by im—redexes (i.e. allowing a list of wrappers L between the w-abstraction and the
argument).

Definition A.10
1. The parallel reduction =iy s extended by modifying the B case to allow lists of wrappers, and by

adding the congruence cases of wrappers and lists of wrappers:
O\A L = Vet = I if t it s =in & and L =L’
t<§’> —im t/<§y> lf t =in t' and §:>im 5
O(t1) ... {tn) =in D) ... (&)Y if i=inl, foral i€l.n

2. The complete development of a term t is extended by modifying the 5 case to allow lists of wrappers,

and by adding the congruence cases of wrappers and lists of wrappers

c((Aa . 1)Ls) == c(t)[2 := c((C(F))C(L)
C(t(3)) =
C(O(f1) ... (fa)) = O(C(t1)), ..., (C(t))

As well as =; reduction, =3, reduction enjoys the following properties:

Proposition A.11 (Properties of =i,)

1.t —ipt

t' implies t =i t'.

2. t =ip t' implies t =5, t'.

3. —%n s the transitive closure of = ip.

3-24 Strong normalization through idempotent intersection types

Lemma A.12 (Substitution) t[y? = 3|[z? = @] = t[z5 := @][y? := 528 := @] if y & fv(20)
Proof. By induction on t¢. o

Lemma A.13 (Compatibility of substitution and parallel reduction) Let t =i, t' and § =i, .
Then tlz? = 5] =i, t'[z? = .

Proof. By induction on ¢, where the interesting case is that of ¢t = ()\y’LY .u)L7. Then t' depends on whether
the head im—redex is contracted or not. In both cases it holds that w =ip v/, ¥ =>in 7, and L =4, L.

1. If ¢/ = ()\yé .u)L/, then, by definition of substitution and TH, we have that

(P wld)fa? =3 = (WP ufs? = L = §]F[:v = 5]
=i (W0 /o= F))L o o S = 5
= (WP F’)W‘ = 5"]
2. Ift' =u 7L/, then, by definition of substitution, IH, and Lemma A.12, we have that
(B ulAe? =5 = (WBufe? =)L’ = At = 3
=i 0/[0) = FyP = Pad = FNF T = FPU e = 7]
= W[yB =T = 7] wuﬁ — PU[zE = 7
= (WP =PIt = 8
O
Lemma A.14 (Composition lemma for wrappers) Ift =i, t' and L =i, L', then tL =, t'L’.
Proof. Let L = O(#1) ... (t,). We proceed by induction on n.
1. If n =0, then tLtd =t =4, t' =¢'0 = t'L.
2. If n =k + 1, then by IH we have that t0(t1) ... (tx) =in t'O(t]) ... (t}), hence
tLo= t(t1) ... (tr) (trgr)
= t{t1) - (k) (Ergr)
=im £(11) - () (o)
= 1Ot - () (teyr)
=
O

Lemma A.15 ¢ =i, t' implies t’ =i, C(t).

Proof. By induction on ¢. The interesting case is that of ¢t = ()\a:g w)LS. Then ¢’ depends on whether the
head im-redex is contracted or not. In both cases it holds that © =ip ¢/, §=in 5, and L =4, L.

1. Ift' = ()\xg.u’)L’E’, then by IH we have that

()\ZL‘A‘.U)LE’ =in ()\x‘g.u’)L/E"
= in (Axﬁ.cgu))c@)c(g*)

—im C(u)fz? := C(5)](C(5))C(L)
= c((\aw)Ls)

Barenbaum, Ronchi Della Rocca, Sottile 3-25

-

2. If t/ = u/[z? := §)(5')L/, then by IH and Lemma A.13 we have that

—

(AzAu)LE =i o[22 = (&L
=in C(u)fz := C(5)(C(5))C(L)
= c((zfu)Ls)

The remaining cases come directly from ITH. a
The =i, reduction enjoys the diamond property, i.e.,

Lemma A.16 Ift =i, t1 and t =iy to, then there is t3 such that t1 =ip t3 and to =iy 3.

Proof. By Lemma A.15, t3 = C(). O

Proposition A.17 (Confluence) If t; —%, to and t1 —1, t3, there exists a term ty such that to =7, t4
and t3 —)fm ty.

Proof. By Lemmas A.11.3 and A.16. a

	Introduction
	Contributions
	Comparison with related works

	An intrinsically typed presentation of idempotent intersection types
	Extrinsically typed system
	Intrinsically typed system
	Correspondence between Curry and Church-style systems

	Strong normalization via a decreasing measure
	The memory calculus im
	Simplification by complete developments
	The decreasing measure

	Conclusion
	References
	Technical appendix
	Proofs of Section 2 — An intrinsically typed presentation of idempotent intersection types
	Proofs of Section 3 — Strong normalization via a decreasing measure

