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Abstract

We introduce dicodensity monads: a generalisation of pointwise codensity monads generated by functors to monads generated
by mixed-variant bifunctors. Our construction is based on the notion of strong dinaturality (also known as Barr dinaturality),
and is inspired by denotational models of certain types in polymorphic lambda calculi — in particular, a form of continuation
monads with universally quantified variables, such as the Church encoding of the list monad in System F. Extending some
previous results on Cayley-style representations, we provide a set of sufficient conditions to establish an isomorphism between
a monad and the dicodensity monad for a given bifunctor. Then, we focus on the class of monads obtained by instantiating
our construction with hom-functors and, more generally, bifunctors given by objects of homomorphisms (that is, internalised
hom-sets between Eilenberg-Moore algebras). This gives us, for example, novel presentations of monads generated by different
kinds of semirings and other theories used to model ordered nondeterministic computations.
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1 Introduction

Consider the continuation monad for some fixed answer O, given at A as:
(A= 0)—0 (1)

This can be read as a type in a type theory (in which case both A and O are types) or categorically, as an
object in a category 7, where it denotes the .«7[A, O]-fold product of O (a power). Continuation monads
occupy a special place in the space of all monads, which can be seen through their possible generalisations
in different settings.
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One such generalisation, on the categorical side, is the codensity monad [7] on a category <7 induced by
a functor G : 2 — 7, which we denote T¢. We discuss this monad in general in Section 4, but to see its
connection with the continuation monad, it suffices to say that if &/ = Set, then T¢A is given by the set
of transformations natural in X of the following type:

(GX)* = GX (2)

Broadly speaking, the codensity monad T¢ approximates the monad GF generated by a pair of adjoint
functors, even if G’s left adjoint F' does not exist (see [1,2,10,20] for examples). Moreover, if G does have a
left adjoint F, the monad ¢ is isomorphic to GF. Thus, codensity monads give alternative presentations
of monads, which is used, for example, in functional programming to boost performance of monadic
computations [5,23,24].

On the side of type theory, say in System F, one can always give a monadic structure (with laws satisfied
up to Bn-equivalence) to the following family of types varying in A, where 7' is any type that can contain
the variable X:

VX.(A-T)—-T (3)

In particular, X can have both positive and negative occurrences in 7', which makes T" — at least when only
the basic type formers are involved — a mixed-variant bifunctor. One example of such a type is the Church
encoding of the list monad, given by the type VX.(4A - X — X) - X — X.

This motivates the notion of dicodensity monad introduced in Section 3: a monad € that generalises
codensity monad to a monad generated by a mixed-variant bifunctor R : 2°P x & — «f. The definition
of €% uses the concept of strong dinaturality [4] (also known as Barr dinaturality, detailed in Section 2),
which is one of a few possible generalisations of the usual notion of natural transformation between functors
to the case of mixed-variant bifunctors. On Set, given a bifunctor R : 2°° x 2 — Set, we define €% A to
be the set of transformations strongly dinatural in X of the following type:

(RXX)* - RXX (4)

On an arbitrary category, €% is given by particular objects of strong dinatural transformations defined via
a universal property.

Our construction generalises the codensity monad of a functor G : 2 — & in two aspects. Not only €7
instantiates to T with RXY = GY (Section 4), but it also enojys a similar construction as a limit over an
appropriately generalised diagram (Section 5). This construction also generalises our previous results [18],
where we studied computational effects captured by Set-monads given by the formula (4) for bifunctors
R : Set®? x Set — Set of the shape RXY = PX — Y for a polynomial functor P.

For a particular bifunctor R : 2°P x 9 — 4, two questions are of interest. First, we consider whether ¢
exists, which may not be obvious — for instance, for o/ = Set, the collection of transformations (4) needs
to be small enough to form a set for every A. Second, we may ask if € has a more direct characterisation,
specifically whether it is isomorphic to a given particular monad. Just as in the case of codensity monads,
answers to these questions are not always trivial.

In Section 6, we give a set of sufficient conditions for € to exist and be isomorphic to the monad UF
given by a pair of adjoint functors. Roughly speaking, these conditions state that the bifunctor R carries a
structure that is a form of representation of objects from the codomain of F' in the base catgory <. For
example, the monad ¢5€t—=] generated on Set by the hom-functor Set[—, =] is isomorphic to the list
monad (the free monad of the theory of monoids), while Set[A, A] (the set of all functions A — A) together
with composition and identity is the usual Cayley representation of monoids with carrier A. The sufficient
conditions additionally require the abstraction and representation morphisms to be strongly dinatural, and
to appropriately commute with strong dinaturals.

Finally, in Section 7, we consider a particular class of bifunctors that encompasses hom-functors (as
in the example above), for which we simplify the construction of the previous section. This is achieved
by generalising hom-functors to bifunctors given by objects of homomorphisms [9], which are internalised
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hom-sets of Eilenberg—Moore categories. All these bifunctors are examples of “arrow” types on different
levels of generality, for which the sufficient conditions given in Section 6 are a form of generalised Cayley
representation of monoids.

1.1  Structure and contributions

In Section 2, we give the necessary background on strong dinatural transformations. Then, we present our
main results:

e In Section 3, we define the monad ¢ induced by a mixed-variant bifunctor R. We show that if R is
constant, ¢ is isomorphic to the usual continuation monad,

* In Section 4, we show that when R is dummy in its contravariant variable (that is, RXY = GY for a
functor @), the monad €% is isomorphic to the pointwise codensity monad of G,

e In Section 5, we show a construction of ¢ as a limit, generalising a similar construction for the
codensity monad,

e In Section 6, we give a set of sufficient conditions for €% to be isomorphic to a given monad,

e In Section 7, we work out a special case of the theorem from Section 6, in which the functor R is
the hom-functor of a category, or, more generally, a functor given by objects of homomorphisms [9]
between algebras of a commutative monad 7. In such a case, the monad €% is isomorphic to the
monad that comes about from the canonical distributive law of lists over 7' [13].

1.2 Notation

When the types are known, we often omit subscripts in natural transformations. The letter R stands for a
bifunctor, and we omit parentheses, i.e., we write RXY for what we would usually write as R(X,Y), and
R(FX)(GY) for R(FX,GY). We use &/[A, B] for the hom-functor of a category <7, while 0 always stands
for a strong dinatural transformation. We use x — e to define functions. We write A = B for exponential
objects and internal homs, but B4 is sometimes used to stress that the exponential lives in Set. Similarly,
- is used for composition of morphisms, but we sometimes use o to stress that we are composing functions.

2 Dinaturality and Strong Dinaturality

In this section, we give the necessary background on (strong) dinatural transformations between mixed
variant bifunctors, which appear in models of (restricted) parametric polymorphism. The classic generalisa-
tion of naturality to mixed-variant bifunctors is dinaturality, introduced by Dubuc and Street [3]. The
general definition is as follows:

Definition 2.1 Given two bifunctors G, H : 2°° x 9 — o/, a dinatural transformation £ : G — H is
a collection of &/-morphisms £x indexed by objects of &, such that for all morphisms f : X — Y, the
following diagram commutes:

GXX & - HXX
GfX / \HX f
GY X HXY
GY PN\ SHfY
GYY P HYY
Y

Note that in the categorical definition the domain of bifunctors G and H can be different than their
range — this is more general than the case in System F, where we only have a single universe of types.
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While this definition is often useful, it is also rather weak. Dinatural transformations do not compose
in the general case, which is a property necessary for our constructions. Moreover the dinaturality and
parametricity do not necessarily correspond directly. For instance, the type of Church numerals in System F,
VX.(X — X) = (X — X), is inhabited exactly by natural numbers, while the collection of dinatural
transformations £x : XX — X% in Set is a proper class (see Paré and Roman [16] for a thorough discussion).
One way to strengthen dinaturality is the following definition:

Definition 2.2 Given two bifunctors G, H : 2°°P x & — </, a strong dinatural transformation (also called
Barr-dinatural transformation [16]) # : G — H is a collection of o7-morphisms €x indexed by objects of Z,
such that for all morphisms ¢1 : Z - GXX, go: Z — GYY, and f: X — Y, if the inner square in the
following diagram commutes, the entire diagram commutes:

GXX ox - HXX
gl/‘ \G’X f \HX f
Z GXY HXY
e\, Sary Sy
GYY - - HYY

We denote the collection of strong dinatural transformations from G to H as SDin|[G, H|.

Not all System F types of the shape VX.F' — G have this property — Vene et al. [22] give a set of
syntactic sufficient conditions for this to be the case (broadly speaking: when the functors have no variables
in double-negative positions). However, strongly dinatural transformations are well-behaved: they compose,
and the collection of strongly dinatural transformations £x : X% — X% in Set is isomorphic to the set of
natural numbers (a direct proof was given by Paré and Romén [16], but it is also a simple corollary of our
Example 6.5). So, while famously there are no set-theoretic models of System F [19], we can interpret a
class of sufficiently simple types even in Set, and, of course, generalise this to other categories.

3 Dicodensity Monads

Assume locally small categories ./ (‘ambient’) and & (‘domain’). In this section, we construct the
dicodensity monad ¢ on 7 induced by a functor R : 2°°P x 2 — /. The loose intuition is that it is the
monad given type-theoretically by €A =VX € 2.(A — RXX) — RXX. In Set, it is given by the set of
transformations (RX X)4 — RX X strongly dinatural in X.

We define this monad in the form of a Kleisli triple (see Manes [12] under the name ‘clone forms’,
or Moggi [14, Definition 1.2]), which consists of an assignment of objects €%, the unit of the monad
na : A — €FA and lifting of morphisms f : A — ¢fB to f* : ¢4 — ¢FB subject to appropriate
conditions. We prefer this format, because the usual ‘monoid’ form of ¢ is quite cumbersome to work
with in this case, as the argument A appears in a double-negative position.

First, we define the object assignment. For this, we note that for a morphism f: A — B in &/, the
collection of morphisms «7[f, RX X] indexed by X is a strong dinatural transformation </[B, R—=] —
o/[A, R—=]. Since strong dinatural transformations compose, this means that for all objects C in <7,
SDin[«/[C, R—=]|, &/[B, R—=]| is contravariantly functorial in B with the action on a morphism f: A — B
given as follows:

0+ o|f,R—=] -0 : SDin[«/[C, R—=], /|B, R—=]] — SDin[«/[C, R—=], o/[A, R—=]|

We use this functor in the definition of the object assignment ¢%:
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Definition 3.1 Let ./, 2, and R be as above. For an object A in o7, we call an object €¢fA in &7 an
A-continuation if there exists the following isomorphism natural in C":

o/ [C, R A] = SDin[«/[A, R—=], &/ [C, R—=]] (5)

Of course, such an object may or may not exist for a given A, and if it does, it is defined up to
isomorphism. In the remainder, we assume a particular choice of an A-continuation for an object A
(provided at least one exists), denoted €% A.

We now spell out some details of Definition 3.1. We write [-] for the isomorphism from left to right, that
is, for an </-morphism f : C — €f A, we obtain a strong dinatural transformation [f] : &[4, R—=] —
o/ |C, R—=]. In the other direction, for a strong dinatural transformation 0 : &/[A, R—=] — <&/|C, R—=],

we get |0] : C — €RA. Using this notation, the naturality conditions can be stated as follows:

e For morphisms g: B — ¢®A and f: C — B in A, it is the case that «7[f, R—=] - [¢] = [g - f],
* For a strong dinatural transformation 6 : &/[A, R—=] — &/|C, R—=] and an </-morphism f: B — C,
it is the case that |0] - f = |/ [f, R—=] - 0].

Remark 3.2 Given a strong dinatural transformation 6 : @/[A, R—=| — &/[B, R—=], if we unfold the
definition of the hom-functor, the condition for strong dinaturality of 6 can be stated as follows: For
al f : X 2 Y in%2, ¢g1: A— RXXand g0 : A - RYY in &, if RXf-¢g1 = RfY - g9, then
RXf-0x(g1) = RfY - Oy (g2).

Using the Yoneda lemma and the fact that currying and uncurrying with a constant preserves strong
dinaturality, it is not difficult to show that if &7 = Set and €7 A exists for a set A, then €74 is (up to
isomorphism) the set of transformations of the type (RX X)4 — RX X strongly dinatural in X.

We can now define the rest of the monad structure on ¢%:

Theorem 3.3 If €R®A exists for all objects A in o7, the assignment €% can be given a monad structure
defined by the unit ) and the Kleisli extension (-)* as follows:

o na = lidyap ] A— €fA4,

o For f: A — €BB, we define f* = |®4-[f]] : €®A — ¢EB, where ®* = [ider,] : Z[A, R—=] —
d[CFA R—=].

As the first example to illustrate this theorem, we consider the simplest setting: when R is a constant
Set-bifunctor. In such a case, our construction instantiates to the usual continuation monad:

Example 3.4 We consider &/ = Set and write A = B for the exponential object. Assume RXY = O for a
chosen set O. Since R is constant, SDin[Set[A, R—=]|, Set[B, R—=]| is equal to Set[Set[A, O], Set[B, O]] =
(A= 0) = (B = 0). Thus, ¢%A is defined as ¢®A = (A = O) = O together with the isomorphism [-] :
B=(A=0)=0)=(A=0)= (B=0):|-] given by [f](k)(z) = f(z)(k) and |g](z)(k) = g(k)(z).
We instantiate the construction from Theorem 3.3 with this data and obtain:

* n(a) =k — k(a),

e For f: A— (B = 0)= 0, the extension f*(zx) =k z(y — f(y)(k)).
One can compare this with the usual definition of the continuation monad via a Kleisli triple, e.g., in
Moggi [14, Example 1.4].

4 Codensity Monads

Assume the categories &7, Z, and the bifunctor R : 2°P x ¥ — &7 as in the previous section. We say that
R is dummy in its contravariant argument if it is of the shape RXY = GY for some G : ¥ — &/. In this
section, we show that if R is such a functor, the monad €% A instantiates to the pointwise codensity monad
of G.
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In general, a codensity monad of a functor G (see, e.g., Mac Lane [11]) is the right Kan extension of G
along itself. Here, we are interested in pointwise codensity monads, which can given by the following end
formula:

TEA = A, GX] h GX (6)
Xeg
The notation [, FXX denotes the end of a mixed-variant functor F. The symbol &/[A, RX] i RX denotes
the @/[A, RX]-power of RX, which can be thought of as an 2/[A, RX]-ary product of RX with itself, and
can be concisely defined as an object P that satisfies the following isomorphism natural in C:

o [C, P| = Set[</[A, RX]|, «/[C, RX]] (7)
(The similarity of (7) and (5) is of course not coincidental.) We use the simple fact that strong dinaturality

collapses to the usual naturality if the involved bifunctors are simply functors:

Lemma 4.1 Given two functors G,H : 9 — </, we can treat them as bifunctors 2°° x 9 — o dummy

in their first argument. Then, strong dinatural transformations G — H are exactly natural transformations
G— H.

We use this lemma and some known facts about ends to show that the codensity monad of G satisfies
the isomorphism from Definition 3.1:

SDin[«/[A, G—], #[C, G—]]

= Nat[«/[A,G—], Z[C,G—]] (Lemma 4.1)
= / Set[/[A,GX], #[C,GX]] (sets of nat. trans. as ends)
X
= / AC, A GX]| hGX] (def. of power)
X
= %[C,/ A, GX]|h GX] (ends commute with hom-functors)
b'e

Applying the Yoneda lemma and comparing the monad structures, we get:

Theorem 4.2 For a functor RXY = GY dummy in its first argument, assuming the mentioned ends exist,
the monad €% exists and is isomorphic to the codensity monad of G.

We also remark on other candidates for generalised codensity monads:

Remark 4.3 The proof of Theorem 3.3 relies on the naturality condition in the equation (5), but not
explicitly on strong dinaturality. This suggests that we could define more monads by replacing SDin with
different kinds of transformations. However, the other obvious choices do not lead to anything interesting.
Transformations natural in both arguments yield the usual codensity monad of the bifuctor treated as a
functor from the product category Z°P x &, while dinatural transformations do not compose in general, so
in such a case the construction in Definition 3.1 does not yield a monad.

5 Dicodensity Monads from Limits

Codensity monads can be alternatively constructed as a limit over a diagram indexed by a comma category.
In this section, we show a similar result for our dicodensity monads, however, the diagram needs to be
slightly more involved.

The codensity monad of a functor G on an object A, that is, T¢A, can be given as the limit of the

diagram (A | G) & 2 NG , where A | G is the comma category and 7 is the usual projection functor.
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To generalise this definition to mixed-variant bifunctors, we first define the following generalisation of the
comma category:

Definition 5.1 Given an object A in a category & and a bifunctor R : 2°P x & — «f for a category &,
we define the category A || R as follows:

* Objects are pairs (X, f: A — RXX), where X is an object in Z,

e Arrows between objects (X, f) and (Y, g) are morphisms d : X — Y in 2 such that the following
diagram commutes in /:

f / 4 \g
RXX RYY (8)

RXd\ / RdY

RXY

Now, we do not take the limit of the projection composed with R (in particular, they don’t compose),
because we need to include all the objects of the shape RXY together with the morphisms RdY and RXd.
In other words, we want to take the limit over all the bottom halves of the diagrams (8) combined. However,
since they are not in the data of A || R, we need to add one more layer to the construction of the diagram:

Definition 5.2 Given R and A as above, we define the bunting category of A | R, denoted (A || R)Y,
that consists of the following data:

 For each object (X, f) in A || R, there is an object (X, f, RXX),
* For each arrow d : (X, f) = (Y,g) in A | R, there is an object (d, RXY'),

* For each arrow d as above, there are two morphisms RXd : (X, f, RXX) — (d,RXY) and RdY :
(Y, g, RYY) — (d, RXY).

There exists an obvious projection 7V : (A |} R)Y — & that selects the last components of objects,
domains, and codomains.

Theorem 5.3 If the limit of ©¥ exists for all A, it is isomorphic to €®A

This theorem follows easily from the observation that in the light of Remark 3.2 strong dinatural
transformations «/[A, R—=] — «/[B, R—=] are in a natural 1-1 correspondence with cones over ", while
the morphisms B — €A from (5) are the mediators of the limit.

It follows that if this limit exists for all A, it is isomorphic to A if and only if €% is identity — a
counterpart of the known result that codensity monad T is identity if and only if G is codense (that is,

the limit of (A | G) & 2 S o s isomorphic to A).

6 Monads from Representations

In this section, given a bifunctor R : °° x ¥ — &/, we introduce a set of sufficient conditions for the
monad ¢F on &7 to be isomorphic to the monad UF for an adjunction F < U with ' : &/ — 4 for
a category .. Broadly speaking, the conditions require that there exists a functor U : . # — 2, and
that for all objects X in &, RXX can be lifted to an object RX in .#, such that for all M in .#, the
object R(UM) is a form of a representation of M.

Both the definition of the representation and the proof of the isomorphism theorem generalise our
previous results [18], where o = 2 = Set: in that case, we simply take U = U. In the general case, the
types of the involved functors are summarised in the following diagram:
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v (9)

We first introduce some notation: given a morphism f : A — UX, we write f' : FA — X for the

contraposition of f via the adjunction (the unique homomorphism induced by the freeness of F'A), and use
florUf:UFA—UX.

Definition 6.1 Let F : &/ — .4 be a left adjoint to U : # — of/. A representation consists of the
following components and conditions:

(i) A bifunctor R: 2°P x I — o/,

(ii) For each object X in &, an object RX in .# such that:
(a) URX = RXX,
(b) the assignment = : &/[A, R—=] — &/[UF A, R—=] is strongly dinatural,

iii unctor U : — 2 and for each object in ., a morphism oy : —R(U in such that:
Af U: M — 2 and f h ob M in .« h M — R(UM) in .# such th
(a) Uopr : UM — R(UM)(UM) is strongly dinatural in M,
(b) o commutes with strong dinatural transformations, that is, for 6 : &/[A, R—=] — &/|B, R—=] and

k:A— RXX, the morphism b5y (Uorx - k) factors as:

0x (k)

B URX Y255, UR(TRX) (10)

(iv) A strong dinatural transformation py; : R(UM)(UM) — UM such that pys - Uoy = id.
This definition is quite involved, so it might be useful to take a closer look at some of its components:

Remark 6.2 Unfolding the definition of hom-functor, the condition of = being strongly dinatural can be
stated more explicitly as follows. For an object A in 7/, objects X, Y in &, morphisms f; : A - RX X,
fo: A— RYY in &/, and a morphism g : X — Y in &, it is the case that

RXX RXX
e\ o\
it 4 RXYy commutes, then 7py RXY commutes.
A AN e
RYY RYY

Remark 6.3 A sufficient condition for o to commute with strong dinatural transformations is the following:
For each object X in 2, a set of indices Iy and a family of morphisms runx; : URX — X, where i € Ix,
such that R(URX)runy is a jointly monic family, and the following diagram commutes for all X and
1€ Ix:

Uorx _ _
URX R(URX)(URX)
id l R(URX)runx ;
Rrunx ; X o
RXX R(URX)X

Theorem 6.4 Given a representation as in Definition 6.1, there is an isomorphism of monads UF = €&,
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In detail, this means that UF A satisfies the isomorphism (5) for all A and that the two monadic
structures coincide. In one direction, the isomorphism can be stated as follows: given f : C — UFA,

we define [f]x(k : A - RXX) = C Jy UFPA % RXX. In the other direction, a strong dinatural

O+ Uopa-
transformation 6 : &/[A, R—=] — «/[C, R—=] corresponds to the morphism [#] = C M
R(UFA)(UFA) 224 UFA.
We discuss two examples. The first one instantiates Theorem 6.4 to the usual Cayley representation of
monoids and lists, while the second one shows that the theorem can be used to obtain the known result
that for an adjunction F < U, the codensity monad TV is isomorphic to the monad UF.

Example 6.5 Consider the adjunction F' 4 U with F': Set — Mon being the usual free monoid functor.
We use Theorem 6.4 to show that ¢5¢t==] is isomorphic to the monad UF (the list monad). We show
that F' 4 U satisfies Definiton 6.1:

(i) The categories are & = 2 = Set, .# = Mon, and the bifunctor is the hom-functor Set[—, =], that
is, RXY =Y ¥,
(ii) RX = (XX, o, id). The fact that it is a monoid is known from the Cayley theorem for monoids,
(a) Trivially, URX = XX = RXX,
(b) To show that ~ is strongly dinatural, we use Remark 6.2: given a set A and some elements
a,b,...,c e A, we need to see the following:

go fi(a)o fi(b)o---o fi(c) = fa(a) o fa(b) o -0 fa(c)og

Fortunately, the assumption, which in this case becomes g o fi(a) = fa(a) o g for all a € A, allows
us to “commute” g from one side of the chain of function compositions to the other.

(iii) We define U = U and o(yy,..)(a) = b+~ a-b. The fact that o is a homomorphism is known from the
Cayley theorem,
(a) To show that o is strongly dinatural, let M and N be two monoids, and let f : M — N be a
homomorphism such that f(m) = n for some m € M and n € N. We calculate:

RM f(op(m)) = RM f(b+— m-b) (def. of o)
=b— f(m-b) (def. of R.)
=b— f(m)- f(b) (f is @ homomorphism)
=br—n- f(b) (assumption above)
=RfN(b—n-b) (def. of R.)
= RfN(on(n)) (def. of o)

(b) To show that o commutes with strong dinaturals, we use Remark 6.3. We define Ix = X and
runy;(f) = f(i). We instantiate the diagram with RXY = X = Y, and show that it commutes for
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all i € X, point-wise for all arguments if applied to f : X — X and then the result to [ : X — X:

(X = X) = runx,;) o Uo(x=x,0,0) (f)(f)

= (X = X) = runx ;) (Uo(x=x,0,id) (/) (f) (composition)
= (X = X)=runx,;)(g— fog)(f) (def. of o)
= (runx,; o (g~ fog)(f) (hom-functor)
=runx;(fo f) (composition)
= f(f'(¥) (def. of run)
= f(runxi(f")) (def. of run)

= (forunx,;)(f") (composition)
= (runx; = X)(f)(f) (hom-functor)

(iv) We define pys..)(9) = g(€). To show that it is strongly dinatural, assume two monoids M and N,

together with g; € MM g € NV, and a homomorphism f : M — N such that RfM(g1) = RN f(g2).
We calculate:

F(ort(91)) = Flgr(ean)) (def. of p)
= RfM(g1)(em) (def. of R)
= RN f(g2)(em) (assumption above)
= 92(f(em)) (def. of R)
= g2(en) (f is a homomorphism)

The case for the usual Cayley representation of monoids and lists can also be trivially obtained by
instantiating Theorem 7.6 given in Section 7 with M = Id (the identity monad). The next example shows
that Theorem 6.4 is general enough to cover also the well-known case of the codensity monad of a right
adjoint:

Example 6.6 Let U : .# — </ be a functor with a left adjoint F'. Let ¥ = .# and RXY = UY. We use
Theorem 6.4 to show that ¢% and UF are isomorphic as monads. We take U = Id, and RX = X. The

UX
condition (2a) is trivial. To show (2b), we use Remark 6.2: We assume that A {Ug commutes. Its
Uy
.o x A= Uf1 UX
contraposition via the adjunction is F A 9 , and its U-image is the desired diagram UF A 1Ug .
Y on UY
2 2=Ufs

For (3), we note that R(UM) = M. We define o = id, which makes (3a) and (3b) trivial. For (4), we note
that R(UM)(UM) = UM, and define p = id, which is trivially a retraction of Uoc.

7 Monads Induced by Objects of Homomorphisms

While the notion of representation introduced in Definition 6.1 is powerful enough to characterise a class of
dicodensity monads, it is rather difficult to use due to the number and complexity of technical conditions.
In this section, we explore a particular subclass of representations, which generalises Example 6.5 from
functions on sets to internalised morphisms between algebras of a commutative monad. In such a setting,
we can substantially simplify the required conditions. First, consider two representative examples:

Example 7.1 In programming, the list monad can be used to model nondeterministic computations,
which produce a number of possible outcomes in a specific order. The list monad can be extended to
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provide ‘global error’: if an error occurs in any branch, the entire computation fails. First, we consider
the A — A + 1 monad, known in programming as the maybe monad, which arises from the adjunction
between Set and Set, (the category of pointed sets and point-preserving maps). The ‘global error’ monad,
TA =LA+ 1, where L is the list monad, is induced by the following distributive law of the list monad
over maybe:

[inlzy,...,inlx,] =inl[z1,...,2,] if all elements of the list are of the form inlx
[...,inrx,...] =inrx if at least one element of the list is of the form inr

This monad is isomorphic to ¢® via Theorem 6.4 with &/ = Set, .4 = TV—Alg (the category of algebras
for T), 2 = Set,, and U(4,a) = (4, a(inrx)). We define R(X,z)(Y,y) = {f: X =Y | f(z) =y} (that is,
R is the hom-functor of Set,), and R(X,z) = (R(X,z)(X, ), a), where:

a(finl f1,...,inl fp]) = fro---o f, if all elements of the list are of the form inl f
a([...,inrx,...]) = const(z) if at least one element of the list is of the form inr x

Example 7.2 Let &7 = Set and .# = ISRing (the category of idempotent semirings). The monad that
arises from free idempotent semirings is the composition FL, where F is the finite powerset monad,
and L is the list monad. The monad structure comes from the distributive law between monads
[(X1,...,Xn] = {[z1,...,2n] | @ € X;}. We can construct the representation of idempotent semir-
ings using Theorem 6.4 assuming & to be ICMon (the category of idempotent commutative monoids,
that is, pointed semilattices), U : ISRing — ICMon to be the functor that forgets the multiplicative
structure, R to be the set of homomorphisms between idempotent commutative monoids, that is, the
hom-functor RXY = ICMon[X,Y]: ICMon®° x ICMon — Set, and the idempotent semiring RX given
by the composition of homomorphisms (as in the usual Cayley representation) for the multiplicative part,
and the additive structure defined pointwise.

While these examples are covered by Theorem 6.4, it requires manually checking a number of complex
conditions. Instead, we consider the case when the category & is the category of T-algebras for a
commutative monad 7', and RXY represents T-homomorphisms between X and Y. This allows us to
simplify the structure required for the theorem to hold.

7.1 Objects of homomorphisms

First, we recall the definition of objects of homomorphisms. Let (47, ®,I) be a monoidal category, and T’
be a bistrong monad on .« with strengths T4 p: TA® B - T(A® B) and 7y 5 : AQTB — T(A® B).

Definition 7.3 (Kock [8]) A morphism h: X ® A — B in & is 1-linear with respect to T-algebras (A4, a)
and (B, b) if the following diagram commutes:

T/ Th

X®TA T(X®A) TB
X®a b
h
X®A > B

We write 1Lin[X ® (4, a), (B,b)] for the set of all morphisms X ® A — B that are 1-linear with respect
to (A,a) and (B, b). It is straightforward to turn 1Lin into a functor o/°P x T-Alg®f x T-Alg — Set, which
is used in the following definition:

Definition 7.4 (Kock [9]) An object of homomorphisms between T-algebras (A, a) and (B,b) is an object
(A,a) = (B,b) that satisfies the following isomorphism natural in X:

1Lin[X ® (A, a), (B,b)] = #|X, (A,a) = (B,b)] (11)
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The Yoneda lemma gives us that if an object of homomorphisms exists for given algebras, it is unique up
to isomorphism. Moreover, if = exists for all algebras, it can be given an obvious structure of a bifunctor
inherited from 1Lin.

Remark 7.5 A sufficient condition for the object of homomorphisms to exist is that &7 has equalisers and
is right-closed, that is, there exists the right adjoint:

A[A® B,C] = o[A,B = (] (12)

Concretely, (A, a) = (B,b) is given as the following equaliser

® TA=b
TA=TB
(A,b)=(B,b) —= A>B  TA-B (13)
-

a=B

where ¢ is the transpose of (A=B)® T A RN T(A=B)® A) L2PP, 7B via (12).

We use (11) to define the internal identity and composition morphisms analogous to the usual ones in
closed monoidal categories:

* happ: ((A,a) = (B,b)) ® A — B as the transpose of (4,a) = (B,b) id, (A a) = (B,b),
e hid: I — (A4,a) = (A4, a) as the transpose of I ® A = A,
e hcomp : ((B,b) = (C,c)) ® ((A,a) = (B,b)) = (A,a) = (B,b) as the transpose of:

o

(((B,b) = (C,0)) @ (A,a) = (B,b)) @ A = ((B,b) = (C,¢)) @ (4, a) = (B, b)) ® 4)
EheRR, ((B,b) = (C,¢)) @ B 2%, ¢

7.2 Cayley monads

Assume that &/ is a monoidal category. By Mon, we denote the category of monoids in &7, while
UMon . Mon,, — o/ denotes the forgetful functor. Let T be a commutative monad on &/, which means
that the following diagram commutes for all A and B, where 7 and 7’ denote the right and left strengths
respectively:

T Tr'

TA®TB T(A® TB) TT(A® B)
7/ H
T(TA®B) — -+ TT(A® B) —~—— T(A® B)

If the forgetful functor UM°™ is monadic, there exists a canonical distributive law between monads
A gMonpMon yp_, ppyMon pMon 1131 where FMOR ig the left adjoint to UMOP. We denote the monad

resulting from A as T. We show that, with some additional assumptions, T is isomorphic to €® for R
assigning to a pair of T-algebras the object of homomorphisms between them:

Theorem 7.6 Let </ be a biclosed cocomplete moinoidal category and M a commutative monad on </
such that:

e of admits homomorphism objects for T,
e of is well-pointed (that is, the monoidal unit I is a separator, or, equivalently, <7[I,-] is faithful),
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Let T = TUMonpMon po 4pe composition of T with the list monad via the canonical distributive law. Then,
T is isomorphic to €& for R : T-Alg°P x T-Alg — o/ given by:

R(A,a)(B,b) = (A,a) = (B,b)

With the assumptions of Theorem 7.6, the functor U Mon g indeed monadic, and the algebras of the
monad 7T can be given, following [17, Section 6.2], as tuples (A, a, m,u), where (A, a) is an T-algebra, and
(A, m,u) is a monoid in o/ such that the following coherence condition holds:

TA®TA e A A
T(AoMA) —2"  TT(A0A) — % oA —t s — % 4

By U : f—Alg — T-Alg we denote the functor that forgets the monoid part.
Theorem 7.6 can be proved using Theorem 6.4, in which case the diagram (9) of the involved categories
and functors becomes as follows:

T-Alg® x T-Alg T-Alg
R F U

o 1 T-Alg
\/

The rest of the representation is defined as follows:

* R(A,a) = ((A,a) = (A,a),s,hcomp, hid), where s : T((A,a) = (A,a)) = ((A4,a) = (A,a)) is the
transpose via (11) of

T((A,0) = (A,0)) @ A D T(((Aa) = (A,a)) @ A) 2P 74 9 4 (14)

* O(Aamu) P A— (Aa) = (A, a) is the transpose via (11) of m,
o~ id h

° p(A,a,m,u) = ((Aaa) = (Av CL)) — ((Ava) = (A>a)) ® I & ((Av (L) = (A>a)) ® A ﬂ) A

The intuition behind the assumption that .o/ is cocomplete and biclosed is that these are sufficient
conditions for UMen FMon 4 t6 be the initial I + (A @ -)-algebra. This gives us a more concrete characteri-
sation of the = operator in terms of a fold of the structure of the initial algebra, which seems needed for the
condition (ii.b) of Theorem 6.4 to hold. In general, strong dinatural transformations often appear in the
literature in connection with the inital-algebra semantics of data structures [15,21].

The assumption that o/ is well-pointed is used to show the condition (iii.b) of Theorem 6.4 via
Remark 6.3. The family run 4, is indexed by the generalised elements p : [ — A, and is defined as:

N = (4 03 (4,0) 5 (4,0)=(4,0)8] =2 (4,0)=(4,0)04 = A

Then, the fact that the family R(UR(A, a))run(y q) is jointly monic follows from the well-pointedness of <7

Example 7.7 In Example 7.2, the monad T is F (the finite powerset monad), whose algebras are

idempotent commutative monoids. This means that T -Alg is the category of algebras (A,V,L,- ¢)
such that (A,V, 1) is an idempotent commutative monoid, while (A,-, ) is a monoid. The two need

to satisfy z(y V z) = a2y Vaz, (xVy)z = zzVyz, and L = Lz = 1, which makes T-Alg the
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category of idempotent semirings. The value R(A,VvA, L4)(B,vE 1B) = (A,a) = (B,a) becomes
{f : A = B | fisahomomorphism (4,vA4, 14) — (B,vE LP)} while R(4,v,1) = ({f : A —
A | fis a homomorphism (A4,V, 1) — (A,\/,J_)},\/S,J_s,o,ld), where (f V®g)(a) = f(a) V g(a) and
18=a— L.

8 Conclusion and Future Work

This paper continues the exploration of continuation monads and Cayley representations in semantics,
stemming from the work of Hinze [5], and building on the formal footing provided by Paré and Roman [16].
In this line, we build on our prior work [18], where we only considered polynomial Cayley representations
on Set and introduce generalised codensity monads over arbitrary bifunctors. We also relate them to
generalised notion of representation, in particular where the bifunctors in question represent sets (or objects)
of T-algebra homomorphisms, which is a common source of concrete examples.

One direction of future work would be to use the machinery developed in this paper to extend the
polynomial representations over one variable to the multi-variable case, and explore the effects that they
denote. Another possible question would be whether codensity liftings [6] or similar constructions can be
naturally generalised to mixed-variant bifunctors and whether such constructions have practical use in
programming or semantics.
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