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Abstract

Partial Markov categories are a recent framework for categorical probability theory that provide an abstract account of
partial probabilistic computation with updating semantics. In this article, we discuss two order relations on the morphisms
of a partial Markov category. In particular, we prove that every partial Markov category is canonically preorder-enriched,
recovering several well-known order enrichments. We also demonstrate that the existence of codiagonal maps (comparators)
is closely related to order properties of partial Markov categories. Finally, we introduce a synthetic version of the Cauchy—
Schwarz inequality and, from it, we prove that updating increases validity.
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1 Introduction

Markov categories [16,6] are a synthetic framework for probability theory. They allow one to reason about
probabilistic processes using a few basic axioms that model key aspects of probabilistic computation.
Morphisms in a Markov category can be composed both in sequence and in parallel, via a symmetric
monoidal structure. Every object is equipped with a commutative comonoid, which allows copying and
discarding information. An important axiom requires the existence of conditionals, an abstraction of
regular conditional probability distributions. This simple setting has been successfully applied to various
areas in probability theory [2,15,19], semantics of probabilistic programming [31,30,1] , causal inference
[20,24,33] and information theory [28].

Morphisms in Markov categories represent total probabilistic computations. Totality is encoded by an
axiom — naturality of discarding — declaring that maps can be discarded without affecting the meaning
of the process. However, many operations in probability theory are inherently partial. An important
example is bayesian updating: if one tries to learn from evidence that is incompatible with the prior belief,
updating is impossible. Markov categories lack the structure to express this partiality.

In order to express partiality, we need to drop naturality of discarding, and thus work with copy-
discard (CD) categories [6,3]. Morphisms in such copy-discard categories correspond to partial probabilistic
computations. We would like to highlight two recent works following this approach. In [24], the authors
start from a copy-discard category, and derive conditional distributions from equality comparison and
normalisation of subprobability kernels. While the theory is elegant, it is mostly suited for discrete
probability. In contrast, the framework of partial Markov categories [12] starts from a copy-discard category
with conditionals. The advantage of this approach is the abundance of models. Examples of partial Markov
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categories include Kleisli categories of ‘subprobability monads’, cartesian restriction categories [8,9,10], and
cartesian bicategories of relations [11].

The main contribution of this paper is to show that every partial Markov category is enriched (in
the sense of Kelly [22]) in the category of preorders and monotone maps. That is, every hom-set in a
partial Markov category is a preorder, and the operations of the symmetric monoidal category structure
are monotone with respect to this preorder. The existence of such an order-enrichment makes the setting
particularly appealing for developing the basics of inequational reasoning in synthetic probability theory.
Crucial properties of bayesian reasoning are inequational: e.g. that updating a prior with evidence increases
the likelihood of the evidence being true in the posterior.

Synopsis

Section 2 recalls the basic theory of partial Markov categories and introduces some running examples.
Section 3 defines the preorder enrichment on partial Markov categories. We then display several well-
known order enrichments as instances of our construction. Section 4 studies least conditionals in partial
Markov categories. Our main results in this section are about the relationship of least conditionals and the
existence of comparators (Theorems 4.4 and 4.6). Finally, Section 5 is an application of the conditional
preorder. We derive a synthetic analogue of the validity-increase theorem under suitable assumptions
(Theorem 5.13).

Throughout the paper we will use string-diagrammatic notation with the diagrams written from left to
right. For a detailed introduction to string-diagrammatic calculi, see Selinger’s survey [29]. Occasionally,
we will also apply equational reasoning. Thanks to the strictification theorem for monoidal categories [25],
we may treat all monoidal categories as if they were strict, without loss of generality.

Related work

Inequalities play an important role in the theory of cartesian restriction categories [8] and cartesian bicat-
egories of relations [11]. In fact, restriction categories have a canonical ordering on morphisms [8, §2.1.4]
and can be seen as enriched categories [4]. Similarly, morphisms in bicategories of relations have a canon-
ical ordering that forms an enrichment [27]. These canonical inequalities are instances of the ordering we
introduce in this paper, see Propositions 3.11 and 3.12.

Order enrichments for categories of probabilistic maps have been considered before, in the context of
effectus theory [7,5,17]. Recently, quasi-Markov categories were introduced as a framework to handle partial
operations in probability theory [14,26]. Under reasonable assumptions, such quasi-Markov categories are
poset-enriched by the restriction order. Studying preorder-enrichment in quasi-Markov categories is left
for future work.

2 Preliminaries

Copy-discard categories are theories of processes — symmetric monoidal categories — where resources can
be copied and discarded. Partial Markov categories [12] are copy-discard categories that additionally have
conditionals: a factorization property often needed in categorical probability.

We go a step further and explicitly introduce copy-discard-compare (CDC) categories (Definition 2.9):
theories of processes where we can assert the equality of two resources (“compare” them). Discrete partial
Markov categories are copy-discard-compare categories with conditionals (Definition 2.10) [12]. Table 1
summarises the terminology related to variations of copy-discard categories.

Definition 2.1 (Copy-discard category) A copy-discard category [3,6] is a symmetric monoidal cate-
gory (C,®,I) in which every object X has a compatible commutative comonoid structure, consisting of
a counit or discard, ex: X — I; and a comultiplication or copy, dx: X — X ® X, satisfying the axioms
below (also in Figure 1).

(i) Comultiplication is associative, dx 5 (0x ®1id) = dx § (id ® dx).
(ii) Counit is neutral for comultiplication, dx § (ex ® id) =id = dx § (id ® ex).
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Structure Maps are Comparators/caps | Conditionals

Copy-discard category

Copy-discard-compare category v

Cartesian restriction category deterministic

Discrete cartesian restriction category || deterministic v

Quasi-Markov category quasi-total

Partial Markov category v

Discrete partial Markov category v v

Markov category total

Markov category with conditionals total v
Table 1

Types of copy-discard categories. In each row, the structure entails all properties listed or marked with (v').

(iii) Comultiplication is commutative, dx §ox x = dx, where ox x : X ® X — X ® X is the symmetry.
(iv) Comultiplication is uniform, dxgy = (0x ® dy) 5 (id ® 0 ® id), and §; = id.
(v) Counit is uniform, exgy = ex ® ey and g7 = id.

Notably, counits and comultiplications are not required to form natural transformations.

e 4 - e O

Fig. 1. Structure and axioms of a commutative comonoid.

The language of copy-discard categories can express when morphisms are ‘deterministic’, ‘total’ and
‘total on their domain of definition’ (quasi-total).

Definition 2.2 (Deterministic, total) A morphism f: X — Y in a copy-discard category is determin-
istic if it commutes with the copy, f§dy = dx 5 (f ® f). It is total if it commutes with the discard,

fsey =ex.
Definition 2.3 (Restriction [12,24]) Let C be a copy-discard category.

(i) We say that amap f: X — Y is a restrictionof g: X = Y if f =x5(9®(fsey)). In this situation,
we write f =< g. See Figure 2 for an illustration.

(ii) A map f is called quasi-total if f =< f.

Clearly, all deterministic and total maps are quasi-total. The collection of quasi-total maps is partially
ordered by restriction [24, Lemma 98].

f=<g ifandonlyif —fF=—¢ =

Fig. 2. The restriction order on quasi-total maps

Definition 2.4 The conditional composition of two morphisms, f: X - A and g: A® X — B, in a
copy-discard category is the morphism defined by the equation in Figure 3. In other words, conditional
composition passes a copy of the input and the output of the first morphism to the second morphism.
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A
(f <g) = bx 3 (/504) ®idx) 3 (14 © g) fag= y (L 1

Fig. 3. Conditional composition.

Definition 2.5 (Conditionals) A copy-discard category has conditionals if every morphism f: X —
A® B can be decomposed as f = (f3(ida ® ep)) <c, for some quasi-total ¢c: A® X — B. In this situation
we say that c is a conditional of f. For morphisms f: X — A and g: A — B, a bayesian inverse of g with
respect to f is a conditional g}: BX — Aof fsd45(g®id).

Requiring conditionals to be quasi-total is natural but not strictly necessary for some of our develop-
ments. The proof of Theorem 4.6 relies on conditionals being quasi-total.

Definition 2.6 (Partial Markov category [12]) A partial Markov category is a copy-discard category
with conditionals.

Remark 2.7 In a partial Markov category, a morphism f is quasi-total, f < f, if and only if its domain
predicate, f §e, is deterministic [12, Proposition 3.5].

We will later work with a particular subclass of copy-discard categories: those that are balanced.
Balanced copy-discard categories cover a large class of examples, and they are particularly well-behaved
with respect to the partial order we introduce in Definition 3.1. The name balanced is related to properties
of idempotent morphisms, see [13, Theorem 4.1.8.].

Definition 2.8 (Balanced copy-discard category [13]) A copy-discard category C is balanced if the
following implication holds for all appropriately typed morphisms.

(- R -

Note that there are at least two other unrelated notions of balanced category in the literature [29,21]. This
should cause no confusion in the current context.

Definition 2.9 (Copy-Discard-Compare category) A copy-discard-compare category is a copy-discard
category in which every object, X, has a compatible partial Frobenius structure, consisting of an additional
commutative multiplication, or comparator, px: X ® X — X, satisfying the following axioms.

(i) Multiplication is associative, (ux ®id) s ux = (Id ® px) § px-
(ii) Multiplication is commutative, ox x § px = fx.
(iii) Multiplication is right inverse to comultiplication, dx § ux = id.
(iv) Multiplication satisfies the Frobenius rule, (dx ® id) 3 (id ® px) = pux §0x = (Id ® 0x) § (ux ®id).
(v) Multiplication is uniform, pxgy = (id ® oy, x ®id) § (ux ® py), and py = id.

o Pyt 00 e e

Fig. 4. Structure and axioms of comparators.

Definition 2.10 (Discrete Partial Markov category [12]) A discrete partial Markov category is a
copy-discard-compare category with conditionals.
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We provide an alternative characterization of copy-discard-compare categories via cap morphisms.
This is the approach followed by Lorenz and Tull [24], who mention that the presentations via caps and
comparators are equivalent. We provide a proof for completeness.

Definition 2.11 (Caps [24, Definition 6]) A copy-discard category is said to have caps if it is equipped
with a family of morphisms Ny : X ® X — I, satisfying the following axioms.
(i) Caps are commutative, ox x §Nx = Nx.
(ii) Caps interact with the comultiplication, 0x § Nx = €x.
(iii) Caps satisfy the Frobenius rule, (6x ®1id) ¢ (id ® Nx) = (id ® dx) § (Nx ® id).
(iv) Caps are uniform, Nxgy = (Id ® oy, x ®id) § (Nx ® Ny ), and Ny = id.

D o 0= 0= o

Fig. 5. Structure and axioms of caps.

Proposition 2.12 A copy-discard category is a copy-discard-compare category if and only if it has caps.

Proof. Assume that C is a copy-discard-compare category. We may define caps via Nx = ux §ex; the
cap axioms follow immediately.

Conversely, assume that C has caps. Define the comparator as one of the two sides of the Frobenius
rule (iii), px = (0x ®id) 3 (id®@Nx) = (Id® 0x) § (Nx ® id).

First, we show commutativity using (a) the definition of the compare map, (b) naturality of symmetries,

(¢) commutativity of the cap, and (d) commutativity of copy.
0 X e ¢ i
For associativity, we use (a) the definition of the compare map, and (b) associativity of copy.
Compare is right inverse to copy by (a) definition of the compare map, (b) associativity of copy, (¢) axioms

of caps, and (d) counitality of copy.

O Celg e Ce—

Finally, we show one of the Frobenius equations using (a) the definition of the compare map, and (b)
associativity of copy. The other Frobenius equation can be proven in the same manner.

e e

The rest of this section introduces some partial Markov categories that we will use as running examples.

d
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2.1 FExzample: subprobability kernels

The category BorelStoch<; of standard Borel spaces and measurable subprobability kernels is a discrete
partial Markov category [12]. The subcategory FinStoch<; < BorelStoch<; of finite sets and substochastic
matrices is also a discrete partial Markov category. One can see that both BorelStoch<; and FinStoch<;

are balanced, by essentially the same argument as in [13, Proposition A.5.2.].

2.2  Ezxample: cartesian restriction categories

Cartesian restriction categories [8,9,10] are an abstraction of the category Par of sets and partial functions.
They are copy-discard categories where comultiplication is natural, i.e. all morphisms are deterministic
but not necessarily total. Discrete cartesian restriction categories are cartesian restriction categories with
a comparator. We now show that cartesian restriction categories have conditionals. That is, cartesian
restriction categories are partial Markov categories where all morphisms are deterministic.

Proposition 2.13 All cartesian restriction categories are balanced partial Markov categories.

Proof. Morphisms in cartesian restriction categories are always deterministic. We use this fact to show
that there are conditionals.

= =

Again, because every morphism is deterministic, these conditionals are quasi-total, and the category is
balanced. O

2.8 FExzample: cartesian bicategories of relations

Cartesian bicategories of relations are an abstraction of the category Rel of sets and relations. They are
copy-discard-compare categories with extra structure and axioms that give them the expressive power of
regular logic (see Figure 6). They are also an example class of partial Markov categories.

> - < -

e PO
el O

e B

Fig. 6. Structure and axioms of cartesian bicategories of relations.

By
A%

Remark 2.14 In every cartesian bicategory of relations, the copy and discard morphisms are not natural,
but they are laz natural: 30 <d3(f® f) and f3e < e (Figure 7, left). Moreover, the comonoid structure
is left adjoint to the monoid structure: id < d§pu, psd <id,id < egn and nse < id (Figure 7, middle
and right). In fact, the original definition of cartesian bicategory of relations assumed a poset enrichment
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satisfying these conditions [11, Definitions 1.2 and 2.1]. The definition we give here (Figure 6) is equivalent
to the original one [27, Lemma 4.1.6] with the preorder enrichment defined in Equation 1.

Fig. 7. Comonoids in cartesian bicategories of relations are lax natural, and they are left adjoint to the monoids.
Idempotency of convolution (last equation in Figure 6) implies that every morphism in a cartesian
bicategory of relations is quasi-total.
Lemma 2.15 In a cartesian bicategory of relations, every morphism is quasi-total.

Proof. We use the string diagrammatic syntax of cartesian bicategories of relations.
m
- < - <4 ! -

Conditionals in cartesian bicategories of relations are a consequence of the Frobenius structure and
idempotency of convolution.

d

Proposition 2.16 All cartesian bicategories of relations are partial Markov categories.

Proof. By definition, cartesian bicategories of relations are copy-discard categories. We show that they
also have conditionals using their string diagrammatic syntax [11]. The candidate conditional is in the
dashed box below. This is a quasi-total morphism because every morphism in a cartesian bicategory of
relations is quasi-total (Lemma 2.15). We prove that the composite morphism on the left equals f by (i)
simplifying it to the composition on the right using the Frobenius equation and by (7i) bounding the latter
from above and from below with f.

Cartesian bicategories of relations are poset-enriched (see Equation 1). We use this partial order to bound
the morphism above from above with f using adjointness of the discard and the codiscard (i), and lax
naturality of the discard morphism (i) (see Figure 7 and Remark 2.14).

B

We bound the same morphism also from below with f using lax naturality of the copy morphism (7), and
adjointness of the copy with the cocopy (ii) (see Figure 7 and Remark 2.14).
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]

Cartesian bicategories of relations are not balanced in general. One can easily adapt a counterexample in
the literature [13, Example A.5.4.] to get a counterexample in Rel.

3 Conditional inequality

Let us endow partial Markov categories with a preorder-enrichment. We prove that the conditional in-
equality (Definition 3.1) is an enrichment (Theorem 3.3) and derive basic inequalities.

Definition 3.1 (Conditional inequality). In any copy-discard category, conditional inequality relates
two parallel morphisms, f C g for f: X — Y and ¢g: X — Y, if and only if there exists some morphism
r: Y ® X — I such that f = g<r. In this case, we say that r witnesses the inequality f C g, and write
fE"y.

Y

X—Hf-y = ﬂ
R liary
Proposition 3.2 Conditional inequality (C) is a preorder.

Proof. Reflexivity is witnessed by the discard morphism, f <e = f, as on the left below. Let us prove
transitivity. If we assume f C" g and g C° h, then by associativity of conditional composition, f = g<r =
(h<s)<r=h<(s<r). Thus, s<r witnesses f C h, as on the right below.

Theorem 3.3 Any partial Markov category is a preorder-enriched symmetric monoidal category.

Proof. We show that the preorder (C) on hom-sets is respected by composition and monoidal products.
Assuming that g C" ¢/, we can see that f$gC fsg' by feg=f3s(q <r)= (f;g’)d(g?d(r@s)).
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We proceed analogously to show that f T f/ implies f ® g C f' ® g. We showed that composition and
tensors are monotone. Therefore, the conditional preorder is an enrichment. O

We collect a few elementary properties of the conditional preorder.

Proposition 3.4 Let C be a discrete partial Markov category.
(i) Forall f: X =Y, 83(f@f) s f

(ii) Multiplication and comultiplication form an adjoint pair 6 4 p in the sense of 2-categories [23]. That
15, i dC g and psd Cid.

Proof. For point (i), observe that the equality below left follows from the partial Frobenius axioms.

For point (ii), the first inequality holds by definition, while the second one can be derived from the partial
Frobenius axioms, as on the right above. O

3.1  Subunital enrichments

One may be interested in partial Markov categories with additional logical structure, e.g., certain effectuses
(in partial form) with copiers [7]. In such categories, effects X — I can be viewed as (fuzzy) predicates:
for example, the discard map, ex : X — I, is interpreted as the ‘true’ predicate. When equipping a
partial Markov category with a preorder enrichment, one would reasonably expect truth to be the largest
predicate. We call a preorder enrichment subunital if p < ex for all effects p: X — I.

Proposition 3.5 In any partial Markov category, both the conditional preorder and the restriction order
are subunital.

Proof. By counitality of copy.

______

d

Moreover, as the next proposition shows, the conditional preorder is the least subunital preorder
enrichment on a partial Markov category. This property will be useful in (§3.3) where we compare the
conditional preorder to the canonical orderings in our running examples.

Proposition 3.6 Let (C,<) be a preorder-enriched partial Markov category satisfying p < ex for all
effects p: X — I. Then, for any two parallel morphisms, f,g: X =Y, the following implication holds:

JEg = f<yg

An immediate consequence of this is that, if (<) is a poset-enrichment, then the conditional preorder is
also a poset, i.e. it is antisymmetric.

Proof. Let f C g be witnessed by 7: Y ® X — I. Then,
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3.2 Restriction and the conditional preorder
In this subsection, we relate the conditional preorder to the restriction order.

Lemma 3.7 Let C be copy-discard category, and let f,g : X — Y be two parallel morphisms. Then, f <g
implies f C g.

Proof. The conditional inequality f C g is witnessed by f§ey. a

The converse implication does not hold in general, see Example 3.13. However, under certain assumptions,
we can derive it for quasi-total maps.

Definition 3.8 (Sharp witness property) A partial Markov category, C, satisfies the sharp witness
property if each inequality, f C g, between parallel quasi-total morphisms, f,g: X — Y, is witnessed by a
deterministic effect r : Y @ X — I.

Proposition 3.9 Let C be a balanced copy-discard category that satisfies the sharp witness property. Let
f,9: X =Y be parallel quasi-total maps. Then, f T g if and only if f <g.

Proof. By Lemma 3.7, f < g implies f C g. For the other direction, we use balance and sharp witnesses.
Suppose f C g with a sharp witness r. Since f is quasi-total, we obtain:

==::

By balance, we obtain the equality below left. Then, by discarding the bottom output, we obtain the
equality (a) below right, which shows that f < g.

3.3 FExamples

We finish this section by instantiating the conditional preorder in our running examples.

Finitary subdistributions

Let f,g: X — D<1(Y) be two parallel substochastic channels in FinStoch<;. The inequality fC g holds
exactly when f is pointwise dominated by g; that is, for all y € Y and = € X, we have f(y | ) < g(y | x).
The category FinStoch<; also satisfies the sharp witness property. Consider two quasi-total morphisms,
f,g + X — D<1(Y), satistfying f T g. Then for all x € X either f(y | z) = 0 for all y € Y, or
fly|z)=g(y|x) for all y € Y. We can then define a sharp predicate r : ¥ ® X — D<(1) as below to
witness the inequality f C g.

0 iff(oy/|z)=0forally €Y
r(*|y,x):{1 f(y| ) Yy

otherwise .

Standard Borel spaces and subprobability kernels

One can define a pointwise order on parallel maps f,g : (X,0x) — (Y, 0y) in BorelStoch<; by setting
f<gifandonlyif f(T |z) < g(T | z) for all points z € X and measurable sets T' € oy. This pointwise
order is a subunital enrichment [5, Proposition 3.2.7. and Section 3.3.2.]. The next proposition shows that
the conditional preorder coincides with the pointwise order.
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Proposition 3.10 For any two parallel morphisms f,q: (X,o0x) — (Y, 0y) in BorelStoch<i, fC g if and
only if f <g.

Proof. (=) The first implication is immediate from Proposition 3.6.

(<) Let f < g pointwise. The Radon-Nikodym Theorem for kernels (see [32, Theorem 10]) states that
there exists an r : (Y,0y) x (X,0x) — [0,00] such that f(A|z) = [,7(y,x) - g(dy|z) for all measurable
sets A € o,. It only remains to show that one can pick r to be [0,1]-valued. Fix an z € X, and let
B, ={y €Y |r(y,x) > 1}. This B, is measurable. We show that g(B,|z) = 0. By assumption,

| rwo)- gty | 2) = F(Be | 0) < 9(Ba [ 2) = [ 1-gldy | o).
By definition of By, the converse inequality also holds, so [ r(y,z)-g(dy | ) = [5 1-g(dy | x). Let

4:(y) = (r(y,2) = 1) - x(y € By). Then ¢ > 0, and also [ ¢.(y) - g(dy | ) = 0. Therefore, g, is g(— | )
-almost-surely zero, and thus r(—,z) < 1, almost surely. We now set

_ [r(y,2), ifr(y,z) <1,
Ply,2) = {O, otherwise.
This p then satisfies 0 < p < 1, and f(A | x) = [, p(y,x) - g(dy | ) for all A € oy.
Finally, we check that p is jointly measurable. This is easy, since for any measurable 7' C [0, 1] we have

B ~(rTHT), if0¢T,
pHT) = {rl(T) Ur~1((1,00)), otherwise.

d

From the previous proposition it is easy to see that BorelStoch<; also satisfies the sharp witness
property. The argument is very similar to what we presented for FinStoch<;.

Cartesian restriction categories

We now instantiate Definition 3.1 in cartesian restriction categories. Such categories have a canonical
poset enrichment [8, §2.1.4], where f < g if and only if f < g. This means that f is a restriction of g on
a smaller domain. Since all morphisms are deterministic, cartesian restriction categories satisfy the sharp
witness property.

Proposition 3.11 In a cartesian restriction category, the conditional preorder and the restriction order
coincide: f T g if and only if f <g.

Proof. Since cartesian restriction categories are balanced and satisfy the sharp witness property, this is
immediate from Proposition 3.9. a

Cartesian bicategories of relations
Let us instantiate Definition 3.1 in cartesian bicategories of relations. These also have a canonical poset
enrichment where f < g means that f is a ‘subrelation’ of g, in the following sense:

f<g ifandonly if =. (1)

This presentation of the poset enrichment is equivalent to the usual one [27, Lemma 4.1.5]. The next
proposition relates the two orderings.
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Proposition 3.12 In a cartesian bicategory of relations, for two parallel morphisms f,g: X — A, fC g
if and only if f < g.

Proof. (=) We apply Proposition 3.6 because (
(<) If f <g (i), then we may take r = (id® f)

) is also subunital.
e and obtain that f C g by the Frobenius axioms (ii).

<
1

d

Every morphism in a cartesian bicategory of relations is quasi-total. However, since these categories
are not balanced, the restriction order may differ from the conditional preorder. The following example
demonstrates that this is indeed the case.

Example 3.13 Let R,S C N x N be morphisms in Rel, given by R = {(1,2)} and S = {(1,2),(1,3)}.
Then R < S, but R A S, since 6§ (R®(Sge)) =R#S.

Quasi-Markov categories
Quasi-Markov categories are copy-discard categories where all morphisms are quasi-total [14]. These
are poset-enriched with the restriction order [14, Proposition 2.16].

Proposition 3.14 In a quasi-Markov category with conditionals, for two parallel morphisms f,g: X — A,
fEgif and only if f =g.

Proof. A quasi-Markov category with conditionals is, in particular, a partial Markov category. By
Lemma 3.7, if f <g, then fCg. By Proposition 3.5, since every map is quasi-total, the restriction preorder
is subunital order enrichment. We can, then, apply Proposition 3.6 to obtain the other implication. a

4 Least conditionals

Asking partial Markov categories to have unique conditionals is too strong. In any partial Markov category
with unique conditionals, f ey = ggey implies f = g for all parallel maps f,g: X — Y [12]. As a special
case, Markov categories with unique conditionals are posetal, see [16, Remark 11.16].

However, once we have an order in partial Markov categories, there might be a canonical choice of
conditional, namely the smallest among all conditionals. In this section, we consider least conditionals
with respect to two orders on quasi-total maps: the conditional preorder (C) and the restriction order (=<).

Definition 4.1 (Least conditionals) Let f : X — Y ® Z be a morphism in a (locally small) partial
Markov category. Write Cf = {c: Z®@ X =Y | f = (f3(id®e)) <eAc=c} for the set of quasi-total
conditionals of f. Now, we say that a conditional, g € Cy, is

(i) a C-least conditional of f when it is a least element of C, ordered by the conditional preorder, (C);
(ii) or, a =<-least conditional of f if it is the least element of C; ordered by the restriction order (=).

By Lemma 3.7, every (=)-least conditional is a (C)-least conditional.

4.1 Least conditionals and copy-discard-compare categories

We demonstrate how least conditionals are related to the existence of comparators. We start by charac-
terizing conditionals of copy and identity maps in a copy-discard category.

Lemma 4.2 Let C be a copy-discard category.
(i) A morphism f: X @ X — X is a conditional of the copy dx: X — X ® X if and only if dx 3 f = idx.
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(ii) A morphism g: X ® X — I is a conditional of the identity idx: X — X if and only if dx 39 =€x.
Note that Condition (i) holds for the multiplication (ux) by definition of copy-discard-compare category.
Similarly, the definition of the cap (Nx) contains Condition ().

Proof. For point (i), suppose that dx § f = idx. Then, the defining equation of conditionals can be
derived as below left. Conversely, if f is a conditional of dx, then the middle equality on the right holds
by definition. Is then easy to see that 6x § f = idx.

:=={ Q

For point (ii), suppose that dx § g = e€x. Then, the defining equation of conditionals can be derived
as below left. Conversely, discarding the output on both sides of the equality on the left below shows
0x §$g = €x, as below right.

-yt - Ay

Lemma 4.3 Let C be a copy-discard category. If f: X ® X — X is a conditional of the copy dx: X —
X®X, then fsex: X @ X — I is a conditional of the identity map idx: X — X. Moreover, if f is the
=<-least conditional of dx then f $ex is the <-least conditional of idx.

d

Proof. By Lemma 4.2, fsex is a conditional of the identity. Now assume that f is the =<-least conditional
of the copy map, and let g: X ® X — I be a conditional of the identity. We have to show that fjex <g.
Let t = (idx ® dx) § (¢ ®idx). Step (a) below left uses that g is a conditional of the identity to show that
this ¢ is a conditional of the copy map dx. Since f is the =-least conditional of the copy map, dx, then
f =t (below right).

t 9]
B g e — <

Discarding both sides of the above equation yields f$ex < g. O
We are ready to show that, if they exist, comparators and caps are least conditionals.

Theorem 4.4 Let C be a copy-discard-compare category. The multiplication px: X @ X — X is the
=<-least conditional of the copy map dx: X = X ® X. The cap, Nx: X ® X — I, is the least conditional
of the identity idx : X — X with respect to the restriction order (X). By Lemma 3.7, ux and Nx are also
C-least conditionals.

Proof. By Lemma 4.2, ux and Nx are conditionals of the copy and identity maps, respectively. We show
that px is the <-least conditional of dx. Let f: X ® X — X be any conditional of the copy map. Using
(i) the Frobenius equations and (i7) Lemma 4.2, we show that f < ux.

{5 e es

By Lemma 4.3, the cap is the =<-least conditional of the identity. a
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Since =-least conditionals are unique, the following is an immediate consequence of the previous propo-
sition.

Corollary 4.5 A copy-discard category can admit at most one copy-discard-compare structure.

Next, we prove a converse to Theorem 4.4. We demonstrate that, under certain conditions, least
conditionals of copier maps give rise to a copy-discard-compare structure. As it turns out, one needs to
consider the restriction order < to prove the following proposition.

Theorem 4.6 Let C be a copy-discard category, and assume the following.

(i) All copy maps dx: X — X ® X have a =-least conditional, ux: X ® X — X. By Lemma 4.3, the
identity maps then also have =<-least conditionals Nxy = pux jex: X ® X — 1.
(ii) The family of conditionals Nx satisfy Condition (iv) of Definition 2.11.
In this situation, the conditionals Nx satisfy the axioms of caps. By Proposition 2.12, C is thus a copy-
discard-compare category.

Proof. We show that the equations (i)-(iii) of Definition 2.11 are satisfied. The equality (ii) dx ¢Nx = ex
holds by Lemma 4.2. We show commutativity. Using commutativity of the copy map and the equality in
Condition (i), we obtain that dx § ox x §Nx = ex also holds (below left). By Lemma 4.2, this implies
that ox x §Nx is also a conditional of idx. Therefore, Nx < ox x §Nx. We use this fact in steps (a) and
(c) below right. Step (b) applies naturality of the symmetries.

At last, we need to show equation (iii), whose two sides we name ¢ and u.

Using coassociativity of copy, equality (i) and counitality of copy, one can easily show that ¢t = id = d5u.
By Lemma 4.2, we obtain that both ¢t and u are conditionals of the copy dx: X — X ® X. We now prove
that ¢ = ux = wu. Steps marked with (a) use minimality of pux. Equations (b) use associativity and
commutativity of the copier. Steps (¢) use that Nx is quasi-total.

SRINCE o -

— —JtF
An]

(:):

This shows that C is a copy-discard category with caps, which, by Proposition 2.12, is also a copy-discard-
compare category. a

The following is an immediate consequence of the previous theorem and Proposition 3.9.

Corollary 4.7 Let C be a balanced partial Markov category that satisfies the sharp witness property.
Assume that the copier and identity maps have C-least conditionals px and Nx, and that the Nx maps
satisfy Condition (iv) of Definition 2.11. Then C is a discrete partial Markov category.
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4.2 FExamples

Proposition 4.8 The category FinStoch<; is balanced and satisfies the sharp witness property. Therefore,
<-least conditionals are the same as C-least conditionals. For a morphism f: X — A ® B, indicate the
total probability mass of the subdistribution f(— | ) with ||f(— | 2)|| = Xyep f(a,b' | x). The least
conditional cg : AR X — B of f is given by

(b | a,2) = {z”f?”m #1720,
0 #IF(= | )l =0.

The least conditional is the one that contains no ‘junk information’: for all elements x € X where f
has positive probability of success, ||f(— | z)|| # 0, the value ¢(b | a, z) is forced to be equal to ¢o(b | a, z),
for any conditional ¢ : A® X — B of f; for all elements x € X where f certainly fails, ||f(— | z)|| = 0,
then ¢(— | a,z) could be any subdistribution.

The category BorelStoch<; does not have all least conditionals. We demonstrate this via the following
example, adapted from [5, Remark 5.2.10].

Example 4.9 Let u be the Lebesgue-measure on the unit interval [0, 1], viewed as a morphism p : 1 —
[0,1]®1 in BorelStoch<;. Quasi-total conditionals ¢ : [0,1]®1 — 1 of u correspond to Lebesgue-measurable
subsets C' C [0, 1] such that for all measurable B C [0, 1], u(B) = u(BNC). The restriction order (<) and
the pointwise order (C) coincide on these conditionals, and translate to subset inclusion on measurable
subsets. For an a € [0, 1], the set C,, = [0,1] \ {a} satisfies u(B) = p(B N Cy) for all measurable B.
Therefore, a least conditional Cy must satisfy Cy C B, for all a € [0,1]. But such a Cj can only be the
empty set (), which does not satisfy p(B N () = u(B) for all measurable B. Therefore, a least conditional

of p cannot exist.

By Proposition 3.11, <-least conditionals are the same as C-least conditionals in a discrete cartesian
restriction category.

Proposition 4.10 Any discrete cartesian restriction category has least conditionals. Given a map f :
X — A® B, the least conditional of f is given by co = (iId® f) 3 ((n3e) ®id).

Proof. We check that this is indeed a quasi-total conditional. It is quasi-total because every morphism
is deterministic (7). We check the conditional equation using the partial Frobenius axioms (i).

e

Then, ¢y < c. O

To provide intuition, we explicitly describe least conditionals in Par. The situation is analogous to
FinStoch<;. Let f: X — A® B be a partial function. Suppose that f(x) = (a,b). Then, every conditional
c: A® X — B has to satisfy c¢(a,z) = b. However, for all o’ different from a, ¢(a’,z) can be anything.
Similarly, if f(z) is undefined, ¢(a’, z) can be arbitrary. The least conditional ¢ is undefined in all such
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cases and contains no ‘junk’.

cola, z) = b if f(z) is defined and f(x) = (a,b)
O™ ) undefined  otherwise

Proposition 4.11 Any cartesian bicategory of relations has =-least conditionals.

Proof. By Proposition 2.16, the morphism ¢y = (id ® f) ¢ ((1§¢e) ® id) is a quasi-total conditional of
f: X — A® B. Suppose there is another quasi-total conditional, ¢: A ® X — B, of f.

We use that (i) cis a conditional of f, and (i7) the Frobenius axioms of cartesian bicategories of relations
to show that ¢y < c. O

5 Updates increase validity

In its most general form, bayesian updating involves a prior distribution and a (fuzzy) evidence predicate.

From these inputs, one can compute a posterior distribution by incorporating the evidence into the prior.
Given a distribution ¢ and a predicate p, the validity of p in ¢ is a real number in the unit interval

[0,1]. This validity expresses the probability that the predicate p holds for a random sample from o.

A key property of bayesian updating is that the validity of the evidence is greater or equal in the
posterior than in the prior. A proof of this fact for discrete probability can be found in [18, Theorem 2.1].
Ultimately, the result is a consequence of the well-known Cauchy—Schwarz inequality. The Cauchy—Schwarz
inequality states that the square of the inner product of two vectors u, v € R™ is smaller than the product

of their squared norms: ,
() = (5,0) (5,9

The inequality also holds if we allow parameters x, y and z, thus considering families of vectors h : X — R"
f:Y > R" and g : Z — R". If we write f;(x) for f(x); (similarly for g and h) and let u; = \/hi(z) - fi(y)
and vj = \/hj(x) - gj(2), the Cauchy-Schwarz inequality becomes:

(ZZ hi(z) - fily) - gi(z)>2 < (ZZ hi(z) - fz'(y)Q) : (Z] hj(z) - gj(z)2> : (2)

We consider this general form and express it synthetically, using the conditional preorder.

Definition 5.1 (Cauchy—Schwarz inequality)A discrete partial Markov category satisfies the Cauchy
Schwarz inequality if, for all triples of morphisms h: X — A, f: A — Y, and g: A — Z, the following
inequality holds.

Example 5.2 Instantiating the above definition in FinStoch<; yields precisely the usual Cauchy-Schwarz
inequality (2). Therefore, FinStoch<; satisfies the synthetic Cauchy-Schwarz inequality.
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Example 5.3 The Cauchy—Schwarz inequality holds as equality in discrete cartesian restriction categories.

Example 5.4 Cartesian bicategories of relations satisfy the Cauchy—Schwarz inequality.

Proposition 5.5 A partial Markov category that satisfies the Cauchy—Schwarz inequality also satisfies the
inequality below, called the means inequality, for allu: X - A andv: A =Y.

pioioteatatie

Proof. Let h =u, f = v and g = e. We apply (i) the Cauchy—Schwarz inequality and (i) Proposition 3.5.

d

Remark 5.6 (QM-AM inequality) The means inequality owes its name to the inequality between the
weighted arithmetic and quadratic means of a vector of positive real numbers, x1,...,z, with weights

w1+ +wy, = 1.
2
o L2
<Zielwl xz> Sz:z‘elwZ Ti-

Example 5.7 The partial Markov category of substochastic channels, FinStoch<y, satisfies the means
inequality. In particular, if f is a state o : I — X, and g is a predicate p : X — I, then the means
inequality gives the well-known inequality between expectations of random variables, usually written as
E[X]? < E[X?].

With this setup, we can work towards a synthetic analogue of the validity-increase theorem. We start
by providing the relevant definitions.

Definition 5.8 (Validity) In a partial Markov category, the wvalidity of a predicate p: X — I with
respect to a prior o: I — X is the scalar obtained by composition, (o ¢p) : I — I.

We first prove a special case of the validity increase theorem for deterministic evidence.

Proposition 5.9 In a partial Markov category, updating a prior state o : I — X with a deterministic
predicate, p: X — I, increases the predicate’s posterior validity. That is,

ospCplsp.
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Proof. The conditional equation for the bayesian inverse is 0 §0x § (p ®idx) = (0 §p) ® pg. Therefore,

05dx 5 (p®idy) C ph; and, as a consequence, o §p = 0 §dx 3 (p®p) Cph3p.

7]
FO-FH -5 - EHPCEH
g

d

When the predicate p is not necessarily deterministic, we will need the means inequality and the
following notion of zero scalars.

Definition 5.10 Let C be a copy-discard category.

(i) A scalar s: I — I is called a zero scalar, if it satisfies s® f = s® g for all f,g: X — Y. Any scalar
that does not satisfy this property is said to be non-zero.

(ii) We say that the non-zero scalars in C are cancellative if s® f = s®g implies f = gforall f,g: X - Y
and non-zero scalar s : I — I.

Example 5.11 We show that non-zero scalars in BorelStoch<; are cancellative. Scalars in BorelStoch<
correspond to elements of the unit interval [0, 1]. Given a subprobability kernel f : (X,ox) — (Y, 0y ), the
tensor product s ® f is given by pointwise multiplication with s € [0,1]. That is for x € X and A € oy,

(s@ f)(Alx)=s-f(A]z)

Clearly, if s # 0, then s ® f = s ® g implies f = g for parallel subprobability kernels f and g¢. Similarly,
non-zero scalars in FinStoch<; are also cancellative.

Lemma 5.12 Let C be a copy-discard category whose non-zero scalars are cancellative. Then, the following
cancellation property holds for the conditional inequality. If s : I — I is a non-zero scalar and f,g : X =Y,
then s® fC s ® g implies f C g.

Proof. Let s® f L, s®g. Then, by definition f® s = (s®g)<dr = s® (g<r). By cancellativity, f = g<r,
and thus f C, g. a

Theorem 5.13 Let C be a partial Markov category that satisfies the means inequality and whose non-zero
scalars are cancellative. Then, updating a prior state with a predicate increases the predicate’s validity in
the posterior. That is, forallo: I — X andp: X — I,

a;pgpggp.

Proof. We apply the means inequality in the following calculation.

Since the non-zero scalars are cancellative, we conclude that o §p C pj, s p, because the scalar is either zero
or cancellative. a

Notably, FinStoch< satisfies the assumptions of the previous theorem. Therefore, we have synthetically
recovered Jacobs’ “updates increase validity” [18, Theorem 2.1]. Also observe that the proof of Theorem
5.13 does not rely on the full power of the means inequality. The instance we used in the proof of Theorem
5.13 holds in BorelStoch<;, as the following example demonstrates.
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Example 5.14 Let (X,0x) be standard Borel, and g a subprobability measure on X. The collection
of u-integrable functions X — R, quotiented by p-almost-sure equality, forms a real inner product space
with inner product (p,q) = [ p(z) - q(x) - p(dz). Therefore, one can apply the Cauchy—Schwarz inequality
to get

([ #@) )" = .23 < o) (exoexd = ([ @ (@) - ([ 1-n(de)) < [ pla)? - tda).

6 Concluding remarks

We introduced a novel preorder enrichment in the general setting of partial Markov categories; we showed
that it generalizes the canonical preorder enrichments of two categories of probability kernels, cartesian
restriction categories, and cartesian bicategories of relations. We showed how comparators relate to least
conditionals of copier maps. We axiomatized the Cauchy—Schwarz inequality and the quadratic-arithmetic
means inequality. From these, we abstractly derived the fact that Bayesian updating increases the validity
of the evidence in the posterior.

Further exploration of the basic theory of the conditional inequality is warranted. One interesting
question is about antisymmetry of the order, which is related to inverses of scalars. An inverse of s : [ — [
is a scalar s~ : I — I such that s ® s7! = 7. Clearly, conditional inequality is antisymmetric only if
the only scalar with an inverse is 7. It is an open question whether the converse statement holds. It
would also be interesting to find necessary conditions for the conditional preorder to form an enrichment.
Relatedly, the synthetic formulation of the Cauchy—-Schwarz inequality and the means inequality opens
the way for a more refined axiomatization: can we derive both from some more fundamental principle?

Finally, a potential application of the synthetic means inequality lies in mixing it with the additive
structure of some partial Markov categories, like effectuses with copiers [7]. In that setting, it may be
possible to develop a synthetic theory of variance and covariance.
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