
Electronic Notes in Volume 5
Theoretical Informatics Proceedings of
And Computer Science https://entics.episciences.org MFPS 2025

The Functional Machine Calculus III: Control

Willem Heijltjes

Department of Computer Science
University of Bath
United Kingdom

Abstract

The Functional Machine Calculus (Heijltjes 2022) is a new approach to unifying the imperative and functional programming
paradigms. It extends the lambda-calculus, preserving the key features of confluent reduction and typed termination, to embed
computational effects, evaluation strategies, and control flow operations. The first instalment modelled sequential higher-order
computation with global store, input/output, probabilities, and non-determinism, and embedded both the call–by–name and
call–by–value lambda-calculus, as well as Moggi’s computational metalanguage and Levy’s call–by–push–value. The present
paper extends the calculus from sequential to branching and looping control flow. This allows the faithful embedding of a
minimal but complete imperative language, including conditionals, exception handling, and iteration, as well as constants and
algebraic data types.
The calculus is defined through a simple operational semantics, extending the (simplified) Krivine machine for the lambda-
calculus with multiple operand stacks to model effects and a continuation stack to model sequential, branching, and looping
computation. It features a confluent reduction relation and a system of simple types that guarantees termination of the
machine and strong normalization of reduction (in the absence of iteration). These properties carry over to the embedded
imperative language, providing a unified functional–imperative model of computation that supports simple types, a direct
and intuitive operational semantics, and a confluent reduction semantics.

Keywords: lambda-calculus, computational effects, exception handling, simple types

1 Introduction

An interesting challenge in programming language theory is to find good ways of extending the λ-calculus
with computational effects. The λ-calculus, established by Landin’s seminal work [34,35] as the basis of
the functional programming paradigm, gives a canonical treatment of higher-order functions that sets the
standard for good semantic properties such as compositionality, referential transparency, and type safety.
However, these do not readily extend to effects. The imperative paradigm, meanwhile, sets expectations
for a treatment of effects: a clear syntax with a direct, intuitive operational meaning and the seamless
integration of multiple effects.

The overarching aim of the challenge is thus to reconcile both paradigms. This requires a unified
model of computation that naturally accommodates both higher-order functions and sequential operations,
while supporting types, a confluent reduction semantics, and other means of reasoning. In line with the

1 Email: w.b.heijltjes@bath.ac.uk
2 Thanks to Ohad Kammar, Guy McCusker, Olivier Laurent, and Nicolas Wu for discussions and feedback.

Rec’d Apr 3,2025; Pub’d Dec 15,2025 Proceedings Available Online at © W. Heijltjes

10.46298/entics.16682 ENTICS MFPS 41 Proceedings cb Creative Commons

https://entics.episciences.org
mailto:w.b.heijltjes@bath.ac.uk
https://doi.org/10.46298/entics.16885
https://doi.org/10.46298/entics.proceedings.mfps41
https://creativecommons.org/licenses/by/4.0/

9–2 FMC III: Control

ambition of these requirements, approaches to address this challenge include some of the most influential
developments in the field, such as Moggi’s account of effects as monads [44], Levy’s call–by–push–value
(cbpv) [38], and Plotkin and Pretnar’s effect handlers [51].

The Functional Machine Calculus (FMC) is a new approach to this challenge. The idea is to take
the Krivine Machine [32] seriously as the notion of sequentiality in the λ-calculus. This provides a direct
operational semantics in a simple abstract machine with a single stack, where application is push, abstrac-
tion is pop, and variable is execute. The design principle is then to extend the machine in natural and
minimal ways to capture a wide range of imperative features, maintaining the calculus simultaneously as
a direct instruction language for the machine, and as a calculus that supports confluent reduction and
simple types: a “machine calculus”, a machine language that is also a calculus. Previously, the following
two extensions were introduced [3,20].

Sequencing The λ-calculus is extended with imperative sequencing and skip, its unit, as composition
and identity for stack operations. This gives a model of higher-order sequential computation that
encompasses both call–by–name and call–by–value behaviour. It faithfully embeds Plotkin’s call–by–
value (cbv) λ-calculus [52], Moggi’s computational metalanguage [44], and Levy’s cbpv [38]. Sequencing
is implemented on the machine in standard fashion with a continuation stack (elided in the original
presentation but introduced in [2,23]).

Locations The machine is generalized from one to many operand stacks, each named by a location and
directly accessed through push- and pop-instructions. These may then model various computational
effects: mutable higher-order store as stacks of depth one; input/output as pop-only and push-only
streams; and probabilities and non-determinism as probabilistically, respectively non-deterministically
generated streams.

This paper presents the following third extension.

Control The machine is generalised from strictly sequential to branching and looping control flow. The
skip command is replaced with a set of choice labels, each indicating a branch of the computation, while
sequencing becomes conditional on a choice, composing on the given branch only. A loop construct is
introduced that repeats on a given choice and exits otherwise. Computationally, choice labels represent
constants, exceptions, and data constructors. Various notions of control flow then embed into the FMC:
exception handling, conditionals and more generally algebraic data types, and iteration with escape.

What these control constructs have in common is that, semantically, they are modelled by sums or co-
products. The exception monad TX = E + X is the coproduct of the value type X with a type E for
exceptions. The data type of booleans is the sum 1+1 and a conditional is a co-diagonal [f, g] : 1+1 → X,
which algebraic data types generalise to sums of products indexed by named constructors. Iteration is
modelled by taking a morphism f : A → A+B to one iter f : A → B, which loops on A and exits on B [7]
(the construction is semantically dual to recursion [58]).

The purpose of this paper is to capture these constructs in the FMC with a minimal and natural
extension to the machine and the calculus. The concrete contributions are the calculus itself, its small-
step operational semantics in the extended stack machine, a big-step operational semantics, a confluent
reduction relation, and a notion of simple types that (in the absence of loops) guarantees successful
termination of the machine and strong normalization of reduction. The proofs of these properties moreover
employ standard techniques, in straightforward but, in some cases, novel ways. Confluence (Section 6)
is by parallel reduction [63]. Machine termination (Section 8) is by a reducibility argument [62] with a
direct induction on typing derivations, without the combinatorial reasoning typical of strong normalization
proofs. Strong normalization (Section 9) is by extending big-step evaluation to count transitions on the
machine, and then demonstrating that reduction shortens machine evaluation, thus separating the logical
content (again by reducibility) from the combinatorics (comparing reduction against the machine).

The FMC itself is a minimal language of six syntactic constructs, each representing a natural instruction
on a simple machine with multiple operand stacks and one continuation stack. It nevertheless faithfully
embeds a complete imperative language with store, exception handling, and loops, as well as the cbv
λ-calculus [52], the computational metalanguage [44], and cbpv [38]. Moreover, these embeddings are by

Heijltjes 9–3

macro-expansion, where the encoded constructs are given as definitions (or syntactic sugar) over FMC
terms. As a consequence, confluent reduction and simple types are directly conferred on imperative
constructs. This suggests that, in Levy’s terminology [37], these embeddings may be conjectured to be
subsuming : the semantics of the encoded constructs is expected to arise as that of their FMC encoding.
This is immediate for the operational semantics, as presented in this paper. It was recently confirmed
for intersection types: established notions of intersection typing for store [10,12] arise naturally via the
embedding of store in the intersection-typed FMC with sequencing and locations [22]. Other notions of
semantics will be investigated in future.

More specifically, the FMC is a new solution to the problem of combining multiple effects. Both user-
defined monads such as state TX = S → (S×X) and user-defined effect handlers support confluence and
types, by encoding effects into the λ-calculus with inductive data types. But monads do not compose, and
require monad transformers to combine multiple effects [40] (their limitations are discussed in [30]). Effect
handlers create a two-layered system, separating the handlers from the effect operations, in particular
complicating the treatment of exceptions since raising is an effect operation while catching is a handler.
As a consequence, translating imperative constructs into monads or handlers is more involved. The main
contribution of the FMC is to allow a direct embedding of a minimal but complete imperative language,
seamlessly combining multiple effects within a minimal, typed functional calculus.

While monads are universal for effects, and handlers for algebraic effects [50], the FMC as presented
here covers a substantial but fixed set of effects only. This is being addressed in a present line of enquiry
by introducing effect handlers into the FMC, which appears a very natural combination. Independent of
the present control extension, the sequential FMC has been extended with non-deterministic branching for
relational computation [2], and probabilistic branching to capture probabilistic choice in the λ-calculus [23].
This generalises to an “algebraically” branching FMC that fits neatly into the effect handlers paradigm:
branching is given by abstract effect operators, which are interpreted computationally by handlers [51].
Interesting questions then arise regarding the relation between the different notions of branching, the
“algebraic” approach versus the present control extension, and how each encodes effects. These will be
considered in future work.

The next three sections will introduce the terms and types of the FMC informally and explore the
connections with related work, while the remaining sections will present the formal development. Starting
from the λ-calculus, the three extensions sequencing (Section 2), locations (Section 3), and control (Sec-
tion 4) will be covered in turn, while building up the interpretation of an imperative language complete
with store, conditionals, exceptions, and loops. The calculus will be illustrated and motivated through
an informal presentation of its operational semantics; the abstract machine itself is given in Section 5 at
the start of the formal development. The formulation of sequencing and locations has matured since the
original presentation [20], mainly due to the requirements of the present control extension. A preliminary
version was presented at MFPS 2024 [21].

2 Sequencing

The Krivine Abstract Machine (KAM) [32], here in a form that uses substitution rather than environments,
gives a natural perspective of λ-terms as stack operations, where application pushes and abstraction pops.
To emphasize this view and to accommodate the extensions of the FMC, application M N is written
[N].M (“push N”, c.f. Levy’s V ‘M [38]) and abstraction λx.M is written ⟨x⟩.M (“pop and bind to x”).
The operational semantics of a term M acting on a stack S will be depicted as follows.

S
M

Writing a stack with the head to the right, as SM , below left is the evaluation of [N].M , which pushes
N to the stack S and continues by evaluating M . On the right, ⟨x⟩.M pops the first term N off the stack

9–4 FMC III: Control

and substitutes it for x in the remaining computation, as {N/x}M .

[N].M : S
[N]

S N
M ⟨x⟩.M : S N

⟨x⟩
S

{N/x}M

Note that the result of the computation is left implicit. This is because the KAM returns the first term
without a transition, which is either a (free) variable or an abstraction with an empty stack, while the FMC
takes a different approach: FMC terms return the stack. This is effected by the sequencing extension,
which introduces imperative skip (⋆) and sequencing (M ;N) as the identity and composition of terms as
functions on stacks (or rather partial functions, because of non-termination).

⋆ : S
⋆

S M ;N : R
M

S
N

T

While natural from the perspective of the machine, this notion of sequentiality represents a significant
conceptual departure from the traditional λ-calculus. Skip indicates successful termination, as it does
in imperative models, and returns the stack, enabling the view of terms as partial functions on stacks.
Sequential composition (M ;N) is then the natural notion of composition, and likewise has its standard
imperative meaning, first evaluateM then evaluate N . Both represent a departure from traditional notions
of termination and composition in λ-calculus, but are commensurate with sequentiality in cbpv and the
computational metalanguage, as will be explored below.

Introducing both constructs into the λ-calculus gives the sequential λ-calculus, a fragment of the FMC.

M, N ::= x | ⟨x⟩.M | [N].M | ⋆ | M ;N

The extension gives terms for natural stack operations: e.g. ⟨x⟩. [x]. [x]. ⋆ duplicates the head of the stack,
⟨x⟩. ⋆ deletes it, ⟨x⟩. ⟨y⟩. [x]. [y]. ⋆ exchanges the top two elements, and ⟨x⟩. x (the traditional identity term)
pops and executes the first stack element. Note that since stacks are last–in–first–out, terms of the form
⟨x1⟩. . ⟨xn⟩. [xn]. . [x1]. ⋆, with the order of variables reversed between popping and pushing, return an input
stack (of depth at least n) unchanged. By way of example, below is the evaluation of ⟨f⟩. ⟨g⟩. (f ; g) which
pops and executes the first two stack elements.

⟨f⟩. ⟨g⟩. (f ; g) : RN M
⟨f⟩

RN
⟨g⟩

R
M

S
N

T

The present formulation of the calculus differs from the original [20,3]. This had the variable construct as
a prefix, x.M , and composition M ;N as a defined operation, promoting a view of terms as sequences of
pushes, pops, and variables. Taking skip and sequence as primitives is now preferred, for its clear and direct
combination of λ-calculus with sequential computation, and as a prerequisite for the control extension of
this paper. Both formulations are essentially interchangeable: the previous sequential variable x.M is a
restriction of sequential composition as x ;M , and the previous sequencing operation is implemented here
through the reduction relation (see Section 5).

Higher-order stack calculi similar to the sequential λ-calculus have appeared before. Notable are
Hasegawa’s κ-calculus [19], revisited by Power and Thielecke [53], a study of compiler languages by Douence
and Fradet [13], and the concatenative programming paradigm [24], meaning higher-order stack languages
such as λ-Forth, Joy, and Factor [48]. Typing, explored next, is familiar from several of the above calculi
and languages, and from other stack languages like WebAssembly [56].

2.1 Stack typing

Types for the sequential λ-calculus follow the view of terms as functions on stacks. A type is an implication
σ ⇒ τ between type vectors σ and τ , which represent the types of the input and output stacks, as below.
The empty type vector is ε. The antecedent vector σ of a type σ ⇒ τ is implicitly reversed, so that identity

Heijltjes 9–5

types σ ⇒ σ follow the shape of identity terms, σ1 . . .σn ⇒ σn . . .σ1.

σ, τ ::= σ ⇒ τ σ, τ ::= τ1 . . .τn

The intuitive meaning of a type assignment M : σ ⇒ τ is then as follows: for any stack S typed by σ the
term M will evaluate successfully and return a stack T typed by τ . This is formalized as a reducibility
predicate in Section 8 to prove termination of the machine.

M : σ ⇒ τ =⇒ ∀S : σ. ∃T : τ . S
M

T

Typical of stack typing is further the notion of stack expansion: a term M : σ ⇒ τ may also be typed
M : σ ρ ⇒ ρ τ , since if M evaluates with a stack S, it also evaluates with a larger stack RS (using juxta-
position for concatenation), leaving R untouched.

S
M

T =⇒ RS
M

RT M : σ ⇒ τ =⇒ M : σ ρ ⇒ ρ τ

Semantically, stacks are products of terms, and the calculus forms a strict Cartesian closed cate-
gory [3], where morphisms are closed terms, identity is ⋆ : τ ⇒ τ , and composition is M ;N : ρ ⇒ τ for
M : ρ ⇒ σ and N : σ ⇒ τ . Other example morphisms are a projection ⟨x⟩. ⟨y⟩. [x]. ⋆ : στ ⇒ σ, a diagonal
⟨x⟩. [x]. [x]. ⋆ : τ ⇒ ττ , and a terminal map ⟨x⟩. ⋆ : τ ⇒ ε. Interestingly, in this interpretation the tradi-
tional identity term λx.x becomes eta/eval ⟨x⟩. x : (σ ⇒ τ) σ ⇒ τ .

Typing is conservative over simple types for the λ-calculus. These embed as input-only types τ ⇒ ε,
with empty output vector, in accordance with the observation that skip is needed to yield a return stack.
The base type o is interpreted as ε⇒ ε, and the arrow type σ → τ adds a further input type σ to the
antecedent vector of τ , as given below. The overall picture is given by τ1 → . . . → τn → o = τ1 . . .τn ⇒ ε.

o = ε⇒ ε σ → (τ ⇒ ε) = σ τ ⇒ ε

Two further observations will be made that set the sequential λ-calculus apart from the λ-calculus. Firstly,
all types are inhabited (see [20, Remark 3.7] and Proposition 7.6). In particular, the embedded base type
o = ε⇒ ε is inhabited by ⋆. Secondly, the calculus has a natural first-order restriction, an internal language
for Cartesian categories, as follows (see also [19]). This is expanded to a model of relational computation
in [2].

M, N ::= ⟨x⟩.M | [x].M | ⋆ | M ;N

2.2 Expressing evaluation strategies

Along the same lines as previous higher-order stack calculi [13,53], the sequential λ-calculus embeds
Plotkin’s cbv λ-calculus [52] and Moggi’s computational metalanguage [44]. The key idea in both in-
terpretations is that values, respectively return values, are returned on the stack. The former then embeds
as below left, using subscript −v to distinguish it from the call–by–name calculus, with @v for application.
This is a typed embedding, with types for values embedded as σ →v τ = σ ⇒ τ and for computations as
τ v = ε⇒ τ . The latter embeds as below right, likewise passing a single return value on the stack, and
again this is typed, with σ1 → . . . → σn → T (τ) for a monad T embedding as σ1 . . .σn ⇒ τ .

xv = [x]. ⋆ returnM = [M]. ⋆

λvx.M = [⟨x⟩.M]. ⋆ letx = M inN = M ; ⟨x⟩. N
@v M N = N ;M ; ⟨x⟩. x

The embedding of @v evaluates as illustrated below, where N returns the value V and M returns λy.P .
First, N and M are evaluated, pushing V and ⟨y⟩. P to the stack; then ⟨y⟩. P is popped, and executed
with V as its first argument on the stack, popping V as y and finally evaluating {V/y}P to some value

9–6 FMC III: Control

W . Note that this evaluates the argument before the function; the other way around is by the translation
taking @v M N to M ;N ; ⟨y⟩. ⟨x⟩. [y]. x.

N ;M ; ⟨x⟩. x : S
N

S V
M

S V (⟨y⟩. P)
⟨x⟩

S V
⟨y⟩

S
{V/y}P

SW

The sequential λ-calculus implicitly features the value/computation distinction of Levy’s cbpv [38],
with the operand stack holding values. Making these explicit yields the variant of the calculus below, into
which cbpv embeds in the same way as the computational metalanguage. It distinguishes value terms V
and computation terms M , mediated by thunk and force constructs !M and ?V . The first-order calculus
then arises by removing thunks !M as values, leaving only variables, and forced values ?V as computations.

V , W ::= x | !M M, N ::= ?V | ⟨x⟩.M | [V].M | ⋆ | M ;N

In the monadic setting and cbpv, sequencing is modelled by the return- and let-constructs, which pass
a single return value. The translation interprets these as skip and sequence, with the return value passed
on the stack. All three calculi thus express essentially the same notion of sequentiality. This is made
clearer still with the monadic bind notation of Haskell, which is interpreted directly as M N = M ;N .
The sequential λ-calculus may thus be viewed as a generalization of cbpv where sequencing passes the
entire argument stack instead of a single value. This interpretation, that ⋆ passes all return values rather
than no values, is expressed in the reduction semantics by the following rules.

([M]. N) ;P [M]. (N ;P) (⟨x⟩.M) ;N ⟨x⟩. (M ;N) (x /∈ fv(N))

R
[M]

RM
N

S
P

T RP
⟨x⟩

R
{P/x}M

S
N

T

These implement the idea that sequencing and prefixing in push- and pop-actions express the same no-
tion of sequentiality, in accordance with the operational semantics. Together with standard β-reduction
[M]. ⟨x⟩. N {M/x}N and the rule ⋆ ;M M , the interpretation of a let-redex then reduces as follows.
This demonstrates how values pushed before ⋆ are passed on to the next computation.

letx = returnM inN = ([M]. ⋆) ; ⟨x⟩. N [M]. (⋆ ; ⟨x⟩. N) [M]. ⟨x⟩. N {M/x}N

Like the computational metalanguage and cbpv, the sequential λ-calculus may be may be extended
with effect operators as well as constants, primitive operations, exceptions, etc. to give a model of higher-
order computation with effects. The FMC however takes a different approach. Instead of introducing new
primitives for effects, the machine and the existing constructs are generalised in subtle and minimal ways,
so that effects and control flow may be modelled while preserving confluent reduction and typeability. The
two generalisations, locations and control, are explored next.

3 Locations

To capture effects, the machine is generalised from one operand stack to multiple, named stacks, indexed
in a global set of locations A = {λ, a, b, c, . . . }, with λ indicating the original or default stack. Pop- and
push-actions are parameterised in a location to operate on the designated stack, as a⟨x⟩.M and [N]a.M .
The default location λ will be omitted from the notation to retain the previous ⟨x⟩.M and [N].M . This
constitutes the FMC as previously published [20] (modulo the choice of primitives for sequencing).

M, N ::= x | a⟨x⟩.M | [N]a.M | ⋆ | M ;N

Terms now operate on a family of stacks SA = {Sa | a ∈ A} called a memory, where only a finite number
of stacks are non-empty. Since a given term uses only a fixed, finite number of locations, in each particular

Heijltjes 9–7

case A itself may be considered finite. For easier manipulation, a memory will be written as a sequence of
terms indexed by locations, a(M), where terms on different locations may permute:

SA ::= a1(M1) . . . an(Mn) where a(M) b(N) = b(N) a(M) if a ̸= b

Pushing M to the stack Sa in the memory SA is then written SA a(M). The operational semantics of the
indexed push- and pop-actions is as follows.

[N]a.M : SA

[N]a
SA a(N)

M
TA a⟨x⟩.M : SA a(N)

a⟨x⟩
SA

{N/x}M
TA

The reduction semantics expresses the independence of stacks on different locations by the following two
rules. The first is the regular β-step from λ-calculus, when a push meets a pop on the same location. The
second, passage rule gives the case when the locations are distinct, resolved by permuting both operations
past each other, in search of a counterpart that does match. (Note that the positioning of the location
label indicates on which side the operation interacts.)

[N]a. a⟨x⟩.M {N/x}M [N]b. a⟨x⟩.M a⟨x⟩. [N]b.M (a ̸= b, x /∈ fv(N))

Instead of the above two rules, the original presentation of the FMC [20] featured a single rule that
allowed matching push- and pop-actions to interact at a distance, ignoring other actions in between. The
present formulation is now preferred: the rules are simpler, they give better normal forms where pop-
actions precede push-actions, and they give a better equational theory, as follows. With η-equivalence
M ∼ a⟨x⟩. [x]a.M where x /∈ fv(M), reduction equivalence gives the following equations, completing the
intuitive idea that push- and pop-actions on distinct stacks are interchangeable.

a⟨x⟩. b⟨y⟩.M ∼ b⟨y⟩. a⟨x⟩.M [P]a. [N]b.M ∼ [N]b. [P]a.M

This equational theory then captures the algebraic theory for global store of Plotkin and Power [50], via
the encoding of store given below (see [20]).

Typing generalises along the same lines as memories, from one to many type vectors for input and
output, indexed in the set of locations A. A memory type, written τ , is a family of type vectors in A,
and like a memory, may be written as a sequence modulo permutation on distinct locations, as below. A
type is then an implication between memory types, σ ⇒ τ . The empty memory type is written ε, and as
with terms, the main location λ may be omitted, so that the notation is conservative over that for the
sequential λ-calculus.

σ, τ ::= σ ⇒ τ τ ::= a1(τ1) . . .an(τn) where a(σ) b(τ) = b(τ) a(σ) if a ̸= b

3.1 Modelling effects

Stacks model higher-order store, input/output, and probablistic choice as follows.

c := M = M ; ⟨x⟩. c⟨ ⟩. [x]c. ⋆ : c(τ)⇒ c(τ) printM = M ; ⟨x⟩. [x]out. ⋆ : ε⇒ out(τ)

!c = c⟨x⟩. [x]c. [x]. ⋆ : c(τ)⇒ c(τ) τ read = in⟨x⟩. [x]. ⋆ : in(τ)⇒ τ

sample = rnd⟨x⟩. [x]. ⋆ : rnd(τ)⇒ τ

For higher-order store, a mutable variable c is represented by a location, with update c :=M and lookup !c
as below left. Updating evaluates M , leaving the result N on the main stack; this is popped as x; then c
is cleared by popping and discarding the value P , where the underscore () represents a variable that may
not occur; and finally N (substituted for x) is pushed to c.

SA c(P)
M

SA c(P)λ(N)
⟨x⟩

SA c(P)
c⟨ ⟩

SA

[N]c
SA c(N)

9–8 FMC III: Control

Lookup !c pops the value from c as x; restores it by pushing; and returns it on the main stack. Note that
these encodings are familiar from Concurrent Haskell’s MVars [49]. The stack for c is assumed to hold at
most one term, but this need not be enforced explicitly since the encoding of the operations preserves it.

Input/output is modelled by two dedicated locations in and out, with read and print operations as
above. The in stack should allow only to pop but not push, and out only to push, which is again maintained
by the encoding. Probabilistic choice is similar to input, with a location rnd representing a random number
generator. The embeddings give a call–by–value semantics, returning a value to the stack in the case of
lookup, read, and sample, and in the case of update and print first evaluating the argument M : ε⇒ τ ,
which leaves a single value of type τ on the main stack.

Untyped, the FMC provides an operational semantics to effect operators, and is able to express their
call–by–name as well as their call–by–value interpretation. The simple types imposed by the translation are
an innovation of the FMC, and agree with known intersection types for store [10,12,22]. Typing for store is
further similar to the state monad T (τ) = σ→ (σ × τ), but parameterized in a location c, with the type for
lookup as c(σ)⇒ c(σ) τ and that for update as c(σ)⇒ c(σ), corresponding to T (1) = σ → (σ × 1). Notable
however is that extending a computation with a store c in the FMC is not given by a transformation
from τ to c(σ)⇒ c(σ) τ , but from ρ ⇒ τ to c(σ) ρ ⇒ τ c(σ). It is thus not a state monad in the traditional
sense, which is one reason why the FMC avoids the compositionality problem of the monadic approach.
A final observation here is that for higher-order store, typing mutable variables themselves, as c : σ, does
not guarantee termination, since it allows Landin’s Knot [34], the fixed-point combinator c :=F (!c) ; !c, to
be typed. The above type systems (intersection types, the state monad, and FMC typing) avoid this by
typing both the input and output effect of store operations, which does enforce termination properties.

The locations of the FMC are akin to the channels of process calculi [43], as demonstrated by the
encoding of input/output, and indeed channels are used in concurrency theory to encode store [26,55].
Future work will consider locations as channels for a message-passing concurrent FMC. Locations are also
similar to the µ-variables of λµ-calculus [47], which likewise are names for stacks [60]. However, λµ-calculus
abstracts over these, reifing stacks as values, a sufficiently different mechanism to the FMC that neither
calculus readily encodes the other.

4 Control

The contribution of the present paper is to extend the FMC to branching and looping computation,
enabling the embedding of control flow operations including conditionals, exception handling, and loops.
Skip (⋆), signifying successful termination, is generalized to a set of choices {⋆, i, j, k, . . . } which name the
potential branches of a computation, similar to exceptions or exit codes. Sequential composition (M ;N) is
generalized accordingly, to a case M ; i→N which composes only on the chosen branch i: it first evaluates
M , and if this exits with i it continues with N , discarding it otherwise. Again for syntactic conservativity,
sequencing is defined as M ;N = M ; ⋆ →N . Finally, a loop construct M i is introduced, which repeats M
for as long as it exits with i, and terminates otherwise. The full calculus is then as follows.

M, N ::= x | [N]a.M | a⟨x⟩.M | i | M ; i→N | M i

In the operational semantics computations return a memory together with a choice. Choice, case, and loop
terms evaluate as follows, where i ̸= j.

i : SA
i

SA, i M ; i→N :

RA
M

SA, i
N

TA, k

RA
M

SA, j
M i :

RA
M

SA, i
M i

TA, k

RA
M

SA, j

4.1 Expressing control flow

Constructions for control flow are embedded as follows. Below left, the choice and case terms themselves
are the standard throw and try/catch of exception handling, with an exception e as a choice label. Below

Heijltjes 9–9

right, the boolean constants are encoded as choice terms pushed onto the stack. A conditional evaluates
the condition, pops the (expected) boolean from the stack, and uses it as a choice to select the matching
branch. Note that case associates left, M ; i→N ; j→P = (M ; i→N) ; j→P .

throw e = e ⊤ , ⊥ = [⊤]. ⋆ , [⊥]. ⋆

tryM catch eN = M ; e→N if B thenM elseN = B ; ⟨x⟩. x ; ⊤→M ; ⊥→N

The encoding of the booleans gives the general pattern for modelling constants and primitive operations.
Primitive data such as bounded integers are modelled by a finite set of choices {c1, . . . , cn}, each represent-
ing a constant. A constant as an expression is encoded by pushing the choice to the stack, and functions
on contants such as addition and multiplication are constructed from case switches, interpreted as below.

ci = [ci]. ⋆ caseM of {c1 7→ N1, . . . , cn 7→ Nn} = M ; ⟨x⟩. x ; c1→N1 ; . . . ; cn→Nn

These interpretations impose a call–by–value semantics on the encoded constructs, which follows the
principle that exceptions are choices as computations, while constants are choices as values. The operational
behaviour of the encoding is correct as long as constants and exceptions are modelled by distinct choice
labels; then in the above interpretation of the case switch, an exeption in some Nk cannot match a later
constant cm.

The loop construct M i encodes iteration, as expressed by its operational semantics and its rewrite rule,
M i M ; i→M i. The use of the case construct to model iteration means that if M exits with any other
choice j ̸= i this terminates the loop. Exceptions as choices in M then behave as expected. Escape clauses
such as break and return may likewise be modelled by choices, to be caught outside the loop. Where
M i is naturally a “do M while i” loop, the escape mechanism allows easy while-do loops as well. In the
encodings below right, the do–while loop repeats for the ⊤-choice of the boolean B, while the while–do
loop repeats if M terminates correctly with ⋆. Both catch the ⊥-choice of B and a break-choice as correct
loop escapes (but omit to catch a return clause).

break = break do M while B = (M ; B ; ⟨x⟩. x)⊤ ; ⊥→ ⋆ ; break→⋆

return M = [M]. return while B do M = (B ; ⟨x⟩. x ; ⊤→M)⋆ ; ⊥→ ⋆ ; break→⋆

4.2 Control types

The static semantics of the new constructs is that of a choice-indexed sum: computation may follow a
finite number of possible branches, each labelled with a choice and returning a different memory. Typing is
adjusted by changing output types to sums of memory types, as follows. The notation mirrors the syntax
of terms ending in a choice, and sum types are considered moduly symmetry.

σ, τ ::= σ ⇒ τI τI ::= τ i1 .i1 + . . . + τ in .in where I = {i1, . . . , in}

The meaning of a typing judgement M : σ ⇒ τI is that given an input memory SA : σ evaluation returns
a memory TA : τ i for some i ∈ I — if it terminates, which is guaranteed in the absence of the loop
construct, but not in its presence. Types thus guarantee progress in the general case (Proposition 7.5) and
termination in the loop-free case (Theorem 8.4). The interpretation of types supports the following two
properties. Below left is sum expansion: a term with return type σI may also be typed with any larger
return type σI + τJ , where the sum notation implicitly assumes I ∩J = ∅. Below right is stack expansion:
as before, a term that evaluates with a memory ρ may also use a larger memory σ ρ, leaving the additional
memory σ unchanged in each branch of the computation. Implementing this, the notation σ τI prefixes
the memory type σ to each τ i in τI , taking the summand τ i.i to σ τ i.i. Since stacks are products this
represents the familiar distribution law A× (B + C) = (A×B) + (A× C).

M : ρ ⇒ σI =⇒ M : ρ ⇒ σI + τJ M : ρ ⇒ τI =⇒ M : ρ σ ⇒ σ τI

9–10 FMC III: Control

The constructors are typed as follows. Choice terms are injections, typed i : σ ⇒ σ.i + τJ , a type which
may be obtained from i : ε⇒ ε.i by stack and sum expansion. A case M ; i→N is typed as follows:

M : ρ ⇒ τJ + σ.i and

{
N : σ ⇒ τJ or

N : σ ⇒ τJ + υ.i

}
=⇒

{
M ; i→N : ρ ⇒ τJ or

M ; i→N : ρ ⇒ τJ + υ.i

That is, M must exit on i with an appropriate memory σ to serve as input for N ; for any other choice
j ∈ J the terms M and N must exit with the same type τ j , both matching a potential later case j→P ;
and N may or may not exit with a choice i and type υ. The merger of both types τJ represents the
co-diagonal of the sum, A+A → A.

Composition is made flexible by stack and sum expansion, as follows. First, evaluating M may provide
fewer or more arguments on the stack than used by N , with the difference made up with stack expansion
for M or N respectively. Second, the return choices for M and N need not coincide, or even overlap: as
long as their types agree for the choices they have in common, they can be sum-expanded to match.

A loop M i, which repeats on i, expects a type M : σ ⇒ σ.i + τJ where the input type coincides with
the output type for i. The loop itself is then typed M i : σ ⇒ τJ , omitting the choice i, as it exits on the
choices in J . This gives the expected typing pattern of iteration, which is to take f : A → A + B to
iter f : A → B [7]. An interesting consequence is what happens with iteration on a term with only a single
branch. This results in a sum type where J is empty, the empty sum or void type 0. This is not ruled out
in principle, and may happen for example with the loop ii : ε⇒ 0 for i : ε⇒ ε.i. Types σ ⇒ 0 returning void
are thus inhabited by terms looping on their only output branch, which are guaranteed non-terminating.

The type system imposes typing on the embedded constructions, including exceptions, constants, case
switches, and while-loops. The type for booleans may be defined as B = ε⇒ ε.⊥ + ε.⊤, which correctly
gives ⊥ : B and ⊤ : B. The type for the conditional is built up as follows, for a simple case where B returns
only a boolean and M and N return a single value of type τ . The term B returns a boolean on the main
stack λ for the default choice ⋆. This is picked up and executed by ⟨x⟩. x, giving B ; ⟨x⟩. x the type B.
Then the case ⊤→M composes on the ⊤-branch, returning τ on ⋆ instead, and ⊥→N composes on the
⊥-branch, also returning τ for ⋆ and merging both branches.

B : ε⇒B.⋆ ⟨x⟩. x : B⇒ ε.⊥ + ε.⊤ M : ε⇒ τ.⋆ N : ε⇒ τ.⋆

if B thenM elseN = B ; ⟨x⟩. x ;⊤→M ;⊥→N : ε⇒ τ.⋆

Types for constants such as bounded integers use this general pattern, as ε⇒ ε.i1 + . . . + ε.in for constants
{i1, . . . , in}. Continuing the above example, if B may throw an exception e, with the type ε⇒B. ⋆ + ε.e,
or one or both of M or N with type ε⇒ τ. ⋆ + ε.e, this is seamlessly integrated into the types to give the
conditional the type ε⇒ τ. ⋆ + ε.e as well. The following example will demonstrate how store integrates
with these constructs, and how a while-do loop is typed.

Example 4.1 Below is the interpretation and typing of the following imperative program.

while !a < 5 do a := !a+ 1

It is broken up as while B do N where B = !a < 5, N = a := M and M = !a + 1. Let I be a type for
bounded integers and assume terms for addition + : I I⇒ I.⋆ and inequality < : I I⇒B.⋆ modelled by case
switches. The interpretation of an expression P+Q is its translation into reverse Polish notation, P ;Q ; +,
standard for a stack machine implementation. Then M is interpreted as below, where [1]. ⋆ : ε⇒ I.⋆ is
stack-expanded with the memory type a(I) I to allow the composition, and + : I I⇒ I.⋆ with a(I). Note
that this implicit expansion is the equivalent of lifting into the state monad in the monadic approach.

a⟨x⟩. [x]a. [x]. ⋆ : a(I)⇒ a(I) I.⋆ [1]. ⋆ : I a(I)⇒ a(I) I I.⋆ + : I I a(I)⇒ a(I) I.⋆

M = !a+ 1 = a⟨x⟩. [x]a. [x]. ⋆ ; [1]. ⋆ ; + : a(I)⇒ a(I) I.⋆

Heijltjes 9–11

Next, the term N composes this with inputs on a and λ, returning on a, and B is similar to M .

N = a := !a+ 1 = M ; ⟨y⟩. a⟨ ⟩. [y]a. ⋆ : a(I)⇒ a(I).⋆
B = !a < 5 = a⟨x⟩. [x]a. [x]. ⋆ ; [5]. ⋆ ; < : a(I)⇒ a(I)B.⋆

The loop while B do N translates to (B ; ⟨x⟩. x ;⊤→N)⋆ ;⊥→⋆, which is built up below. First, to compose
with B, the term ⟨x⟩. x : B⇒ ε.⊥ + ε.⊤ is lifted with a(I). The second line composes B with ⊤→N , and
the third line gives the loop on the default choice ⋆, which is well typed since the output type a(I) matches
the input. The final step adds the catching of ⊥, giving the final type of the program as an update on a.

⟨x⟩. x : B a(I)⇒ a(I).⊥ + a(I).⊤
B ; ⟨x⟩. x ;⊤→N : a(I)⇒ a(I).⊥ + a(I).⋆
(B ; ⟨x⟩. x ;⊤→N)⋆ : a(I)⇒ a(I).⊥

while !a < 5 do a := !a+ 1 = (B ; ⟨x⟩. x ;⊤→N)⋆ ;⊥→⋆ : a(I)⇒ a(I).⋆

The above demonstrates how the type system of the FMC carries over to the embedded imperative
programming language, complete with higher-order store, input/output, probabilistic choice, constants,
conditionals, exceptions, and iteration with escape. The properties of the type system, progress (Proposi-
tion 7.5) and termination in the absence of loops (Theorem 8.4), apply. Concretely, since types make all
potential branches of a computation explicit, progress guarantees that exceptions are caught and loop es-
capes handled correctly. The embedding is naturally compatible with that of the call–by–value λ-calculus,
which likewise returns values to the main stack, giving the embedding of an ML-like language.

As a final consideration it will be shown how algebraic (non-inductive) datatypes with a call–by–name
semantics embed. With the cbn λ-calculus and recursive definitions, the latter omitted here, this forms the
core of the Haskell programming language. Data constructors embed as choice terms, but not returned
on the stack as in the call–by–value interpretation. Following the standard cbn interpretation, a fully
applied constructor i thus leaves its data on the stack and exits with choice i, as below. A case switch on a
datatype consists of a series of pattern matching cases i x1 . . . xm → N which bind the argumentsMk of the
datatype to the variables xk for use in N ; the notation below uses vectors of variables x for the parameters
of each case. In the FMC interpretation the arguments are passed on the stack, so that pattern-matching
may be given by abstractions, where the notation uses ⟨x⟩ for ⟨x1⟩. . ⟨xn⟩. The computation Ni for the
matching case is then pushed to the stack, since evaluating it might incorrectly trigger a later case, and is
popped and evaluated by ⟨x⟩. x after the case switch is completed.

iM1 . . . Mm = [Mm] . . . [M1]. i

caseM of {i1 x1 → N1, . . . , in xn → Nn} = M ; i1→⟨x1⟩. [N1]. ⋆ ; . . . ; in→⟨xn⟩. [Nn]. ⋆ ; ⟨x⟩. x

Typing is as follows. A datatype definition as below left, using Haskell’s data keyword, creates a new type
σ as a sum–of–products indexed by constructors. The FMC interprets the type σ directly as a sum type.

data σ = i1 τ 1 | · · · | in τ n =⇒ σ = ε⇒ τ 1.i1 + . . . + τ n.in

The embedding of datatypes is then a typed embedding, extending that of the call–by–name λ-calculus.
A typed constructor is interpreted as below, where i is some ik of the above datatype with τ k = τ1 . . .τm,
so that it has type σ when fully applied.

i : τ1 → . . . → τm → σ = i : τ1 . . .τm ⇒ τ 1.i1 + . . . + τ n.in [Mm] . . . [M1]. i : σ

The case switch on M : σ requires all terms Ni to share the same type ρ, and will then return ρ itself.

9–12 FMC III: Control

The overall type ρ for the case switch is composed in the following way.

M : σ xi : τ i Ni : ρ ⟨xi⟩. [Ni]. ⋆ : τ i ⇒ ρ.⋆

M ; i1→⟨x1⟩. [N1]. ⋆ ; . . . ; in→⟨xn⟩. [Nn]. ⋆ ; ⟨x⟩. x : ρ

4.3 Discussion and related work

The present discussion will compare with related type systems and semantics for branching computation,
in particular with typed exceptions. These have been studied in various forms, with subtle syntactic and
semantic differences that the discussion will attempt to clarify.

The FMC takes the exceptions–as–values approach [1,27,59,66], which follows the idea that compu-
tations return either a value or an exception. This casts exceptions as coproducts, characterized by the
exception monad TX = E+X for a set of exceptions E. Going back to Gentzen’s natural deduction [17],
coproducts in λ-calculus have been handled with a case distinction on each summand, as below.

M : A+B

[x : A]
...

N : C

[y : B]
...

P : C

caseM of {inlx → N, inr y → P} : C

Benton and Kennedy’s exception handlers [4] adapt case switches to be fall-through, capturing the return
value and some (but not necessarily all) exceptions, with uncaught exceptions being passed through. This
appears crucial to a compositional treatment of exceptions, by macro expansion. Otherwise, the encoding
of a catch-construct tryM catch eN depends on the potential exceptions e1 . . . en that M might throw:

caseM of {return x → return x, e1 → e1, . . . , en → en, e → N}

Exception handlers feature a clear notion of sequentiality, and are implemented through a continuation
stack similar to the one that will be used for the FMC in Definition 5.2. They are introduced into cbpv
in [39], and later generalized by Plotkin and Pretnar to effect handlers [51], a general model of branching
computation that will be discussed below.

The FMC features two key adaptations to the above. First, pattern-matching is avoided by passing
values on the stack. Second, by unifying sequencing and exceptions, case switches may become not only
fall-through but also single-case, since multiple cases can now be handled sequentially. Both changes are
made possible, at least conceptually, by the model of the FMC as a sequential stack-based calculus.

A different approach to exceptions uses classical continuations [6,9,11,28,36,46,64], which give a typed
λ-calculus with continuation operators such as call/cc [18] via the correspondence with classical logic.
Continuation operators have a natural interpretation also on the Krivine machine [8,60], where they reify
the stack, allowing to pass an entire stack as an argument. This is a different mechanism to how the FMC
extends the KAM, not easily simulated in either direction. From an operational perspective, exceptions
and continuations are incomparable constructs: neither can macro-express the other, not even in the
presence of types or state [33,54].

A separate but related notion are jumps, which like the present control extension, model branching
and looping computation. Low-level languages, where jumps are a basic construct, may be typed [57].
In a more general setting, Fiore and Staton model jumps through explicit substitutions [14], and Maurer,
Downen, Ariola, and Peyton Jones introduce jumps as explicit substitutions to optimize case switches in
the Haskell compiler [42]. Syntactically, an explicit substitution M [N/x] is very similar to a case M ; i→N ,
with the only difference that the former uses a variable and the latter a choice (a constant). Maurer et al.
demonstrate their appeal as a single-case construct, and further allow loops. This was a major inspiration
for the present approach, and earlier drafts of this work adopted their terminology of jump and join [21],
though this was changed to choice and case for the following considerations.

Heijltjes 9–13

There are key distinctions between explicit substitutions, jumps, and exceptions. First, the continuation
N in M [N/x] may be duplicated, where both forward program jumps and exception handling are affine:
the continuation is used or discarded, but not duplicated. Fiore and Staton model jumps by making
explicit substitutions affine through syntactic restrictions, as do Maurer et al., who restrict the target
variables of an explicit substitution to head position. Second, explicit substitutions and jumps are static:
the connection between the jump (the variable) and the continuation is determined by the term structure,
before evaluation. Exceptions however are dynamic: the choice whether a continuation is used or discarded
is made only during evaluation. This is the key distinction between variables and constants, and is reflected
also in the types for both constructs, where jumps and explicit substitutions are generally typed with type
arrows as intuitionistic continuations, but exceptions as coproducts.

Plotkin and Pretnar’s effect handlers [29,41,51,67] are a general model of branching computation. Built
over two layers, cbpv as a model of sequential computation is extended with effect operator symbols, that
create symbolic branching points in the computation tree. A layer of effect handlers then interprets these
branching points operationally to model effects. This treatment of branching is sufficiently different from
the present control extension that it is not directly obvious which concept in one model maps onto which
concept in the other.

Following the origin of effect handlers in exception handlers, one view would be of operators as a
generalisation of raising an exception, analogous to an FMC choice, and handlers as catching it, analogous
to case. Handlers and cases have in common that they are matched dynamically, but there are three key
distinctions. First, handlers are generally defined globally, separate from computation terms, where the
FMC has cases within the term language. Second, the standard deep handlers apply to multiple operators
in sequence, and thus are not affine, though shallow handlers are [25]. Third, like exception handlers, effect
handlers require a return case as well as catching effects, and are thus fall-through but not single-case.

Taking a different perspective, like cbpv the sequential λ-calculus is a model of higher-order sequen-
tial computation into which effect operators and handlers may be introduced. This is a present line of
investigation, but preliminary observations suggest that this forms a natural combination: the presence of
sequential composition as a primitive, enabled by passing arguments on the stack, means the use of contin-
uations may be avoided. This not only simplifies the model but moreover allows the characteristic algebraic
laws to be enforced by the syntax, rather than imposed externally. A further line of enquiry is how effect
handlers relate to locations, noting that both model specific effects, in particular store. These observations
serve to underline that both models, the FMC and handlers, complement each other in interesting ways.

To summarise, the overall technical contributions are as follows. First, the new choice and case
constructs of the FMC, in the termilogy used here, combine the single-case nature of explicit substitutions
with the affine, dynamic coproduct semantics of the exceptions–as–values paradigm. Second, inherited
from the first iteration of the FMC, is the passing of values through (multiple, independent) stacks, which
reduces pattern-matching to case-matching. Third, at a higher level, these two contributions allow the
FMC to unify (rather than combine) the concepts of sequential composition, exception handling, and case
switches, and seamlessly integrate them with the effects encoded through locations. Fourth, again derived
from the previous, is the type system, which gives a natural coproduct semantics to these constructions (to
be confirmed formally in future work), where approaches through explicit substitution inherit continuation-
style typing. Finally, the treatment of loops with escape, enabled by the design of the choice and case
constructs, appears novel.

The remaining sections will present the formal development of the calculus: its operational semantics,
reduction relation, confluence, types, and machine termination and normalization of the typed calculus.
Its denotational semantics will be the subject of future work.

The FMC as presented here covers a complete theoretical functional–imperative language. In practice,
further features are expected. Inductive data types and recursion require (standard) syntactic extensions
but otherwise seem unproblematic. As the encoding of non-inductive data types above suggests, to allow
recursive type aliasing is sufficient to make these inductive. An open question here is whether such a
treatment may solve the problem of extensible data types [61]. Local store would require a construct for
introducing new locations, which appears similarly free of complications. First-class locations, storing and
passing on locations as arguments, would cover things like pointers and file handles, and appears more

9–14 FMC III: Control

challenging to administer in the type system. Even more so arrays and pointer arithmetic, which call for
dependent types (note that adding these untyped is trivial; the challenge again is preserving types and
confluence).

5 The Functional Machine Calculus

This section will present the new Functional Machine Calculus and its operational aspects: the abstract
machine, a big-step evaluation relation, and the reduction relation. It will demonstrate that these agree:
big-step evaluation defines complete runs on the machine (Proposition 5.4), weak head reduction simulates
the machine (Proposition 5.6), and evaluation commutes with reduction (Proposition 5.8). Confluence is
proved in the next section.

Let x, y, z range over variables; a, b, c over a global set of locations A with distinguished element λ;
and i, j, k over choices with distinguished choice ⋆, with I, J denoting finite sets of choices.

Definition 5.1 Terms are given by the following grammar.

M, N ::= x | [N]a.M | a⟨x⟩.M | i | N ; i→M | M i

The constructs are: a variable x, an application or push on location a, an abstraction or pop on a that
binds x in M , a choice i, a case N ; i→M , and a loop M i. The notions of variable binding, free variables
fv(−), and capture-avoiding substitution {N/x}M of N for x in M are standard.

Define argument stacks S, T as stacks of terms, memories SA as families of stacks in the set of locations
A, and continuation stacks K,L as stacks of conditional continuations i→M , as follows.

S, T ::= ε | SM SA ::= {Sa | a ∈ A} K,L ::= (i→M)K | ε

Stacks are composed by juxtaposition, ST , lifted to memories pointwise: SATA = {SaTa | a ∈ A}. Write
a(M) for the singleton memory with M on the stack a and the empty stack on other locations. Memories
may be assumed to have finite support (only finitely many stacks are non-empty), since a term uses only
a fixed, finite set of locations. Streams may be used informally instead of stacks to model certain effects.

Definition 5.2 The abstract machine is as follows. States are triples (SA,M,K) of a memory SA, term
M , and continuation stack K. Transitions are given by the top-to-bottom rules below, where i ̸= j.

(SA , [N]a.M ,K)

(SA a(N) , M ,K)

(SA a(N) , a⟨x⟩.M ,K)

(SA , {N/x}M ,K)

(SA , i , (i→M)K)

(SA ,M , K)

(SA , i , (j→M)K)

(SA , i , K)

(SA , N ; i→M , K)

(SA , N , (i→M)K)

(SA , M i , K)

(SA , M , (i→M i)K)

A run of the machine is a sequence of steps written with a double line as below. A final state is of the form
(SA, i, ε) and a failure state of the form (SA, x,K), or (SA, a⟨x⟩.M,K) where Sa = ε. A run is successful
if it terminates in a final state.

(SA ,M ,K)

(TA , N , L)

Observe that every state is either final, a failure state, or has a transition. The machine gives the
small-step operational semantics of the FMC. The following big-step evaluation relation (⇓) describes the
overall behaviour of successful runs of the machine, and formalizes the intuitive version of the introduction:

SA
M

TA, i ⇐⇒ SA,M ⇓ TA, i

Heijltjes 9–15

Like the machine, it is deterministic, i.e. it is a partial function.

Definition 5.3 The evaluation relation SA,M ⇓ TA, i is defined inductively as follows, where i ̸= j.

SA, i ⇓ SA, i

SA a(N), M ⇓ TA, i

SA, [N]a.M ⇓ TA, i

RA, M ⇓ SA, i SA, N ⇓ TA, j

RA, M ; i→N ⇓ TA, j

RA, M ⇓ TA, i

RA, M ; j→N ⇓ TA, i

SA, {N/x}M ⇓ TA, i

SA a(N), a⟨x⟩.M ⇓ TA, i

RA, M ⇓ SA, i SA, M
i ⇓ TA, j

RA, M
i ⇓ TA, j

RA, M ⇓ TA, i

RA, M
j ⇓ TA, i

Proposition 5.4 Small-step and big-step semantics agree:

(SA ,M , ε)

(TA , i , ε)
⇐⇒ SA,M ⇓ TA, i

Proof. =⇒ By induction on the run of the machine. ⇐= By induction on ⇓. 2

Definition 5.5 The reduction relation is given by closing the following rules under any context, where
a ̸= b, i ̸= j, in the passage rule x /∈ fv(N), and in the prefix (pop) rule x /∈ fv(M).

beta [N]a. a⟨x⟩.M {N/x}M (a⟨x⟩. N) ; i→M a⟨x⟩. (N ; i→M) prefix (pop)

passage [N]b. a⟨x⟩.M a⟨x⟩. [N]b.M ([P]a.N) ; i→M [P]a. (N ; i→M) prefix (push)

select i ; i→M M P ; i→N ; i→M P ; i→(N ; i→M) associate

reject i ; j→M i M i M ; i→M i unroll

Weak head reduction wh is given by closing the reduction rules under application contexts only: if
M wh N then [P]a.M wh [P]a.N . The reflexive–transitive closure of a reduction relation is written
, and reduction to normal form .

Weak head reduction operates under a sequence of applications corresponding to a memory on the
machine. To relate the machine and reduction, define the readback relation (7→) from states to terms by
the exhaustive application of the following steps, reversing the push and sequence rules of the machine:

(ε,M, ε) 7→ M (SA a(N),M,K) 7→ (SA, [N]a.M,K) (SA,M, (i→N)K) 7→ (SA,M ; i→N,K)

The following then shows that weak head reduction simulates the machine.

Proposition 5.6 If a state (SA,M,K) reads back to M ′ and evaluates to a state (TA, N, L), then the
latter state reads back to a term N ′ such that M ′

wh N ′.

(SA,M,K)

(TA, N, L)

M ′

N ′
wh

Proof. By induction on the machine run. 2

In the other direction, weak head reduction preserves and reflects the evaluation behaviour of terms.

9–16 FMC III: Control

Proposition 5.7 If M wh N then SA,M ⇓ TA, i if and only if SA,M ⇓ TA, i.

SA,M SA, N

TA, i

wh

⇓ ⇓

Proof. By induction on wh. 2

Combining both directions, evaluation with an empty memory ε,M ⇓ SA, i coincides with weak head
reduction to a term of the form [N1]a1 . . . [Nn]an. i that represents the memory SA with the choice i.

The following establishes that reduction in any context commutes with evaluation, demonstrating, in
essence, that the evaluation semantics and reduction semantics of the FMC are compatible. Reduction
may then be viewed as compile-time optimization, preserving the behaviour of evaluation. To state this
formally reduction is extended to memories: if M N then SA a(M) SA a(N), and if SA TA

then SA a(M) TA a(M). Note that this does not extend the machine itself, but enables to compare
evaluation of terms before and after reduction, modelling the optimization of stored functions.

Proposition 5.8 If RA SA, M N , and RA,M ⇓ TA, i then there is a memory UA such that TA UA

and SA, N ⇓ UA, i.

RA,M SA, N

TA, i UA, i

⇓ ⇓

Proof. By induction on the measure (m,n) where m is the size of the derivation for RA,M ⇓ TA, i and n
is the number of reduction steps in M N , strengthening the statement with the assertion that the size
of the derivation for SA, N ⇓ UA, i is at most m. The proof is similar to that of Lemma 9.5. 2

The above propositions serve to demonstrate that the reduction relation is the correct one for the cal-
culus, given its operational semantics. The reduction rules are sound for evaluation, in the sense of Propo-
sition 5.8, and complete in the sense that weak head reduction implements the machine, Proposition 5.6.
The next section will show that the reduction semantics is consistent by demonstrating confluence.

6 Confluence

The confluence proof follows the standard parallel reduction technique [63]. Reduction is split into du-
plicating reduction d, comprising beta and unroll, and affine reduction a, consisting of the remaining
rules. The former is shown to be confluent by parallel reduction, while the latter is shown confluent and
terminating by Newman’s Lemma. The two relations are then shown to commute.

Lemma 6.1 Affine reduction a is terminating and confluent.

Proof. For termination, define a measure on terms as the pair (n,m) where:

• n is the sum over the size of M for every subterm M ; i→N , and

• m is the sum over the size of M for every subterm [N]a.M .

The first component is invariant under the passage rewrite rule, and strictly reduces for the other rules
(select, reject, both prefix rules, and associate), while the second component strictly reduces for passage,
proving termination.

Confluence follows by Newman’s Lemma from local confluence. There are the following critical pairs.

• Passage–prefix :

[N]b. a⟨x⟩.M ; i→P a

{
Q = a⟨x⟩. [N]b.M ; i→P

Q′ = [N]b. (a⟨x⟩.M ; i→P)

Heijltjes 9–17

This is closed as follows.

Q a a⟨x⟩. ([N]b.M ; i→P)

Q′
a [N]b. a⟨x⟩. (M ; i→P)

}
a a⟨x⟩. [N]b. (M ; i→P)

• Select–associate:

i ; i→M ; i→N a

{
P = M ; i→N

Q = i ; i→(M ; i→N)

This is closed by Q a P .

• Reject–associate:

i ; j→M ; j→N a

{
P = i ; j→N

Q = i ; j→(M ; j→N)

This is closed by P a i and Q a i.

• Prefix–associate: The case for prefix (pop) is as follows.

a⟨x⟩.M ; i→N ; i→M

{
Q = a⟨x⟩. (M ; i→N) ; i→P

Q′ = a⟨x⟩.M ; i→(N ; i→P)

This is closed as follows.

Q a a⟨x⟩. (M ; i→N ; i→P)

Q′

}
a a⟨x⟩. (M ; i→(N ; i→P))

The case for prefix (push) is similar.
2

For duplicating reduction d, parallel reduction is defined by marking selected redexes and reducing
these simultaneously by induction on the term.

Definition 6.2 A marked term is one equipped with a marking on a selection of beta- and unroll-redexes,
indicated by underlining. The marked reduct ⌊M⌋ of a marked term M is defined inductively as follows.

⌊[N]a. a⟨x⟩.M⌋ = {⌊N⌋/x}⌊M⌋ ⌊x⌋ = x ⌊[N]a.M⌋ = [⌊N⌋]a. ⌊M⌋ ⌊M ; i→N⌋ = ⌊M⌋ ; i→⌊N⌋
⌊M i⌋ = ⌊M⌋ ; i→⌊M⌋i ⌊i⌋ = i ⌊a⟨x⟩.M⌋ = a⟨x⟩. ⌊M⌋ ⌊M i⌋ = ⌊M⌋i

A parallel reduction step M d N takes M to the marked reduct N = ⌊M⌋ for some marking of M . The
complete development TMU of M is the marked reduct of marking every duplicating redex in M .

Parallel reduction is in-between single-step and multi-step reduction:

Lemma 6.3 (d) ⊂ (d) ⊂ (d).

Proof. By marking the redex reduced in M d N , respectively by induction on ⌊−⌋. 2

Then duplicating reduction and parallel reduction are equivalent, (d) = (d). Next, a parallel step
may be completed to a complete development by another parallel step, reducing the remaining redexes.

Lemma 6.4 If M d N then N d TMU.

Proof. A marking on N such that ⌊N⌋ = TMU will be given by induction on the marked term M . The
two non-trivial cases are when M is an unmarked redex:

⌊[M1]a. a⟨x⟩.M2⌋ = [⌊M1⌋]a. a⟨x⟩. ⌊M2⌋
⌊M1

i⌋ = ⌊M1⌋i

9–18 FMC III: Control

Let Nk = ⌊Mk⌋ for k = 1, 2 and mark the above redexes in N . By induction, ⌊Nk⌋ = TMkU. Then for
⌊N⌋ and TMU the cases are completed by:

⌊[N1]a. a⟨x⟩. N2⌋ = {⌊N1⌋/x}⌊N2⌋ = T[M1]a. a⟨x⟩.M2U

⌊N1
i⌋ = ⌊N1⌋ ; i→⌊N1⌋i = TM1

iU

2

It follows that parallel reduction is diamond, and hence duplicating reduction is confluent. To prove
confluence for the full reduction relation , terms will be reduced to their affine normal form. First, it is
shown how affine reduction commutes with parallel duplicating reduction.

Lemma 6.5 If P a M d N then P d Q a N for some Q.

M N

P Q

d

a

d

a

Proof. Let M be marked such that ⌊M⌋ = N . For every affine reduction step M a P except prefix
(push) on a marked redex, carrying over the marking from M to P gives ⌊M⌋ a ⌊P ⌋. The remaining
case is as follows, where the redex becomes separated so that it cannot be marked.

[N]a. a⟨x⟩.M ; i→P a [N]a. (a⟨x⟩.M ; i→P)

To address this, by confluence and termination the reduction M a P may be arranged so that a prefix
(push)-step on a marked redex is immediately followed by the prefix (pop)-step that restores the redex:

[N]a. (a⟨x⟩.M ; i→P) a [N]a. a⟨x⟩. (M ; i→P)

This give the required commutation (since x is not free in P):

⌊[N]a. a⟨x⟩.M ; i→P ⌋
⌊[N]a. a⟨x⟩. (M ; i→P)⌋

}
= {⌊N⌋/x}⌊M⌋ ; i→⌊P ⌋

By induction on M a P it follows that ⌊M⌋ a ⌊P ⌋. 2

Next, define complete reduction () = (d) · (a) as a parallel duplicating step followed by affine
normalization.

Lemma 6.6 Complete reduction is diamond.

Proof. By the following diagram, where the top left triangles are by Lemma 6.3, the top right and bottom
left squares are by Lemma 6.5, and the bottom right square is by confluence and termination of affine
reduction (Lemma 6.1).

M · N

·

P

·

·

·

Q

d

d
d

d

d

d

d

a

a a

a

a
a

Heijltjes 9–19

2

To connect reduction to complete reduction, the following lemma will show that the image of a reduction
step under affine normalization is a complete step.

Lemma 6.7 If M N then Ma Na where Ma and Na are the affine normal forms of M and N .

Proof. The case of an affine step M a N is immediate since Ma = Na by confluence and termination of
affine reduction (Lemma 6.1). In the case of a duplicating step M d N , Lemma 6.4 gives a parallel step
M d N , for which Lemma 6.5 gives reductions Ma d P a N for some term P . Then P a Na again
by Lemma 6.1, giving the required reduction Ma d P a Na.

M N

Ma Na=

a

a a

M N

Ma P Na

d

a a
a

d a

2

The confluence proof puts everything together: affine normalization maps reduction to complete re-
duction, which is confluent, and which is included in reduction.

Theorem 6.8 Reduction is confluent.

Proof. Let P M N . By Lemma 6.7 there are complete reductions Pa Ma Na where Ma, Na,
and Pa are the affine normal forms of respectively M , N , and P . The diamond property for complete
reduction (Lemma 6.6) gives reductions Pa Q Na for some Q. Since a parallel step d corresponds
to a duplicating reduction d (Lemma 6.3), a complete step corresponds to a reduction , which gives
the desired converging reductions P a Pa Q Na a N .

M N

P

Ma Na

Pa Q

a
a

a

2

7 Types

This section formally introduces the simply typed FMC with control. Types are stratified into four layers:
types for terms, vectors of types for stacks, location-indexed families of vectors for memories, and choice-
indexed families of memory types as return types. The formal definitions use indexed families directly,
while the notation of the informal introduction is given as operations on types or as syntactic sugar.

Types: ρ, σ, τ ::= σ ⇒ τI

Stack types: τ ::= τ1 . . .τn

Memory types: τ ::= {τ a | a ∈ A}

Sum types: τI ::= {τ i | i ∈ I}

The base cases are given by empty stack types and memory types, both written ε, and the empty sum type,
written 0. Vectors are composed by juxtaposition στ , lifted to families point-wise: σ τ = {σa τ a | a ∈ A}.
The singleton family holding τ at location a and empty elsewhere is written a(τ). This retrieves the

9–20 FMC III: Control

Γ, x : τ ⊢ x : τ
var

Γ ⊢ i : ε⇒ ε.i
chc

Γ ⊢ N : ρ Γ ⊢ M : a(ρ) σ ⇒ τI
Γ ⊢ [N]a.M : σ ⇒ τI

push
Γ, x : ρ ⊢ M : σ ⇒ τI

Γ ⊢ a⟨x⟩.M : a(ρ) σ ⇒ τI
pop

Γ ⊢ M : ρ ⇒ τI
Γ ⊢ M : ρ σ ⇒ (σ τ)I

exp

Γ ⊢ M : ρ ⇒ τ I\i + σ.i Γ ⊢ N : σ ⇒ τI

Γ ⊢ M ; i→N : ρ ⇒ τI
case

Γ ⊢ M : σ ⇒ τI + σ.i

Γ ⊢ M i : σ ⇒ τI
loop

Γ ⊢ M : ρ ⇒ σI
Γ ⊢ M : ρ ⇒ σI + τJ

incl

Fig. 1. The simply-typed FMC with control

notation a1(τ1) . . .an(τn) for memory types in the introductory sections, and generalizes it to allow type
vectors a1(τ 1) . . .an(τ n).

Sum types are combined by σI + τJ where I ∩ J = ∅. To retrieve the notation from the informal
development, the notation τ .i indicates the singleton family over {i} containing only the memory type
τ for the choice i; formally, τ .i is τ {i} where τ i = τ . That is, τ i is a memory type as a member of a
family, and τ .i is a sum type that is a singleton family. Sum types may then be written τ 1.i1 + . . . + τ n.in
as before. Finally, τ I\i (respectively τ I\J) denotes the family τI minus the element τ i (respectively the
elements τ j for j ∈ J), if present.

Stack types follow the order of terms on the stack, MNP : ρστ for M : ρ, N : σ, and P : τ . Since stacks
are last-in-first-out, identity terms are of the form ⟨x⟩. ⟨y⟩. ⟨z⟩. [z]. [y]. [x]. ⋆, with the order of pops reversed
relative to a given input stack. The convention is then that stack types on the left of an implication are
presented in reverse order, i.e. the type for this term would be λ(τσρ)⇒ λ(ρστ).⋆, written λ(τ)⇒ λ(τ).⋆
for the stack type τ = ρστ .

A context Γ is a finite function from variables to types, written as a sequence x1 : τ1, . . . , xn : τn. A
typing judgement Γ ⊢ M : τ assigns the type τ to the term M in the context Γ.

Definition 7.1 The simply-typed FMC with control is given by the typing rules in Figure 1.

A few notes on the typing rules. The rules push and pop are the equivalent of the rules for application
and abstraction for the simply-typed λ-calculus, since the arrow type σ→τ is interpreted as introducing
an additional input type σ to the input type vector of τ . The rule exp for (stack) expansion extends the
input and output memory types of a term by σ, on every output branch, reflecting the principle of stack
calculi that terms may operate on arbitrarily large stacks, returning any additional part untouched. The
rule case for M ; i→N requires the output of M on choice i to match the input of N , and on any other
choice I \ i to match the output of N ; the output type τI of N may or may not have a component τ i.

Observe that the typing rules as given are not inductive on terms, due to the rules exp (expansion) and
incl (inclusion). This gives a simpler presentation and reduces repetition in proofs. Both rules can however
be permuted up past the other rules, which means they may instead be integrated into the variable and
choice rules; or they may permuted down to be integrated into push and case rules.

Next, the basic properties of preservation of types under substitution and reduction are given.

Lemma 7.2 (Subject substitution) If Γ ⊢ N : σ and Γ, x : σ ⊢ M : τ then Γ ⊢ {N/x}M : τ .

Proof. By induction on the typing derivation for M . 2

Proposition 7.3 (Subject reduction) If Γ ⊢ M : τ and M N then Γ ⊢ N : τ .

Proof. By induction on the typing derivation for M , with top-level reduction steps as base cases, and
using the subject substitution lemma (Lemma 7.2) in the case of a beta step. 2

To demonstrate that machine evaluation preserves types, the type system is extended to stacks, mem-

Heijltjes 9–21

⊢ ε : ε
stk0 ⊢ ε : τI ⇒ τI

cnt0

⊢ S : σ ⊢ M : τ
⊢ SM : σ τ

stk1
⊢ M : ρ ⇒ σI + τ J\I ⊢ K : σI ⇒ τJ

⊢ (i→M)K : ρ.i + σI\i ⇒ τJ
cnt1

{ ⊢ Sa : σa}a∈A
⊢ SA : {σa | a ∈ A}

mem
⊢ SA : ρ ⊢ M : ρ ⇒ σI + τ J\I ⊢ K : σI ⇒ τJ

⊢ (SA,M,K) : ε⇒ τJ
state

Fig. 2. Extended types for stacks, memories, and states

ories, and machine states by the rules in Figure 2. Continuation stacks will have types σI ⇒ τJ , extending
the grammar of types.

Proposition 7.4 (Machine evaluation preserves types) For a typed state ⊢ (SA,M,K) : ε⇒ τI , if

(SA ,M ,K)

(TA , N , L)

then ⊢ (TA, N, L) : ε⇒ τI .

Proof. By inspection of the machine transitions. 2

Proposition 7.5 (Machine progress) A typed state is either final or has a machine step.

Proof. Recall that states are either final, have a machine step, or are failure states, which are those with
a free variable x as term or with an abstraction a⟨x⟩.M and an empty stack εa in the memory. Both cases
are ruled out by the type system. 2

In the FMC, unlike the λ-calculus, all types are inhabited. A zero term for a type τ = σ ⇒ τI will
evaluate on the machine by discarding a memory of σ, and for some i ∈ I returning a memory of zero-terms
of type τ i. Zero terms are formally defined as follows: if I is non-empty, select i ∈ I and define:

0τ = ⟨ σ⟩. [0τ i]. i

where ⟨ σ⟩ is a sequence of non-binding abstractions a1⟨ ⟩ . . . an⟨ ⟩ matching σ = a1(σ1) . . .an(σn), and [0τ]

is a sequence of applications [0τ1]a1 . . . [0τn]an matching τ i = a1(τ1) . . .an(τn). For zero terms where I is
empty, where τ = σ ⇒ 0, let τ ′ = σ ⇒ σ.⋆ and define the zero term as the loop 0τ = (0τ ′)

⋆. Note that for a
type σ ⇒ τI and a given i ∈ I, zero-terms are equivalent by the permutations a⟨x⟩. b⟨y⟩.M ∼ b⟨y⟩. a⟨x⟩.M
and [P]a. [N]b.M ∼ [N]b. [P]a.M where a ̸= b.

Proposition 7.6 (Type inhabitation) Every type τ is inhabited by a zero term ⊢ 0τ : τ .

Proof. By induction on the type τ . 2

8 Machine termination

For terms without loops, types guarantee termination of the machine. By this, the following is meant.

Definition 8.1 A term M is terminating if SA,M ⇓ TA, i for some memories SA, TA and choice i.

The typed notion, proved below, is stronger. For a term M : σ ⇒ τI , for any memory SA : σ of the
correct type there are i ∈ I and TA : τ i such that SA,M ⇓ TA, i. Type inhabitation guarantees that a
suitable input memory SA : σ exists, so that the typed notion implies the untyped definition above.

9–22 FMC III: Control

This will be proved using the standard Tait reducibility technique [62]. Each type τ is associated with
a set run(τ) of terminating terms, here called the runnable terms by analogy to the usual reducible terms
of strong normalization arguments. It is then shown by induction on typing derivations that every typed
term is runnable, and hence terminating.

Definition 8.2 The set run(τ) of runnable terms for a type τ is defined as the set of closed terms

run(σ ⇒ τI) = {M | ∀SA ∈ run(σ). ∃i ∈ I. ∃TA ∈ run(τ i). SA,M ⇓ TA, i }

where the runnable sets for memory types τ and stack types τ are as follows.

run({τ a | a ∈ A}) = {SA | ∀a ∈ A. Sa ∈ run(τ a)} run(τ1 . . .τn) = {εM1 . . .Mn | Mi ∈ run(τi)}

To work with open terms, a substitution map s is a finite function from variables to terms, applied
to terms as sM as a simultaneous substitution for the variables in its domain. Denote by s{M/x} the
map that assigns M to x and is as s for other variables. Then run(Γ) associates a context Γ with the
substitution maps over runnable terms of the types in Γ:

run(x1 : τ1, . . . , xn : τn) = {s | sxi ∈ run(τi)}

The next lemma will show that any loop-free, typed term is runnable. It assumes return types to be
non-empty, i.e. types are not of the form σ ⇒ 0. The proof is then a direct induction on typing derivations.

Lemma 8.3 (Typed terms are runnable) If Γ ⊢ M : τ then sM ∈ run(τ) for any s ∈ run(Γ).

Proof. By induction on the typing derivation for Γ ⊢ M : τ .

• Variable:

Γ, x : τ ⊢ x : τ
var

For any s ∈ run(Γ, x : τ) by definition sx ∈ run(τ).

• Push:
Γ ⊢ N : ρ Γ ⊢ M : a(ρ) σ ⇒ τI

Γ ⊢ [N]a.M : σ ⇒ τI
push

Let s ∈ run(Γ) and SA ∈ run(σ). By the inductive hypothesis, sN ∈ run(ρ), so that SA a(sN) ∈
run(σ a(ρ)). Again by the inductive hypothesis, sM ∈ run(a(ρ) σ ⇒ τI), which means it evaluates as
SA a(sN), sM ⇓ TA, i for some i ∈ I and TA ∈ run(τ i). Then SA, [sN]a. sM ⇓ TA, i by the definition
of (⇓), which gives s([N]a.M) = [sN]a. sM ∈ run(σ ⇒ τI).

• Pop:
Γ, x : ρ ⊢ M : σ ⇒ τI

Γ ⊢ a⟨x⟩.M : a(ρ) σ ⇒ τJ
pop

Let s ∈ run(Γ) and SA a(N) ∈ run(σ a(ρ)), and assume by α-equivalence that x is not in the domain
of Γ. Then SA ∈ run(σ) and s{N/x} ∈ run(Γ, x : ρ). Since N is closed, (s{N/x})M = s({N/x}M).
By the inductive hypothesis, s({N/x}M) ∈ run(σ ⇒ τI) so that SA, s({N/x}M) ⇓ TA, i for some i ∈ I
and TA ∈ run(τ i). By the definition of (⇓) it follows that SA a(N), s(a⟨x⟩.M) ⇓ TA, i and hence
s(a⟨x⟩.M) ∈ run(a(ρ) σ ⇒ τI).

• Choice:

Γ ⊢ i : ε⇒ ε.i
chc

Note that the empty memory ε ∈ run(ε) is the only inhabitant of run(ε), and that si = i for any
substitution map s. Since ε, i ⇓ ε, i it follows that i ∈ run(ε⇒ ε.i).

• Case:
Γ ⊢ N : ρ ⇒ τ I\i + σ.i Γ ⊢ M : σ ⇒ τI

Γ ⊢ N ; i→M : ρ ⇒ τI
case

Heijltjes 9–23

Let s ∈ run(Γ) and RA ∈ run(ρ). The inductive hypothesis gives:

sN ∈ run(ρ ⇒ τ I\i + σ.i) and sM ∈ run(σ ⇒ τI)

For the former, there are two cases:

RA, sN ⇓ SA, i or RA, sN ⇓ TA, j where j ∈ I, i ̸= j

In the first case, SA ∈ run(σ) and hence SA, sM ⇓ TA, k for some k ∈ I and TA ∈ run(τ k). The
definition of (⇓) gives the evaluation below left. For the second case there is the evaluation below right.
It follows that s(M ; i→N) ∈ run(ρ ⇒ τI).

RA, M ⇓ SA, i SA, N ⇓ TA, k

RA, M ; i→N ⇓ TA, k

RA, M ⇓ TA, j

RA, M ; i→N ⇓ TA, j

• Expansion
Γ ⊢ M : ρ ⇒ τI

Γ ⊢ M : ρ σ ⇒ (σ τ)I
exp

By induction on (⇓), if RA,M ⇓ TA, j then SARA,M ⇓ SATA, i. The case is then immediate.

• Inclusion
Γ ⊢ M : ρ ⇒ σI

Γ ⊢ M : ρ ⇒ σI + τJ
incl

Immediate since a return memory SA ∈ run(σi) for a choice i ∈ I is also one for i ∈ I ∪ J .
2

The theorem is then as follows.

Theorem 8.4 (Machine termination) Any loop-free, typed term ⊢ M : σ ⇒ τI with a zero-free type is
terminating.

Proof. By type inhabitation there is a loop-free memory SA : σ. By Lemma 8.3, M ∈ run(σ ⇒ τI) and
SA ∈ run(σ). By the definition of runnable terms, SA,M ⇓ TA, i for some i and TA. 2

9 Strong normalization

This section will prove that typed, loop-free terms are strongly normalizing. The proof is centered around
the idea that beta-reduction shortens a run of the machine by eliminating consecutive push- and pop-
transitions. This gives a proof in two stages. First, a reducibility argument along the lines of that for
machine termination establishes that typed terms have a finite evaluation on the machine, for which the
measured evaluation relation defined below counts the number of pop-transitions. Second, it is shown
that beta-reduction strictly reduces this measure, while affine reduction does not increase it. Since affine
reduction is inherently normalizing, this establishes typed strong normalization.

The first stage needs to overcome the obstacle that terms that are discarded without evaluation must
somehow be measured as well. This is familiar from many strong normalization proofs, such as those
deriving strong normalization from weak normalization [45,31] and those using perpetual reduction strate-
gies [5,65], and can be distinguished in the combinatoric arguments of many others. Here, it is addressed
by requiring machine evaluation of all subterms: for an application [N]a.M the argument N is evaluated
as well as pushed to the stack, and for a case M ; i→N the continuation N is evaluated even when M
terminates with j ̸= i. Evaluating such terms requires an input stack, which for typed terms is guaranteed
by type inhabitation (Proposition 7.6).

The proof thus comprises a logical part, using abstract reducibility, and a combinatorial part, measuring
abstraction steps in machine evaluation and demonstrating that the measure reduces under beta-reduction.

9–24 FMC III: Control

This may be viewed as a decomposition of the proof for the previous iteration of the FMC [3], which followed
the style of Gandy’s proof [16,15], computing the same measure directly from typing derivations. The key
to this decomposition is type inhabitation: Gandy’s proof, which maps terms onto domains of monotone
functionals over integers, relies on the existence of minimal elements, essentially higher-order versions
of the constant zero function, to provide input to any function. Here, because all types are inhabited,
zero-terms 0τ may fulfil that rôle.

This section will again assume loop-free terms (i.e. not containing the loop construct M i) and non-
empty sum types (i.e. I ̸= ∅ for any τI).

Definition 9.1 Measured evaluation SA,M ⇓n TA, i is defined inductively as follows, where i ̸= j.

SA, i ⇓0 SA, i

RA, N ⇓n UA, k SA a(N), M ⇓m TA, i

SA, [N]a.M ⇓n+m TA, i

RA, M ⇓m SA, i SA, N ⇓n TA, k

RA, M ; i→N ⇓m+n TA, k

SA, {N/x}M ⇓n TA, i

SA a(N), a⟨x⟩.M ⇓n+1 TA, i

RA, M ⇓m SA, j TA, N ⇓n UA, k

RA, M ; i→N ⇓m+n SA, j

The reducibility sets eval(−) interpret types as a guarantee that a measured evaluation exists.

Definition 9.2 The set eval(τ) for a type τ is defined as the set of closed terms

eval(σ ⇒ τI) = {M | ∀SA ∈ eval(σ). ∃m ∈ N. ∃i ∈ I. ∃TA ∈ eval(τ i). SA,M ⇓m TA, i }

where for memory types τ and stack types τ :

eval({τ a | a ∈ A}) = {SA | ∀a ∈ A. Sa ∈ eval(τ a)} eval(τ1 . . .τn) = {εM1 . . .Mn | Mi ∈ eval(τi)}

For contexts, run(Γ) is a set of substitution maps s:

eval(x1 : τ1, . . . , xn : τn) = {s | s(xi) ∈ eval(τi)}

Evaluation sets are inhabited at least by zero-terms.

Lemma 9.3 A zero-term 0τ is in eval(τ).

Proof. For a type σ, let src(σ) and tgt(σ) be its source (memory) type and target (sum) type, so that
σ = src(σ)⇒ tgt(σ). By induction on τ it will be shown for all SA of the dimensions of src(τ) that
SA, 0τ ⇓n 0tgt(τ)i , i for some n and i. This immediately implies 0τ ∈ eval(τ), since any SA ∈ eval(src(τ))
will be of the right dimensions, and inductively 0tgt(τ)i ∈ eval(tgt(τ)i) for the return memory. Let 0τ be
as follows.

0τ = ⟨ src(τ)⟩. [0tgt(τ)i]. i
By induction, for every σ in tgt(τ)i there is the following evaluation for some jσ and mσ, since 0src(σ) is of
the required dimensions.

0src(σ), 0σ ⇓mσ
0tgt(σ)j , jσ

Then for any memory SA of the dimensions of src(τ) there is the following evaluation, where the double
lines indicate multiple evaluation rules, m is the sum over the measures mσ for each σ in tgt(τ)i, and n is
the total size of src(τ).

{0src(σ), 0σ ⇓mσ
0tgt(σ)j , jσ}σ∈tgt(τ)i 0tgt(τ)i , i ⇓0 0tgt(τ)i , i

ε, [0tgt(τ)i]. i ⇓m 0tgt(τ)i , i

SA, ⟨ src(τ)⟩. [0tgt(τ)i]. i ⇓n+m 0tgt(τ)i , i

Heijltjes 9–25

2

The main reducibility lemma then shows that types guarantee measured evaluation.

Lemma 9.4 If Γ ⊢ M : τ and s ∈ eval(Γ) then sM ∈ eval(τ).

Proof. By induction on the typing derivation for M . The proof is similar to that of Lemma 8.3 that
typed terms are runnable. 2

Reduction () reduces the measure given by measured evaluation, by the following lemma.

Lemma 9.5 If SA,M ⇓n TA, i and SA S′
A and M M ′, then S′

A,M
′ ⇓n′ T ′

A, i where TA T ′
A and

n ≥ n′. If moreover M M ′ contains beta-steps, then n > n′.

Proof. By an outer induction on the size of the derivation for ⇓n, and an inner induction on the length
of the reduction M M ′.

• Choice:

SA, i ⇓0 SA, i

For SA S′
A it is immediate that S′

A, i ⇓0 S′
A, i.

• Pop:

SA, {N/x}M ⇓n TA, i

SA a(N), a⟨x⟩.M ⇓n+1 TA, i

Let SA S′A and N N ′, and note that the reduction on a⟨x⟩.M must be of the form a⟨x⟩.M
a⟨x⟩.M ′. Since {N/x}M {N ′/x}M ′ the outer inductive hypothesis gives the required T ′

A and n′.

• Push:

RA, N ⇓n UA, k SA a(N), M ⇓m TA, i

SA, [N]a.M ⇓n+m TA, i

There are three cases, depending on the first reduction step on [N]a.M : 1) reduction in either subterm
M or N , 2) a top level beta-step, or 3) a top level passage step. For case 1), given SA S′

A and
[N]a.M [N ′]a.M ′ (where N = N ′ or M = M ′), the outer inductive hypothesis for M M ′ gives
the required T ′

A and m′, or that for N N ′ gives n′. For the remaining reduction from [N ′]a.M ′ the
statement follows by the inner inductive hypothesis.
In case 2) M = a⟨x⟩. P with a beta-step [N]a. a⟨x⟩. P {N/x}P . Evaluation is as follows.

RA, N ⇓n UA, k

SA, {N/x}P ⇓m TA, i

SA a(N), a⟨x⟩. P ⇓m+1 TA, i

SA, [N]a. a⟨x⟩. P ⇓n+m+1 TA, i

Given SA S′
A and the remaining reduction {N/x}P M ′, the (outer) inductive hypothesis gives the

the evaluation S′
A,M

′ ⇓m′ T ′
A, i where TA T ′

A and m ≥ m′, as required.
In case 3) M = b⟨x⟩. P with a passage step [N]a. b⟨x⟩. P b⟨x⟩. [N]a. P where a ̸= b and x /∈ fv(N).

Evaluation for the redex is below left, and for the reduct below right, with a derivation of the same size.
The inner inductive hypothesis then gives the required T ′

A, m
′, and n′.

RA, N ⇓n UA, k

SA a(N), {Q/x}P ⇓m TA, i

SA b(Q) a(N), b⟨x⟩. P ⇓m+1 TA, i

SA b(Q), [N]a. b⟨x⟩. P ⇓n+m+1 TA, i

RA, N ⇓n UA, k SA a(N), {Q/x}P ⇓m TA, i

SA, [N]a. {Q/x}P ⇓n+m TA, i

SA b(Q), b⟨x⟩. [N]a. P ⇓n+m+1 TA, i

9–26 FMC III: Control

• Case:

a)
RA, M ⇓m SA, i SA, N ⇓n TA, k

RA, M ; i→N ⇓m+n TA, k
b)

RA, M ⇓m SA, j TA, N ⇓n UA, k

RA, M ; i→N ⇓m+n SA, j

For each of the derivations a) and b) above there are five sub-cases, depending on the first reduction
step: one for reduction inside M or N , and four for a top-level reduction step, as follows.

1) M ; i→N M ′ ; i→N ′ where M ′ = M or N ′ = N

2) i ; i→N N i.e. M = i, or

j ; i→N j i.e. M = j where i ̸= j

3) (Q ; i→P) ; i→N Q ; i→(P ; i→N) i.e. M = Q ; i→P

4) (a⟨x⟩. P) ; i→N a⟨x⟩. (P ; i→N) i.e. M = a⟨x⟩. P where x /∈ fv(N)

5) ([Q]a. P) ; i→N [Q]a. (P ; i→N) i.e. M = [Q]a. P

Case 1) follows by the outer inductive hypothesis on M ′ or N ′ and inner inductive hypothesis on
the remaining reduction, similar to the first case for Push. For case 2) evaluation is of the following
forms respectively; 2a) follows by the outer inductive hypothesis on N , and 2b) is immediate from the
evaluation RA, j ⇓0RA, j.

2a)
SA, i ⇓0 SA, i SA, N ⇓n TA, k

RA, i ; i→N ⇓n TA, k
2b)

RA, j ⇓0 RA, j TA, N ⇓n UA, k

RA, j ; i→N ⇓n RA, j

Cases 3) through 5) follow similarly to the third Push case above, for passage reduction, by reconfiguring
the evaluation derivation and observing that its size is preserved.

2

The previous two lemmata then give typed strong normalization: the first shows that for a typed
term a measured evaluation exists; the second that this measure bounds the number of beta-steps in the
reduction of the term.

Theorem 9.6 (Typed strong normalization) If Γ ⊢ M : τ then M is strongly normalizing.

Proof. Let s be a substitution map taking every x : σ in Γ to a zero-term 0σ. Then s ∈ eval(Γ) by
Lemma 9.3 and sM ∈ eval(τ) by Lemma 9.4. Let τ = ρ ⇒ σI . Lemma 9.3 gives 0ρ ∈ eval(ρ), and by

the definition of eval(−) there is an evaluation 0ρ, sM ⇓m SA, i. By Lemma 9.5 reduction on M preserves
the measure m and reduces it in case of beta-steps. Since by Lemma 6.1 affine reduction is strongly
normalizing, an infinite reduction from M would have infinitely many beta-steps, a contradiction. 2

References

[1] Appel, A., D. MacQueen, R. Milner and M. Tofte, Unifying exceptions with constructors in standard ML, Technical
Report ECS-LFCS-88-55, Laboratory for Foundations of Computer Science, Computer Science Department, Edinburgh
University (1988).
Available online

[2] Barrett, C., D. Castle and W. Heijltjes, The Relational Machine Calculus, in: P. Sobocinski, U. D. Lago and J. Esparza,
editors, Proc. 39th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 9:1–9:15, ACM (2024).
https://doi.org/10.1145/3661814.3662091

https://www.lfcs.inf.ed.ac.uk/reports/88/ECS-LFCS-88-55/
https://doi.org/10.1145/3661814.3662091

Heijltjes 9–27

[3] Barrett, C., W. Heijltjes and G. McCusker, The Functional Machine Calculus II: Semantics, in: B. Klin and E. Pimentel,
editors, 31st EACSL Annual Conference on Computer Science Logic (CSL 2023), volume 252 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 10:1–10:18, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl,
Germany (2023).
https://doi.org/10.4230/LIPIcs.CSL.2023.10

[4] Benton, N. and A. Kennedy, Exceptional syntax, Journal of Functional Programming 11, pages 395–410 (2001).
https://doi.org/10.1017/S0956796801004099

[5] Bergstra, J. A. and J. W. Klop, Strong normalization and perpetual reductions in the lambda calculus, J. Inf. Process.
Cybern. 18, pages 403–417 (1982).
Available online

[6] Bierman, G. M., A computational interpretation of the lambda-mu-calculus, in: L. Brim, J. Gruska and J. Zlatuska,
editors, Proc. 23rd International Symposium on Mathematical Foundations of Computer Science (MFCS’98), volume
1450 of Lecture Notes in Computer Science, pages 336–345, Springer (1998).
https://doi.org/10.1007/BFB0055783

[7] Bloom, S. L. and Z. Ésik, Iteration Theories - The Equational Logic of Iterative Processes, EATCS Monographs on
Theoretical Computer Science, Springer (1993), ISBN 978-3-642-78036-3.
https://doi.org/10.1007/978-3-642-78034-9

[8] Carraro, A., T. Ehrhard and A. Salibra, The stack calculus, in: D. Kesner and P. Viana, editors, Proc. Seventh Workshop
on Logical and Semantic Frameworks, with Applications (LSFA), volume 113 of EPTCS, pages 93–108 (2012).
https://doi.org/10.4204/EPTCS.113.10

[9] Crolard, T., A confluent lambda-calculus with a catch/throw mechanism, Journal of Functional Programming 9, pages
625–647 (1999).
https://doi.org/10.1017/S0956796899003512

[10] Davies, R. and F. Pfenning, Intersection types and computational effects, in: M. Odersky and P. Wadler, editors, Proc.
Fifth ACM SIGPLAN International Conference on Functional Programming (ICFP), pages 198–208, ACM (2000).
https://doi.org/10.1145/351240.351259

[11] de Groote, P., A simple calculus of exception handling, in: M. Dezani-Ciancaglini and G. D. Plotkin, editors, Proc.
Second International Conference on Typed Lambda Calculi and Applications (TLCA ’95), volume 902 of Lecture Notes in
Computer Science, pages 201–215, Springer (1995).
https://doi.org/10.1007/BFB0014054

[12] de’Liguoro, U. and R. Treglia, Intersection types for a λ-calculus with global store, in: N. Veltri, N. Benton and S. Ghilezan,
editors, 23rd International Symposium on Principles and Practice of Declarative Programming (PPDP), pages 5:1–5:11,
ACM (2021).
https://doi.org/10.1145/3479394.3479400

[13] Douence, R. and P. Fradet, A systematic study of functional language implementations, ACM Transactions on
Programming Languages and Systems 20, pages 344–387 (1998).
https://doi.org/10.1145/276393.276397

[14] Fiore, M. and S. Staton, Substitution, jumps, and algebraic effects, in: Proc. Joint Meeting of the Twenty-Third EACSL
Annual Conference on Computer Science Logic and the Twenty-Ninth Annual ACM/IEEE Symposium on Logic in
Computer Science (CSL-LICS), pages 41:1–41:10, ACM (2014).
https://doi.org/10.1145/2603088.2603163

[15] Fuhs, C. and C. Kop, Polynomial interpretations for higher-order rewriting, in: A. Tiwari, editor, 23rd International
Conference on Rewriting Techniques and Applications (RTA’12) , RTA 2012, May 28 - June 2, 2012, Nagoya, Japan,
volume 15 of LIPIcs, pages 176–192, Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2012).
https://doi.org/10.4230/LIPICS.RTA.2012.176

[16] Gandy, R., Proofs of strong normalization, in: J. P. Seldin and J. R. Hindley, editors, To H.B. Curry: Essays on
Combinatory Logic, Lambda Calculus and Formalism, pages 457–477, Academic Press (1980).

[17] Gentzen, G., Untersuchungen über das logische Schließen I, II, Mathematische Zeitschrift 39, pages 176–210, 405–431
(1934–1935). English translation in: The Collected Papers of Gerhard Gentzen, M.E. Szabo (ed.), North-Holland 1969.

[18] Griffin, T., A formulae-as-types notion of control, in: F. E. Allen, editor, Conference Record of the Seventeenth Annual
ACM Symposium on Principles of Programming Languages, San Francisco (POPL), pages 47–58, ACM Press (1990).
https://doi.org/10.1145/96709.96714

https://doi.org/10.4230/LIPIcs.CSL.2023.10
https://doi.org/10.1017/S0956796801004099
https://ir.cwi.nl/pub/1870/1870D.pdf
https://doi.org/10.1007/BFB0055783
https://doi.org/10.1007/978-3-642-78034-9
https://doi.org/10.4204/EPTCS.113.10
https://doi.org/10.1017/S0956796899003512
https://doi.org/10.1145/351240.351259
https://doi.org/10.1007/BFB0014054
https://doi.org/10.1145/3479394.3479400
https://doi.org/10.1145/276393.276397
https://doi.org/10.1145/2603088.2603163
https://doi.org/10.4230/LIPICS.RTA.2012.176
https://doi.org/10.1145/96709.96714

9–28 FMC III: Control

[19] Hasegawa, M., Decomposing typed lambda-calculus into a couple of categorical programming languages, in: International
Conference on Category Theory and Computer Science (1995).
https://doi.org/10.1007/3-540-60164-3_28

[20] Heijltjes, W., The Functional Machine Calculus, in: Proceedings of the 38th Conference on the Mathematical Foundations
of Programming Semantics, MFPS XXXVIII, volume 1 of ENTICS (2022).
https://doi.org/10.46298/ENTICS.10513

[21] Heijltjes, W., The Functional Machine Calculus III: Choice (early announcement), CoRR abs/2411.04615 (2024), 2411.
04615.
https://doi.org/10.48550/ARXIV.2411.04615

[22] Heijltjes, W., Quantitative types for the Functional Machine Calculus, in: M. Fernández, editor, 10th International
Conference on Formal Structures for Computation and Deduction (FSCD), volume 337 of LIPIcs, pages 24:1–24:20,
Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2025).
https://doi.org/10.4230/LIPICS.FSCD.2025.24

[23] Heijltjes, W. and G. Majury, Simple types for probabilistic termination, in: J. Endrullis and S. Schmitz, editors, 33rd
EACSL Annual Conference on Computer Science Logic (CSL), volume 326 of LIPIcs, pages 31:1–31:22, Schloss Dagstuhl
– Leibniz-Zentrum für Informatik (2025).
https://doi.org/10.4230/LIPIcs.CSL.2025.31

[24] Herzberg, D. and T. Reichert, Concatenative programming: An overlooked paradigm in functional programming, in: Proc.
4th International Conference on Software and Data Technologies (ICSOFT), pages 257–263 (2009).
Available online

[25] Hillerström, D. and S. Lindley, Shallow effect handlers, in: S. Ryu, editor, Proc. Programming Languages and Systems -
16th Asian Symposium (APLAS), volume 11275 of Lecture Notes in Computer Science, pages 415–435, Springer (2018).
https://doi.org/10.1007/978-3-030-02768-1_22

[26] Hirschkoff, D., E. Prebet and D. Sangiorgi, On the representation of references in the pi-calculus, in: 31st International
Conference on Concurrency Theory (CONCUR), LIPIcs, pages 34:1–34:20, Schloss Dagstuhl - Leibniz-Zentrum für
Informatik (2020).
https://doi.org/10.4230/LIPIcs.CONCUR.2020.34

[27] Jones, S. L. P., A. Reid, F. Henderson, C. A. R. Hoare and S. Marlow, A semantics for imprecise exceptions, in: B. G. Ryder
and B. G. Zorn, editors, Proc. 1999 ACM SIGPLAN Conference on Programming Language Design and Implementation
(PLDI), pages 25–36, ACM (1999).
https://doi.org/10.1145/301618.301637

[28] Kameyama, Y. and M. Sato, Strong normalizability of the non-deterministic catch/throw calculi, Theoretical Computer
Science 272, pages 223–245 (2002).
https://doi.org/10.1016/S0304-3975(00)00352-2

[29] Kammar, O., S. Lindley and N. Oury, Handlers in action, in: G. Morrisett and T. Uustalu, editors, ACM SIGPLAN
International Conference on Functional Programming (ICFP’13), pages 145–158, ACM (2013).
https://doi.org/10.1145/2500365.2500590

[30] Kiselyov, O., A. Sabry and C. Swords, Extensible effects: an alternative to monad transformers, in: Proceedings of the
2013 ACM SIGPLAN symposium on Haskell, pages 59–70 (2013).
https://doi.org/10.1145/2503778.2503791

[31] Klop, J. W., Combinatory Reduction Systems, Ph.D. thesis, Rijksuniversiteit Utrecht (1980).
Available online

[32] Krivine, J.-L., A call-by-name lambda-calculus machine, Higher-Order and Symbolic Computation 20, pages 199–207
(2007).
https://doi.org/10.1007/s10990-007-9018-9

[33] Laird, J., Exceptions, continuations and macro-expressiveness, in: D. L. Métayer, editor, Proc. 11th European Symposium
on Programming ESOP, volume 2305 of Lecture Notes in Computer Science, pages 133–146, Springer (2002).
https://doi.org/10.1007/3-540-45927-8_10

[34] Landin, P. J., The mechanical evaluation of expressions, The Computer Journal 6, pages 308–320 (1964).
https://doi.org/10.1093/comjnl/6.4.308

[35] Landin, P. J., The next 700 programming languages, Communications of the ACM 9, pages 157–166 (1966).
https://doi.org/10.1145/365230.365257

https://doi.org/10.1007/3-540-60164-3_28
https://doi.org/10.46298/ENTICS.10513
2411.04615
2411.04615
https://doi.org/10.48550/ARXIV.2411.04615
https://doi.org/10.4230/LIPICS.FSCD.2025.24
https://doi.org/10.4230/LIPIcs.CSL.2025.31
https://www.scitepress.org/papers/2009/22814/22814.pdf
https://doi.org/10.1007/978-3-030-02768-1_22
https://doi.org/10.4230/LIPIcs.CONCUR.2020.34
https://doi.org/10.1145/301618.301637
https://doi.org/10.1016/S0304-3975(00)00352-2
https://doi.org/10.1145/2500365.2500590
https://doi.org/10.1145/2503778.2503791
https://eprints.illc.uva.nl/id/eprint/1876/1/HDS-33-Jan-Willem-Klop.text.pdf
https://doi.org/10.1007/s10990-007-9018-9
https://doi.org/10.1007/3-540-45927-8_10
https://doi.org/10.1093/comjnl/6.4.308
https://doi.org/10.1145/365230.365257

Heijltjes 9–29

[36] Lebresne, S., A type system for call-by-name exceptions, Log. Methods Comput. Sci. 5 (2009).
https://doi.org/10.2168/LMCS-5(4:1)2009

[37] Levy, P. B., Call-by-push-value: A subsuming paradigm, in: International Conference on Typed Lambda Calculi and
Applications (TLCA), pages 228–243, Springer, Berlin, Heidelberg (1999).
https://doi.org/10.1007/3-540-48959-2_17

[38] Levy, P. B., Call-by-push-value: A functional/imperative synthesis, volume 2 of Semantic Structures in Computation,
Springer Netherlands (2003).
https://doi.org/10.1007/978-94-007-0954-6

[39] Levy, P. B., Monads and adjunctions for global exceptions, in: S. D. Brookes and M. W. Mislove, editors, Proc. 22nd
Annual Conference on Mathematical Foundations of Programming Semantics (MFPS), volume 158 of Electronic Notes in
Theoretical Computer Science, pages 261–287, Elsevier (2006).
https://doi.org/10.1016/J.ENTCS.2006.04.014

[40] Liang, S., P. Hudak and M. Jones, Monad transformers and modular interpreters, in: Proceedings of the 22nd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL), pages 333–343 (1995).
https://doi.org/10.1145/199448.199528

[41] Maršik, J., M. Amblard and P. de Groote, Introducing (|λ|), a λ-calculus for effectful computation, Theoretical Computer
Science 869, pages 108–155 (2021).
https://doi.org/10.1016/j.tcs.2021.02.038

[42] Maurer, L., P. Downen, Z. M. Ariola and S. L. P. Jones, Compiling without continuations, in: A. Cohen and M. T. Vechev,
editors, Proc. 38th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI), pages
482–494, ACM (2017).
https://doi.org/10.1145/3062341.3062380

[43] Milner, R., J. Parrow and D. Walker, A calculus of mobile processes, I, Information and Computation 100, pages 1–40
(1992).
https://doi.org/10.1016/0890-5401(92)90008-4

[44] Moggi, E., Notions of computation and monads, Information and Computation 93, pages 55–92 (1991).
https://doi.org/10.1016/0890-5401(91)90052-4

[45] Nederpelt, R., Strong normalization in a typed lambda calculus with lambda structured types, Ph.D. thesis, Technische
hogeschool Eindhoven (1973).
Available online

[46] Ong, C. L. and C. A. Stewart, A Curry-Howard foundation for functional computation with control, in: P. Lee, F. Henglein
and N. D. Jones, editors, Conference Record of POPL’97: The 24th ACM SIGPLAN-SIGACT Symposium on Principles
of Programming Languages, pages 215–227, ACM Press (1997).
https://doi.org/10.1145/263699.263722

[47] Parigot, M., λµ-Calculus: an algorithmic interpretation of classical natural deduction, in: International Conference on
Logic for Programming Artificial Intelligence and Reasoning (LPAR), volume 624 of Lecture Notes in Computer Science
(LNCS), pages 190–201 (1992).
https://doi.org/10.1007/BFb0013061

[48] Pestov, S., D. Ehrenberg and J. Groff, Factor: A dynamic stack-based programming language, ACM SIGPLAN Notices
45, pages 43–58 (2010).
https://doi.org/10.1145/1899661.1869637

[49] Peyton Jones, S. L., A. D. Gordon and S. Finne, Concurrent Haskell, in: H. Boehm and G. L. S. Jr., editors, Conference
Record of POPL’96: The 23rd ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL),
pages 295–308, ACM Press (1996).
https://doi.org/10.1145/237721.237794

[50] Plotkin, G. and J. Power, Notions of computation determine monads, in: International Conference on Foundations of
Software Science and Computation Structures (FoSSaCS), pages 342–356, Springer, Berlin, Heidelberg (2002).
https://doi.org/10.1007/3-540-45931-6_24

[51] Plotkin, G. and M. Pretnar, Handling algebraic effects, Logical Methods in Computer Science 9 (2013).
https://doi.org/10.2168/LMCS-9(4:23)2013

[52] Plotkin, G. D., Call-by-name, call-by-value and the λ-calculus, Theoretical Computer Science 1, pages 125–159 (1975).
https://doi.org/10.1016/0304-3975(75)90017-1

https://doi.org/10.2168/LMCS-5(4:1)2009
https://doi.org/10.1007/3-540-48959-2_17
https://doi.org/10.1007/978-94-007-0954-6
https://doi.org/10.1016/J.ENTCS.2006.04.014
https://doi.org/10.1145/199448.199528
https://doi.org/10.1016/j.tcs.2021.02.038
https://doi.org/10.1145/3062341.3062380
https://doi.org/10.1016/0890-5401(92)90008-4
https://doi.org/10.1016/0890-5401(91)90052-4
https://automath.win.tue.nl/archive/pdf/aut031.pdf
https://doi.org/10.1145/263699.263722
https://doi.org/10.1007/BFb0013061
https://doi.org/10.1145/1899661.1869637
https://doi.org/10.1145/237721.237794
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.2168/LMCS-9(4:23)2013
https://doi.org/10.1016/0304-3975(75)90017-1

9–30 FMC III: Control

[53] Power, A. and H. Thielecke, Closed Freyd- and κ-categories, in: International Colloquium on Automata, Languages, and
Programming (ICALP), volume 1644 of LNCS, pages 625–634, Springer (1999).
https://doi.org/10.1007/3-540-48523-6_59

[54] Riecke, J. G. and H. Thielecke, Typed exeptions and continuations cannot macro-express each other, in: J. Wiedermann,
P. van Emde Boas and M. Nielsen, editors, Automata, Languages and Programming, 26th International Colloquium,
ICALP’99, Prague, Czech Republic, July 11-15, 1999, Proceedings, volume 1644 of Lecture Notes in Computer Science,
pages 635–644, Springer (1999).
https://doi.org/10.1007/3-540-48523-6_60

[55] Rocha, P. and L. Caires, Propositions-as-types and shared state, Proc. ACM Program. Lang. 5, pages 1–30 (2021).
https://doi.org/10.1145/3473584

[56] Rossberg, A., B. L. Titzer, A. Haas, D. L. Schuff, D. Gohman, L. Wagner, A. Zakai, J. F. Bastien and M. Holman,
Bringing the web up to speed with webassembly, Communications of the ACM 61, pages 107–115 (2018).
https://doi.org/10.1145/3282510

[57] Saabas, A. and T. Uustalu, A compositional natural semantics and Hoare logic for low-level languages, Theor. Comput.
Sci. 373, pages 273–302 (2007).
https://doi.org/10.1016/J.TCS.2006.12.020

[58] Simpson, A. K. and G. D. Plotkin, Complete axioms for categorical fixed-point operators, in: Proc. 15th Annual IEEE
Symposium on Logic in Computer Science (LICS), pages 30–41, IEEE Computer Society (2000).
https://doi.org/10.1109/LICS.2000.855753

[59] Spivey, J. M., A functional theory of exceptions, Science of Computer Programming 14, pages 25–42 (1990).
https://doi.org/10.1016/0167-6423(90)90056-J

[60] Streicher, T. and B. Reus, Classical logic, continuation semantics and abstract machines, Journal of Functional
Programming 8, pages 543–572 (1998).
https://doi.org/10.1017/S0956796898003141

[61] Swierstra, W., Data types à la carte, Journal of Functional Programming 18, pages 423–436 (2008).
https://doi.org/10.1017/S0956796808006758

[62] Tait, W. W., Intensional interpretations of functionals of finite type I, The Journal of Symbolic Logic 32, pages 198–212
(1967).
https://doi.org/10.2307/2271658

[63] Takahashi, M., Parallel reductions in lambda-calculus, Information and Computation 118, pages 120–127 (1995).
https://doi.org/10.1006/inco.1995.1057

[64] van Bakel, S., Exception handling and classical logic, in: E. Komendantskaya, editor, Proc. 21st International Symposium
on Principles and Practice of Programming Languages (PPDP 2019), pages 21:1–21:14, ACM (2019).
https://doi.org/10.1145/3354166.3354186

[65] van Raamsdonk, F., P. Severi, M. H. Sørensen and H. Xi, Perpetual reductions in lambda-calculus, Inf. Comput. 149,
pages 173–225 (1999).
https://doi.org/10.1006/inco.1998.2750

[66] Wadler, P., How to replace failure by a list of successes: A method for exception handling, backtracking, and pattern
matching in lazy functional languages, in: J. Jouannaud, editor, Proc. Functional Programming Languages and Computer
Architecture (FPCA 1985), volume 201 of Lecture Notes in Computer Science, pages 113–128, Springer (1985).
https://doi.org/10.1007/3-540-15975-4_33

[67] Wu, N. and T. Schrijvers, Fusion for free: Efficient algebraic effect handlers, in: International Conference on Mathematics
of Program Construction (2015).
https://doi.org/10.1007/978-3-319-19797-5_15

https://doi.org/10.1007/3-540-48523-6_59
https://doi.org/10.1007/3-540-48523-6_60
https://doi.org/10.1145/3473584
https://doi.org/10.1145/3282510
https://doi.org/10.1016/J.TCS.2006.12.020
https://doi.org/10.1109/LICS.2000.855753
https://doi.org/10.1016/0167-6423(90)90056-J
https://doi.org/10.1017/S0956796898003141
https://doi.org/10.1017/S0956796808006758
https://doi.org/10.2307/2271658
https://doi.org/10.1006/inco.1995.1057
https://doi.org/10.1145/3354166.3354186
https://doi.org/10.1006/inco.1998.2750
https://doi.org/10.1007/3-540-15975-4_33
https://doi.org/10.1007/978-3-319-19797-5_15

	Introduction
	Sequencing
	Stack typing
	Expressing evaluation strategies

	Locations
	Modelling effects

	Control
	Expressing control flow
	Control types
	Discussion and related work

	The Functional Machine Calculus
	Confluence
	Types
	Machine termination
	Strong normalization
	References

