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Abstract

Arboreal categories, introduced by Abramsky and Reggio, axiomatise categories with tree-shaped objects. These categories
provide a categorical language for formalising behavioural notions such as simulation, bisimulation, and resource-indexing. In
this paper, we strengthen the axioms of an arboreal category to exclude ‘branching’ behaviour, obtaining a notion of ‘linear
arboreal category’. We then demonstrate that every arboreal category satisfying a linearisability condition has an associated
linear arboreal subcategory related via an adjunction. This identifies the relationship between the pebble-relation comonad,
of Montacute and Shah, and the pebbling comonad, of Abramsky, Dawar, and Wang, and generalises it further. As another
outcome of this new framework, we obtain a linear variant of the arboreal category for modal logic. By doing so we recover
different linear-time equivalences between transition systems as instances of their categorical definitions. We conclude with
new preservation and characterisation theorems relating trace inclusion and trace equivalence with different linear fragments
of modal logic.
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1 Introduction

In this paper, we bring several lines of research together: the categorical perspective on model compar-
ison games and the associated logical equivalences introduced in [1,6]; the notion of arboreal categories
introduced in [3], which provide an axiomatic framework for these constructions; the linear variant of
one of these constructions introduced in [11] to capture pathwidth, motivated by the work of Dalmau
on constraint satisfaction [7]; and the linear-time branching-time spectrum of behavioural equivalences
studied by Van Glabbeek [16,17] and motivated by concurrency theory. We develop a general axiomatic
framework for linear-time logics and equivalences within finite model theory, and in this setting prove new
preservation and characterisation theorems.

In recent work by Montacute and Shah [11], a ‘linear’ variant of the pebbling comonad Pk—the pebble-
relation comonad PRk—was introduced. Coalgebras over PRk correspond to path decompositions of
width < k and hence provide a new definition for pathwidth. Interestingly, the logic captured by PRk cor-
responds to the restricted conjunction fragment of the k-variable logic captured by Pk. Dalmau [7] showed
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2–2 Linear arboreal categories

that definability of constraint satisfaction problems in this logic corresponds to definability in linear Dat-
alog and restricted Krom SNP. Abramsky and Reggio [3] crystallised the intuition that the coalgebras of
such game comonads are ‘tree-shaped’ covers of some structures. That is, they defined the notion of an
arboreal category and showed that each game comonad discovered so far arises from an arboreal cover,
i.e. an adjunction between a category of extensional objects and an arboreal category. Moreover, a key
part of how game comonads capture equivalence in their associated logic is by utilising the notion of open
map bisimulation, adapted from [10], which arises naturally from the arboreal structure of their category
of coalgebras. In the case of modal logic, logical equivalence is ordinary bisimulation and is recovered as
open map bisimulations in the category of coalgebras for the modal comonad [6]. Bisimulation is at the
top of the linear-time branching-time spectrum [16,17] on transitions systems, which gives an account of
the behavioural relations between trace inclusion and bisimulation.

In this paper, we bring these strands together, linking logic, behavioural relations and arboreal cate-
gories. We do this by generalising and lifting the relationship between the pebble-relation comonad PRk

and the pebbling comonad Pk in order to obtain linear variants of comonads arising from arboreal covers.
We define a new structure called a linear arboreal category by strengthening the definition of an arboreal
category. Afterwards, we discuss the relationship between arboreal categories and linear arboreal cate-
gories. We also demonstrate sufficient conditions for when an arboreal category has an associated linear
arboreal subcategory. We then provide a categorical definition for several behavioural relations including
labelled trace equivalence native to a given linear arboreal category. This allows us to define a linear
arboreal cover for every arboreal cover.

The linear variants of previously examined arboreal categories generalise the relationships between
branching equivalences and linear equivalences (e.g. bisimulation and trace equivalence), and between
tree-like parameters and their linear variants (e.g. treewidth and pathwidth). Further, we show that linear
equivalences on Kripke frames and transition systems correspond to truth preservation in linear fragments
of logics captured by the branching equivalences. As an application of this framework, we obtain new
preservation theorems [14] and a new characterisation theorem [15,13] relating labelled trace equivalence
with linear fragments of modal logic. The latter is based on the work of Otto [12] who introduced a
proof combining the finite and infinite cases. This work stands in contrast to other recent approaches
for capturing behavioural relations in the linear-time branching-time spectrum using category theory. In
particular, there are two well-known identifiable styles for the categorification of behavioural equivalences;
first in the work on graded monads (e.g. [8]), and the second in the work involving fibrations (e.g. [18]).

Outline. Section 2 introduces the required preliminaries for the understanding of the paper. Section 3
summarises the necessary definitions and results on arboreal categories. Section 4 discusses linear arboreal
categories and their relationship with arboreal categories. Section 5 recovers the pebble-relation comonad
as an linear arboreal cover and features a modified all-in-one k-pebble game capturing equivalence in
existential k-variable logic with restricted conjunction. Section 6 introduces the linear variant of the
modal arboreal cover and establishes the relationship between linear arboreal categories and behavioural
relations. Section 7 proves new Rossman homomorphism preservation theorems for linear variants of modal
logic. Section 8 proves a new Van Benthem-Rosen characterisation theorem for a linear variants of modal
logic. Section 9 concludes with directions for future work.

2 Preliminaries

2.1 Set notation

Given a partially ordered set (X,≤) and x ∈ X, we denote by ↓x = {y ∈ X | y ≤ x} the down-set of x.
The notion of an up-set ↑x can be defined analogously. Given a partially ordered set (X,≤), we define a
covering relation ≺, such that x ≺ y iff x < y and there does not exist z ∈ X with x < z < y. A partially
ordered set is linearly ordered if every two elements are comparable.

If (T,≤) is a partially ordered set such that for all x ∈ T , ↓x is linearly ordered by ≤ and finite, then
we say that ≤ forest orders T and (T,≤) is called a forest. If (T,≤) is a forest and there exists ⊥ ∈ T
such that for all x ∈ T , ⊥ ≤ x, then we say that ≤ tree orders T , (T,≤) is called a tree, and ⊥ is called
the root of (T,≤). If (T,≤) is a forest and every up-set ↑x is linearly-ordered and finite, then (T,≤) is
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called a linear forest. If (T,≤) is a linear forest and a tree, then it follows that ≤ is linearly-ordered and
(T,≤) is a chain. If (T,≤) is a tree with root ⊥, and (T\{⊥},≤) is a linear forest, then (T,≤) is called a
linear tree.

For the sake of brevity, we write [n] to denote the set {1, . . . , n}. Given a sequence s = [x1, . . . , xn], we
write s[i, j], where i < j, for the subsequence [xi, . . . , xj ] and s(i, j] for the subsequence [xi+1, . . . , xj ]. In
addition, if s = [(p1, a1), . . . , (pn, an)] is a sequence of pairs from a set [k] × A, then we write lastp(s) to
denote an element ai, whenever p = pi ∈ [k] is the last occurrence of p in the sequence s.

2.2 Category Theory

We assume familiarity with the standard category-theoretic notions of category, functor, natural transfor-
mation, and adjunction.

The categories that we are primarily interested in are categories of relational structures. A relational
signature σ is a finite set of relational symbols R; each with a specified positive arity. A σ-structure A is
given by a set A, the universe of the structure, and interpretations RA ⊆ An for every relational symbol
R of arity n. A homomorphism of σ-structures h : A → B is a set function h : A→ B such that for every
relational symbol R ∈ σ of arity n, RA(a1, . . . , an) implies RB(h(a1), . . . , h(an)), for all a1, . . . , an ∈ A.

We use Struct(σ) to denote the category of σ-structures and homomorphisms. For every σ-structure
A, the Gaifman Graph of A, denoted by G(A), is an undirected graph with vertex set A, where elements
a, a′ are adjacent if a = a′ or a, a′ appear in the same tuple of RA for some R ∈ σ. We also consider the
category of pointed σ-structures and homomorphisms Struct⋆(σ). In Struct⋆(σ), objects are pairs (A, a0)
where A is a σ-structure paired with a distinguished point a0 ∈ A. A morphism h : (A, a0) → (B, b0) in

Struct⋆(σ) is a homomorphism h : A → B of σ-structures such that h(a0) = b0. We denote by Structf⋆(σ)
the category of finite pointed σ-structures.

Definition 2.1 (lifting property). Given a category C and morphisms e and m in C, we say that e has
the left lifting property with respect to m (or that m has the right lifting property with respect to e), if for
every commutative diagram as the left diagram below, there exists a diagonal filler d such that the right
diagram below commutes.

• •

• •

e

m

• •

• •

e

d

m

We denote this property by e ⋔ m. For any class M of morphisms in C, let ⋔
M denote the class of

morphisms with the left lifting property with respect to every morphism in M. The class M⋔ is defined
analogously.

For any class M of morphisms in C, let ⋔
M denote the class of morphisms with the left lifting property

with respect to every morphism in M. The class M⋔ is defined analogously.

Definition 2.2 (weak factorisation system). Given two classes of morphisms Q and M in a category C,
the pair (Q,M) is a weak factorisation system if the following conditions are satisfied:

(i) For every morphism f in C, f = m ◦ e, where e ∈ Q and m ∈M;

(ii) Q = ⋔
M and M = Q⋔.

A weak factorisation system is proper if every e ∈ Q is an epimorphism and every m ∈ M is a
monomorphism. A proper weak factorisation system is stable if for every e ∈ Q and m ∈M, with the same
codomain, there exists a pullback of e along m in Q.

We refer to members of M as embeddings (denoted by ֌) and to members of Q as quotients (denoted
by ։). Given two embeddings m : S ֌ X and n : T ֌ X, we write m E n to denote that there is
a morphism i : S → T such that m = n ◦ i. Note that E induces a preorder on embeddings with the
same codomain. The symmetrisation of E induces an equivalence relation ∼. The relation ∼ can be
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characterised as m ∼ n if there exists an isomorphism i : S → T such that m = n ◦ i. Let SX denote the
class of ∼-equivalence classes of embeddings with codomain X and partial order ≤ induced by E. The
∼-equivalence class with a representative m : S ֌ X is denoted [m].

2.3 Kripke frames and transition systems

Consider the category Struct⋆(σ), where the signature σ has only relation symbols of arity ≤ 2. In this
case, we will index all binary relations {Rα | α ∈ Act} by an action alphabet Act and all the unary relations
{Pl | l ∈ PV} by a set of propositional variables PV. Objects in Struct⋆(σ) are then exactly pointed Kripke
models. In a typical presentation, a pointed Kripke model A = (A, a0, {Rα}, V ) is specified by set of states
A with distinguished initial state a0 ∈ A, finitely many binary transition relations Rα, and valuation map
V : A→ ℘(PV) from states to sets of propositional variables. A classical pointed Kripke model is a pointed
Kripke model with one binary relation. We recover this encoding of a pointed Kripke model from an object
(A, a0) = (A, {Rα | α ∈ Act}, {Pl | l ∈ PV}, a0) in Struct⋆(σ) by defining the valuation map V : A→ ℘(PV)
as V (a) = {l ∈ PV | a ∈ PA

l }.
The objects in Struct⋆(σ) are general enough to define two slightly different notions of trace inclusion

(resp. equivalence) on transitions systems. For every object (A, a0) ∈ Struct⋆(σ), we define the set of
labelled traces

ltraces(a0) = {V (a0)α1V (a1)α2 . . . αnV (an) | n ∈ N,∀i ∈ [n](Rαi
(ai−1, ai))}.

We will occasionally write a0
α1−→ a1 . . .

αn−−→ an instead of ∀i ∈ [n](Rαi
(ai−1, ai)).

Definition 2.3. Given two objects (A, a0) and (B, b0) in Struct⋆(σ), we define

• a0 ⊆
tr b0 if for all labelled traces V (a0)α1V (a1)α2 . . . αnV (an) ∈ ltraces(a0), there exists a labelled

trace V (b0)α1V (b1)α2 . . . αnV (bn) ∈ ltraces(b0) such that V (ai) ⊆ V (bi) for all i ∈ [n].

• a0 ⊆
ltr b0 if ltraces(a0) ⊆ ltraces(b0). This equivalent is to a0 ⊆

tr b0 but with the stronger condition
that V (ai) = V (bi).

We say that there exists a trace inclusion from a0 to b0 if a0 ⊆
tr b0. The object a0 is then said to be

trace included in b0. We write a0 ∼
tr b0 to denote that there exists a trace equivalence between a0 and b0,

and say that a0 is trace equivalent to b0, i.e. whenever both a0 ⊆
tr b0 and b0 ⊆

tr a0. The relation ∼ltr is
defined analogously. Each of these relations can be graded by a resource parameter k > 0, e.g. ⊆tr

k for a
grading of ⊆tr, where the definitions are restricted to traces of length ≤ k.

A transition system is a tuple A = (A, {Rα | α ∈ Act}, a0), where A is considered as the set of states,
Act is the set of actions and a0 ∈ A is an initial state. Note that a transition system is a special case of
a pointed Kripke model where the map V is unspecified. This is also referred to as a Kripke frame in the
literature. For transition systems, the relations ⊆tr and ⊆ltr are equivalent. Two structures (A, a0) and
(B, b0) are (labelled) trace equivalent if they admit a (labelled) trace equivalence.

Example 2.4. The two transition systems (A, a0) and (B, b0) in Figure 1 are trace equivalent but not
labelled trace equivalent. To see why, observe that there is a labelled trace ∅α∅α{p} in ltraces(b0), but
not in ltraces(a0).

{p, q} {p} {p, q}

∅ ∅

∅ ∅

(A, a0) (B, b0)

α α

α
α α

Fig. 1. Trace equivalent transition systems that are not labelled trace equivalent
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3 Arboreal categories

In this section we cover some of the required preliminaries on arboreal categories from the papers by
Abramsky and Reggio [3,5] introducing the subject.

Intuitively, arboreal categories C are defined to formalise the notion of a category whose objects are
‘tree-shaped’. Similar to how objects in a locally finitely presentable category are generated from a subcat-
egory Cfp of finitely presentable objects, the tree-shaped objects of an arboreal category are generated from
a subcategory Cp of path objects. For this reason, we first define a notion of path category C (Definition
3.2) that has enough structure to define a full subcategory Cp of path objects.

We assume throughout, that we are dealing with categories C equipped with a stable proper weak
factorisation system.

Definition 3.1 (path). An object P of C is called a path if SP is a finite chain.

A path embedding is an embedding with a path as its domain. Given an object X in C, let PX denote
the sub-poset of SX of path embeddings. A morphism f : X → Y in C is a pathwise embedding if f ◦m
is a path embedding, for all path embeddings m : P ֌ X. Pathwise embeddings induce a mapping
Pf : PX → PY , where Pf(m) = f ◦m for all m ∈ PX. A morphism f : X → Y in C is open if, given a
commutative square

P Q

X Y
f

, (1)

where P and Q are paths, there exists a diagonal filler embedding Q ֌ X. A span of type X
f
←− R

g
−→ Y

such that f and g are open pathwise embeddings is called an arboreal bisimulation from X to Y . Intuitively,
an open map f : X → Y states that if a path P ֌ X in the domain X can be extended to a path Q֌ Y
in the codomain Y , then P can be extended to Q in the domain X as witnessed by the diagonal Q֌ X.
This definition of open map differs slightly from the original notion [10] as we require all but the arrow
f : X → Y in diagram (1) to be embeddings. For objects in an arboreal category, we say that X and Y
are bisimilar if there exists an arboreal bisimulation from X to Y .

Given a category C, there is a full subcategory Cp of C containing only the path objects which satisfy
Definition 3.1. Suppose C is a category which has all coproducts of small families of path objects. Then
we say that an object X of C is connected if, for all non-empty small families of paths {Pi}, a morphism
X →

∐

i∈I Pi factors through some coproduct injection Pj →
∐

i∈I Pi. In the case this coproduct injection
is unique, we say that X of C is strongly connected.

Definition 3.2 (path category [5]). A category C equipped with a stable weak proper factorisation system
is a path category if it satisfies the following conditions:

(i) C has all coproducts
∐

j∈J Xj , where {Xj} is a small family of paths.

(ii) For all paths P,Q and R, if P → Q→ R is a quotient, then P → Q is a quotient.

(iii) Every path in C is connected.

The full subcategory Cp of a path category C is central to many of the semantic constructions which
generalise notions of property-preserving bisimulation, simulation, and trace equivalence that originate in
the theory of transition systems, Kripke structures, and automata.

An object X of a path category C is path-generated if X is the colimit of the cocone consisting of all
commuting triangles of the form

P Q

X

.

Definition 3.3 (arboreal category). An arboreal category is a path category in which all objects are
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path-generated.

Example 3.4. The arboreal category R(σ) [3, Example 3.4] consists of objects (A,≤), where A is a σ-
structure and ≤ is a forest order on A. Morphisms f : (A,≤)→ (B,≤′) in R(σ) are σ-homomorphisms that
preserve roots, i.e. minimal elements of ≤, and the induced covering relation ≺ of the forest order ≤. As
discussed in [3], the categories of coalgebras for the Ehrenfeucht-Fräıssé, pebbling, and modal comonads
are isomorphic to the arboreal categories RE(σ), RP (σ) and RM (σ) based on R(σ). They are described as
follows:

• For the Ehrenfeucht-Fräıssé comonad, the category RE(σ) is the full subcategory of R(σ) of objects
(A,≤) which satisfy the condition
(E) If a, a′ ∈ A are adjacent in the Gaifman graph of A, then a ≤ a′ or a′ ≤ a.
The category RE

k (σ) is the subcategory of RE(σ) with forest order of height ≤ k. Unpacking the

definition, we have that (A,≤) ∈ RE
k (σ) is a k-height forest cover of the Gaifman graph of A.

• For the pebbling comonad, the category RP
k (σ) has objects (A,≤, p : A→ [k]), where (A,≤) ∈ RE(σ),

and the pebbling function p : A→ [k] satisfies the condition
(P) If a, a′ ∈ A are adjacent in the Gaifman graph of A and a ≤ a′, then for all b ∈ (a, a′], p(b) 6= p(a).
The morphisms of RP

k (σ) are morphisms of RE(σ) that also preserve the pebbling function. The

object (A,≤, p) ∈ RP
k (σ) is a k-pebble forest cover of A.

• For the modal comonad, the category RM(σ) is the category of tree-ordered σ-structures (A, a0,≤),
where a0 is the root of (A,≤) and σ contains only relations of arity ≤ 2 satisfying the condition

(M) a ≺ a′ if and only if there exists a unique binary relation Rα ∈ σ such that RA
α (a, a

′).
The category RM

k (σ) is the subcategory of RM (σ) with tree order of height ≤ k.

Arboreal categories have a process structure that allows for ‘dynamic’ notions such as property-
preserving simulations, bisimulations, and back-and-forth systems. In particular, arboreal bisimulation
is equivalent to a general back-and-forth game [6]. Utilising an adjunction, we can relate the process
structure of an arboreal category C to an ‘extensional’ category E of ‘static’ objects.

Definition 3.5 (arboreal cover). An arboreal cover of E by C is a comonadic adjunction (L,R, ε, η) such
that

C E

L

R

⊣

.

Every adjunction yields a comonad (C, ε, δ) over E, where C = LR, and the component δa : LRa →
LRLRa for a ∈ E is defined as L(ηRa). The comonadicity condition states that the arboreal category C

is isomorphic to the Eilenberg-Moore category of coalgebras for the comonad C. Intuitively, this means
that we can view the tree-shaped objects of C as covers, or unravelings, of the objects in E. Moreover, this
adjunction allows us to study the objects of E using the process structure of C.

One of the purposes of using the arboreal setting is to analyse resources associated with the process
structure of C. To formalise this resource structure, an arboreal category C may be graded by a resource
parameter k > 0.

Definition 3.6 (resource indexing). Let C be an arboreal category with full subcategory of paths Cp. The

arboreal category C is resource-indexed by a parameter k if for all k > 0, there is full subcategory Ck
p of

Cp closed under embeddings, i.e. if Q ∈ Ck
p and P ֌ Q ∈ Cp, then P ∈ Ck

p, with inclusions

C
1
p →֒ C

2
p →֒ C

3
p →֒ . . . .

This induces a corresponding tower of full subcategories Ck of C with the objects of Ck being those whose
cocone of path embeddings with domain in Ck

p is a colimit cocone in C.

To be explicit that this resource-indexing induces a family of categories, we will use the notation {Ck}
to denote an arboreal category which is resource-indexed by a parameter k > 0. Note that the k-height
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resource indexing of {RE
k (σ)} and {RM

k (σ)}, and the k-pebble indexing of {RP
k (σ)} in Example 3.4, are

all instances of resource-indexed arboreal categories.
By Proposition 7.6 of [3], if {Ck} is a resource-indexed arboreal category, then each subcategory Ck is

itself an arboreal category. Consequently, we can resource-index arboreal covers of extensional categories.
Given a resource-indexed arboreal category {Ck}, a resource-indexed arboreal cover of E by {Ck} is an
indexed family of comonadic adjunctions

Ck E

Lk

Rk

⊣

,

yielding corresponding comonads Ck = LkRk on E.

Definition 3.7. Consider a resource-indexed arboreal cover of E by C, and two objects a, b of E. For all
k > 0, we define:

• a→C
k b if there is a morphism Rk(a)→ Rk(b) in Ck.

• a ⇀C
k b if there is a pathwise embedding Rk(a)→ Rk(b) in Ck.

• a↔C
k b if there is an arboreal bisimulation between Rk(a) and Rk(b) in Ck.

• a ∼=C
k b if there is an isomorphism Rk(a) ∼= Rk(b) in Ck.

4 Linear arboreal categories

In an arboreal category, since every object X is path-generated, X is a colimit cocone of its branches. For
the notion of linear arboreal category, we would like to impose additional conditions to exclude ‘non-trivial
branching’. Branching appears in two forms for an arboreal category C. The first form is evident in the
objects of C. Namely, objects in C are colimits of their branch subobjects. Thus to exclude branching in
the objects of C, we additionally require that every object X ∈ C is a coproduct of paths. The second
form is evident in the morphisms of C. In particular, path embeddings p : P ֌ X in C isolate a partial
branch of X that can be extended in possibly multiple ways, via extensions j : P ֌ Q, to longer partial
branches q : Q ֌ X where p = q ◦ j. Thus to exclude branching in the morphisms of C, we need a path
embedding P ֌ X to isolate a ‘full path’ or ‘trace’, rather than partial path. To accomplish this, we add
an axiom to ensure that each path in C has only trivial extensions. We formalise these exclusions in the
following axiomatic definition.

Definition 4.1 (linear arboreal category). A linear arboreal category is an arboreal category C such that
the following two axioms are satisfied:

(L1) Every object X ∈ C is a coproduct
⊔

Pi∈Cp
Pi of path objects Pi.

(L2) For every two non-initial paths P and Q, if j : P ֌ Q is an embedding, then j : P ∼= Q is an
isomorphism.

We say that an arboreal category C is a quasi-linear arboreal category if (L1) is satisfied.

One counterintutive consequence of condition (L2) is that the path objects in a linear arboreal category
appear ‘externally’ rather trivial. This is captured in the the following proposition:

Proposition 4.2. If C is a linear arboreal category and P ∈ C is a path, then ht(P ) ≤ 1.

Proposition 4.2 hints at the idea that ‘paths’ in the linear arboreal setting can be seen has types for
full behaviours, i.e. traces and, in terms of model comparison games, produce ‘all-in-one’ variants.

Another counter-intuitive consequence of these axioms is that bisimulations in C trivialise to ‘bidirec-
tional’ pathwise embeddings.

Corollary 4.3. Let C be a linear arboreal category, and suppose the categorical product X × Y exists in
C. Then the following are equivalent:

(1) There exists a bisimulation X
f
←− Z

g
−→ Y in C.
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(2) There exist pathwise embeddings h : X → Y and h′ : Y → X in C.

4.1 Linear adjunction

In this section, we construct a linear arboreal subcategory CL from any arboreal category C which satisfies
the linearisability condition. The linear arboreal subcategory CL is related to C via a right adjoint to
the inclusion functor I : CL → C. Using this adjunction, we can derive linear variants of many of the
corresponding constructions in C.

To define the linearisability condition, we simply strengthen to notion of connectedness in Axiom (iii)
of Definition 3.2 to the usual categorical notion.

Definition 4.4. An object X ∈ C is strongly connected if every morphism X →
⊔

i∈I Pi, where {Pi} is a
family of paths, factors through a unique coproduct injection Pj →

⊔

i∈I Pi.

The following condition, which we can define for any path category, is sufficient to guarantee that an
arboreal category C contains a linear arboreal subcategory CL.

Definition 4.5. A path category is linearisable if every non-initial path P ∈ C is strongly connected.

The linearisability condition is independent from the axioms of a path category.
For every linearisable arboreal category C, we construct a subcategory CL which is a linear arboreal

category. To construct CL, we first construct the quasi-linear arboreal category CqL from C by restricting
the objects of C to those that are generated by their maximal paths.

Definition 4.6. A path embedding m : P ֌ X is maximal if P is not initial and for all n : P ′ ֌ X such
that m E n, m ∼ n.

Equivalently, m : P ֌ X is maximal if the ∼-equivalence class [m] is a maximal element in the poset
P(X). For every object X in a path category, let P⊤(X) be the subset of maximal elements in P(X). With
the definition of maximality in place, we obtain CqL as the full subcategory whose objects are generated
by their maximal paths. Formally, such objects are defined as follows:

Definition 4.7. An object X ∈ C of a path category C is linearly path-generated if it is the coproduct of
its maximal elements, i.e.

X ∼=
⊔

[m]∈P⊤(X)

dom(m).

The next step in the construction of CL is to obtain CL from CqL by restricting to those morphisms of
CqL that preserve maximal elements. Formally, such morphisms are defined as follows:

Definition 4.8. A morphism f : X → Y ∈ C is a leaf morphism in C if for every [m] ∈ P⊤(X),

P(f)([m]) = [∃fm] ∈ P⊤(Y ).

Thus, CL is the subcategory of C where the objects are the linearly-path generated objects of C and
the morphisms are the leaf morphisms of C.

Proposition 4.9. If C is a linearisable arboreal category, then CL is a linear arboreal category.

For the linear arboreal subcategory CL of an arboreal category C, there is an inclusion I : CL →֒ C.
Paths of an object in X ∈ CL are essentially the maximal paths of I(X) ∈ C. The inclusion I : CL → C

has a right adjoint T : C → CL. The right adjoint T will be central for computing from a game comonad
its linear variant. To construct the object mapping of T , suppose X is an object of arboreal category C.
We define T (X) as the coproduct of all paths of X. In notation,

T (X) =
⊔

[p]∈P(X)

dom(p).
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For every X ∈ C, by the universal property of the coproduct I(T (X)), there exists a unique morphism
εLX : I(T (X)) → X such that for all [p] ∈ P(X), p = εLX ◦ i[p], where i[p] : dom(p) → I(T (X)) is the

coproduct injection. The following theorem demonstrates that for every object X ∈ C, T (X) and εLX is a
universal morphism from I to X. Thus, T extends to a functor T : C→ CL and is right adjoint to I.

Theorem 4.10. For every linearisable arboreal category C, I ⊣ T is an adjunction from CL to C.

Example 4.11. The linear arboreal subcategory RL(σ) of R(σ), described in Example 3.4, consists of
objects that are forest-ordered σ-structures (A,≤), where (A,≤) is a linear forest, and of forest-ordered σ-
morphisms that preserve maximal elements. Using RL(σ), we can define the linear subcategories REL(σ),
RPL(σ), and RML(σ) of RE(σ), RP (σ), and RM (σ), respectively.

• For the Ehrenfeucht-Fräıssé comonad, the linear arboreal subcategory REL(σ) of RE(σ) has objects
(A,≤), where ≤ linear orders each connected component of the σ-structure A and morphisms which,
as in RL(σ), preserve roots, the covering relation, and maximal elements. Intuitively, these morphisms
merge connected components of equal height in the order ≤.

• For the pebbling comonad, the linear arboreal subcategory RPL
k (σ) of RP

k (σ) is isomorphic to the

category of coalgebras of the pebble-relation comonad [11, Theorem 4.9]. The category RPL
k (σ) is

the subcategory of RP
k (σ) consisting of objects (A,≤, p) such that (A,≤) ∈ RL(σ), and morphisms

f : (A,≤, p) → (B,≤′, p′) such that f : (A,≤) → (B,≤′) ∈ RL(σ) and p′(f(a)) = p(a), for all a ∈ A.
We explore this category in Section 5.

• For the modal comonad, the linear arboreal subcategory RML(σ) of RM (σ) is a category of linear syn-
chronisation trees. The category RML(σ) is the subcategory of RM (σ) consisting of objects (A, a0,≤)
such that (A,≤) is a linear tree with root a0. We discuss this category in Section 6.

4.2 Linear behavioural relations

For every arboreal cover of E by C, we can obtain a linear arboreal cover of E by CL by observing that the
adjunction L ◦ I ⊣ T ◦R is comonadic.

Proposition 4.12. If L ⊣ R is an arboreal cover of E by C, then L ◦ I ⊣ T ◦R is a linear arboreal cover
of E by CL.

Moreover, if an arboreal cover of E by C is resource-indexed by a parameter k > 0 as in Definition 3.6,
then this induces a resource indexing by the same parameter k > 0 on the linear arboreal cover of E by
CL. If an arboreal category C is indexed by a parameter k, then C is equipped, for all k > 0, with a full
subcategory Ck

p of Cp closed under embeddings with inclusions

C
1
p →֒ C

2
p →֒ C

3
p →֒ . . . .

This induces a corresponding resource indexing CL
k of CL with objects of CL being those that are coproducts

of objects in Ck
p. Equivalently, CL

k is the full subcategory of objects in Ck that are also in CL. As with

the case of arboreal categories, each of the subcategories CL
k is a linear arboreal category. Consequently,

the adjunctions Ik ⊣ Tk, where Ik : C
L
k →֒ Ck and Tk : Ck → CL

k witness a linear arboreal cover of C by

CL. These adjunctions can be composed with the arboreal covers Lk ⊣ Rk of E by {Ck}, obtaining a
resource-indexed linear arboreal cover Lk ◦ Ik ⊣ Tk ◦Rk of E by {CL

k }.
From a resource-indexed arboreal cover Lk ⊣ Rk, we obtain relations on objects in E which are categori-

cal versions of ‘branching’ behavioural relations like simulation (→C
k), property-preserving simulation (⇀C

k),

bisimulation (↔C
k), and graded bisimulation (∼=C

k), defined in terms of constructions in C (Definition 3.7).
On the other hand, Definition 3.7 applied to the resource-indexed linear arboreal cover Lk ◦ Ik ⊣ Tk ◦Rk

provides a language for applying a categorical version of ‘linear’ behavioural relations like trace inclusion

(→CL

k ), labelled trace equivalence (↔CL

k ), and bijective labelled trace equivalence (∼=CL

k )(Definition 6.5) to

objects in E via the same constructions in the subcategory CL of C. This intuition is crystallised in Section
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6 by investigating these relations on the linear variant of RM
k (σ). In Kripke structures and transition

systems, it is well known that the ‘branching’ relations imply ‘linear’ relations. These results generalise to
the setting of arboreal categories and is stated in Theorem 4.15. Given that these relations are defined in
terms of pathwise embeddings and open maps, we first show that T preserves both pathwise embeddings
and open maps.

Proposition 4.13. If g : X → Y is a pathwise embedding, then T (g) : T (X) → T (Y ) is a pathwise
embedding.

Proposition 4.14. If g : X → Y is an open map, then T (g) : T (X)→ T (Y ) is an open map.

Theorem 4.15. Given a resource-indexed arboreal cover of E by {Ck} and two objects a, b of E, for all
k > 0,

(i) a→C
k b implies a→CL

k b.

(ii) a ⇀C
k b implies a ⇀CL

k b.

(iii) a↔C
k b implies a↔CL

k b.

(iv) a ∼=C
k b implies a ∼=CL

k b.

Viewing Ik ⊣ Tk as a linear arboreal cover of Ck by CL
k , the proofs of the statements in Theorem 4.15

can be reformulated as generalisations of stronger statements about transition systems. For instance, the
proof of statement (iii) of Theorem 4.15 demonstrates that two pointed transition systems (A, a), (B, b) are
labelled trace equivalent for traces of length ≤ k if and only if Tk(Rk(A, a)) and Tk(Rk(B, b)) are bisimilar
up to depth ≤ k.

5 The pebbling linear arboreal cover

Recall the definition of RPL(σ) from Example 4.11. The following proposition follows from Proposition 4.9
and the proof that RP

k (σ) is a linearisable arboreal category [6,5].

Proposition 5.1. RPL
k (σ) is a linear arboreal category.

There is a forgetful functor Lk : R
PL
k (σ)→ Struct(σ) mapping (A,≤, p) to A. For each σ-structure A,

let LR(A) be the structure with universe

LR(A) = {(s, i) | s = [(p1, a1), . . . , (pn, an)] and i ∈ [n],∀n ∈ N}.

We define a counit map ε : LR(A)→ A as (s, i) 7→ ai. Let s(i, j] be the subsequence of s from index i+ 1

to j. Suppose R ∈ σ is an m-ary relation. Then RLR(A)((s1, i1), . . . , (sm, im)) iff

(i) ∀j ∈ [m], sj = s;

(ii) pij does not appear in s(ij ,max{i1, . . . , im}];

(iii) RA(εA(s, i1), . . . , εA(s, im)).

There is a natural ordering ≤ on LR(A) such that x ≤ y iff x = (s, i), y = (s, j) and i ≤ j. There
is a pebbling function p : LR(A) → [k], where p(s, i) = pi for s = [(p1, a1), . . . , (pn, an)]. The triple
(LR(A),≤, p) is a linear forest satisfying condition (P), hence an object of RPL

k (σ). This extends to a

functor Rk : Struct(σ) → RPL
k (σ), where Rk(A) = (LR(A),≤, p). The following proposition follows from

the fact that Lk ⊣ Rk is a comonadic adjunction [11, Theorem 4.9] and from Proposition 5.1.

Proposition 5.2. Lk ⊣ Rk is a resource-indexed linear arboreal cover of Struct(σ) by RPL
k (σ).

The comonad (PL
k , ε, δ) induced by this resource-indexed arboreal cover is a linear variant of Pk and

was the original motivation for the notion of linear arboreal category. This comonad was called the pebble-
relation comonad PRk by Montacute and Shah in [11]. There it was demonstrated that the existence of a
morphism between two relational structures A and B in the coKleisli category over P

L
k is equivalent to a
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winning strategy for Duplicator in the all-in-one positive k-pebble game ∃+PPebk(A,B) between A and
B. This game characterises preservation of sentences in the restricted conjunction fragment of existential
positive k-variable logic ∃+fLk. It was also shown that an isomorphism in the coKleisli category over
P
L
k is equivalent to a winning strategy for Duplicator in the all-in-one bijective k-pebble game between A

and B. This game characterises equivalence of sentences in the fragment of k-variable logic with restricted
conjunction and ‘walk counting’ #fLk.

Applying the machinery we developed in Section 4, we address the open question in the conclusion
of [11] by showing that pathwise embeddings, and thus bisimulation in the category of coalgebras of PL

k ,

isomorphic to RPL
k (σ) correspond to Duplicator winning strategies in the all-in-one k-pebble game with

partial isomorphism winning condition ∃PPebk(A,B). This game characterises preservation of sentences
in the restricted conjunction fragment of existential, i.e. negations are only allowed on atomic formulas,
k-variable logic ∃fLk. This addition to [11] is summarised in the following theorem:

Theorem 5.3. The following are equivalent for all σ-structures A,B:

(i) There exists a bisimulation Rk(A)← X → Rk(B).

(ii) There exist pathwise embeddings Rk(A)→ Rk(B) and Rk(B)→ Rk(A).

(iii) Duplicator has a winning strategy in ∃PPebk(A,B) and ∃PPebk(B,A).

(iv) A ≡∃fLk

B.

6 The modal linear arboreal cover

We will now turn to analysing a linear fragment of modal logic utilising the abstraction of linear arboreal
categories. To this end, we assume that σ is a modal signature. That is, the relation symbols in σ
have arity ≤ 2. Recall the definition of the category of linear synchronisation trees RML(σ) defined in
Example 4.11. For all k > 0, we consider RML

k (σ) to be the full subcategory of RML(σ) consisting of linear

synchronisation trees with height ≤ k. Observe that RML(σ) and RML
k (σ) are the linear subcategories

of RM (σ) and RM
k (σ), respectively. The following proposition follows from Proposition 4.9 and the proof

that RM (σ) and RM
k (σ) are linearisable arboreal categories [6,5].

Proposition 6.1. RML(σ) is a linear arboreal category and, for every k > 0, RML
k (σ) is a linear arboreal

category.

There is an obvious forgetful functor L : RML(σ)→ Struct⋆(σ) mapping (A, a0,≤) to (A, a0). For each
pointed relational structure (A, a0) with modal signature σ, we define a new structure LR(A, a0) with a
universe

LR(A, a0) = {a0} ∪
⋃

n∈N

{(s, i) | s ∈ runsn(A, a0), i ∈ [n]}, where

runsn(A, a0) = {a0
α1−→ a1

α2−→ . . .
αn−−→ an | αi ∈ Act, ai ∈ A, i ∈ [n]}.

We define a counit map ε : LR(A, a0)→ (A, a0), which preserves the distinguished point a0, and the pair
(s, i) is mapped to the i-th element in the run s. Unary relations P ∈ σ are interpreted as PLR(A,a0)(s) iff

PA(εA(s)). For binary relations Rα ∈ σ, the interpretation is R
LR(A,a0)
α (x, y) iff either

(i) x = a0, y = (s, 1) and the first transition appearing in s is α; or

(ii) x = (s, i), y = (s, i+ 1) and the (i+ 1)-th transition appearing in s is α.

There is a natural ordering ≤ on the universe LR(A, a0), where x ≤ y if either x = a0 and y = (s, 1),
or x = (s, i), y = (s, j) and i ≤ j. The pair (LR(A, a0),≤) is a linear tree that satisfies condition (M)
as stated in Example 3.4. Consequently, we have that (LR(A, a0), a0,≤) is an object of RML(σ). This
construction extends to a functor R : Struct⋆(σ) → RML(σ), where R(A, a0) = (LR(A, a0), a0,≤). The
following proposition follows from Proposition 4.12 and [6, Theorem 9.6].

Proposition 6.2. L ⊣ R is a linear arboreal cover of Struct⋆(σ) by RML(σ).
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This arboreal cover can be resource-indexed: For every k > 0, the forgetful functor Lk : R
ML
k (σ) →

Struct⋆(σ) has right adjoint Rk : Struct⋆(σ) → RML
k (σ), where the universe of the underlying σ-structure

and order of Rk(A, a0) is the induced σ-structure and induced order of R(A, a0) on the subset

{a0} ∪
⋃

n≤k

{(s, i) | s ∈ runsn(A, a0), i ∈ [n]}.

The proof of Proposition 6.2 restricts to the height ≤ k linear synchronisation trees in the subcategory
RML
k (σ) of RML(σ).

Proposition 6.3. Lk ⊣ Rk is a resource-indexed linear arboreal cover of Struct⋆(σ) by {R
ML
k (σ)}.

For all k > 0, the comonad (ML
k , ε, δ) induced by the above resource-indexed arboreal cover is a linear

variant of the modal comonad defined in [6]. In fact, as with the modal comonad Mk, the linear variant
M

L
k is idempotent: The unit η of the adjunction in Proposition 6.3 is an isomorphism; i.e. ai ∈ (A, a0,≤)

is mapped to (s, i), where s is the unique linearly-ordered run containing ai as its i-th element.

Proposition 6.4. M
L
k is an idempotent comonad. Equivalently, RML

k (σ) is a coreflective subcategory of
Struct⋆(σ).

Let MLk denote the fragment of modal logic with modal-depth k. In [6] and [3], it was shown that the
resource-indexed arboreal cover of Struct⋆(σ) by {R

M
k (σ)} captures logical equivalence in MLk, as well as

in the following variants of MLk:

• The fragment ∃+MLk, which excludes negation and the operator �;

• The fragment ∃MLk, which includes negation over propositional variables but excludes �;

• The extension #MLk which includes graded modalities, i.e. modalities of the form ♦≤k defined for a
Kripke modelM and a point w as (M, w) |= ♦≤kϕ iff w has at most k successors satisfying ϕ. The
modality ♦≥k is defined similarly but with the interpretation of ‘at least’ instead.

We can show that the relations resulting from the resource-indexed arboreal cover of Proposition 6.3
recover behavioural relations, e.g. trace inclusion and bijective labelled trace equivalence, and equivalence
in their corresponding linear fragments of modal logic. We begin by defining the linear fragment ∃fMLk.

A formula ϕ ∈ MLk is called linear if each conjunction in every proper subformula of ϕ contains at
most one formula with modal operations. Explicitly, the language ∃fMLk can be defined recursively as

ϕ ::= ϕ ∧ ϕ | ♦αψ , ψ ::= ⊤ | ⊥ | ψ ∨ ψ | p ∧ ψ | ¬p ∧ ψ | ♦αψ , p ∈ Var, α ∈ Act. (2)

This entails for example that ♦(♦p ∧ ♦q) is not a linear modal formula. Accordingly, let fMLk denote
the fragment of MLk in which every formula is linear.

Below, given a list α = [α1, . . . , αn] ∈ Act∗ and pointed σ-structure (A, a0), we define the set of
processes

proc
α
(A, a0) := {a0

α1−→ a1
α2−→ . . .

αn−−→ an | ai ∈ A, i ∈ [n]}.

Note that
⋃

α∈Actn procα(A, a0) = runsn(A, a0).
Let #fMLk denote the extension of ∃fMLk with walk counting modalities ♦m

α
, where α =

[α1, . . . , αn] ∈ Act∗ and m is a positive integer. Given a pointed Kripke structure (A, a), the seman-
tics of these walk counting modalities ♦m

ααα is defined by induction on the length of ααα:

• A, a � ♦1
ǫϕ if and only if A, a � ϕ

• A, a � ♦m
[β]αααϕ if for every mααα,mβ ∈ N where m = mαααmβ, there exists mβ-many β-successors a′ of a

such that A, a′ � ♦mααα
ααα ϕ.

Recall that [β]ααα denotes the concatenation of [β] for β ∈ Act and ααα = [α1, . . . , αn] ∈ Act∗.
The syntax of #fMLk is the same as of ∃fMLk but with the addition of formulas of the form ♦m

α
ψ

to the ϕ grammer of Equation (2).
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In this paper, we consider these linear fragments ∃+fMLk, ∃fMLk and #fMLk.

Definition 6.5 (bijective labelled trace equivalence). Given two pointed Kripke structures (A, a0) and
(B, b0) in Struct⋆(σ), we write (A, a0) ∼

bltr (B, b0) if for every α = [α1, . . . , αn], there exists a bijection

fα : proc
α
(A, a0)→ proc

α
(B, b0),

such that for each s = a0
α1−→ a1 . . .

αn−−→ an and t = b0
α1−→ b1 . . .

αn−−→ bn with fα(s) = t, we have
V (ai) = V (bi), for all i ≥ 0.

Whenever (A, a0) ∼
bltr (B, b0), we say that (A, a0) and (B, b0) are bijective labelled trace equivalent. As

with ⊆tr and ∼ltr, we can also obtain the relation ∼bltr

k by restricting the definition of ∼bltr to traces of
length ≤ k .

Bijective labelled trace equivalence is incomparable with bisimulation. To see why, consider the struc-
tures in Figure 2. These are clearly non-bisimilar yet there is a bijection between their labelled traces,
hence they are bijective labelled trace equivalent. On the other hand, by taking a point with a single
α-transition and comparing it to a point with a pair of α-transitions, we obtain two transition systems
which are bisimilar but not bijective labelled trace equivalent.

∅ ∅ ∅ ∅

∅ ∅ ∅ ∅

∅ ∅

α β
α β

α α α α

Fig. 2. bijective labelled trace equivalent but non-bisimilar transition systems

Below, let ⇛L and ≡L denote truth preservation and equivalence in L, respectively.

Theorem 6.6. Let C = RML
k (σ). For all (A, a0), (B, b0) ∈ Struct⋆(σ), the following statements hold:

(i) (A, a0)→
C
k (B, b0) iff (A, a0) ⊆

tr

k (B, b0) iff (A, a0) ⇛∃+fMLk
(B, b0).

(ii) (A, a0)↔
C
k (B, b0) iff (A, a0) ∼

ltr

k (B, b0) iff (A, a0) ≡∃fMLk
(B, b0).

(iii) (A, a0) ∼=
C
k (B, b0) iff (A, a0) ∼

bltr

k (B, b0) iff (A, a0) ≡#fMLk
(B, b0),

whenever (A, a0) and (B, b0) are image-finite.

Surprisingly, unlike in previous cases of arboreal covers [3], the back-and-forth relation ↔C
k does not

capture the full linear fragment fMLk. Instead, it captures the fragment ∃fMLk.

7 Preservation theorems

In his seminal work, Rossman [14] proved the equirank preservation theorem showing that a first order
sentence ϕ with quantifier rank r is preserved under homomorphisms if, and only if, ϕ is equivalent to an
existential positive formula with quantifier rank r. This refined the classical homomorphism preservation
theorem, due to Loś, Lyndon and Tarski, and was crucial towards the development of Rossman’s celebrated
finite homomorphism preservation theorem.

The perspective of arboreal categories provides an axiomatic framework for proving Rossman-style
theorems by determining sufficient conditions an arboreal cover must satisfy in order for a similar char-
acterisation to hold for the corresponding logic [4]. Arboreal covers for weaker logics satisfy stronger
sufficient conditions, enabling a uniform proof of Rossman-style theorems over finite and all structures.
In this section, we apply this perspective to prove a novel Rossman preservation theorem for the linear
fragment characterising labelled trace equivalence.
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Given a full subcategory D of a category C, we say that D is saturated under some equivalence relation
∼, if a ∈ D and a ∼ b imply b ∈ D, for all a, b ∈ C. The saturated full subcategories D allow us to talk
about structures which are models of sentences.

For every modal formula ϕ in fMLk, ∃fMLk, or #fMLk, we denote by Mod(ϕ) the full subcategory
Struct⋆(σ) of models of ϕ. Let→k,↔k and ∼=k be the relations from Definition 3.7 induced by the resource-

indexed arboreal cover of E by {RML
k (σ)}.

Proposition 7.1. Let D be a full subcategory of Struct⋆(σ). Then

(a) D is upward closed under →k iff D = Mod(ϕ) for some ϕ ∈ ∃+fMLk.

(b) D is saturated under ↔k iff D = Mod(ϕ) for some ϕ ∈ ∃fMLk.

(c) If D = Mod(ϕ) for some ϕ ∈ #fMLk, then D is saturated under ∼=k.

Let C be a resource-indexed arboreal category such that there is a resource-indexed arboreal cover of
a category E by C. Consider the statement

(HP) If D is a full subcategory of C saturated under ↔k, then D is closed under morphisms, i.e. if X ∈ D

and X → Y ∈ C, then Y ∈ D, iff it is closed under →k.

We replace ↔k with ∼=k to obtain the stronger version

(HP#) If D is a full subcategory of C saturated under ∼=k, then D is closed under morphisms iff it is closed
under →k.

Consider a resource-indexed arboreal cover Lk ⊣ Rk of E by {Ck}. The following is Proposition 4.5 and
4.7 of [4].

Lemma 7.2. If a ↔k Cka for all a ∈ E, then (HP) holds. If in addition Ck is idempotent, then (HP#)
holds.

Given an ambient category C, a relation ⊲⊳, a logical fragment L and a formula ϕ ∈ L, we say that ϕ
is preserved under ⊲⊳ if for all A,B ∈ C, A ⊲⊳ B implies that A |= ϕ ⇒ B |= ϕ; we say that ϕ is invariant
under ⊲⊳ if for all A,B ∈ C, A ⊲⊳ B implies that A |= ϕ⇔ B |= ϕ.

Since M
L
k is an idempotent comonad by Proposition 6.4, we obtain the following result by applying

Lemma 7.2.

Corollary 7.3. A linear modal sentence ϕ ∈ ∃fMLk is preserved under trace inclusion in finite structures
if, and only if, it is logically equivalent to a formula ψ ∈ ∃+fMLk.

Condition (HP) ensures that the bound on the modal depth between the two fragments does not
change.

Corollary 7.4. A linear modal sentence with walk counting modalities ϕ ∈ #fMLk is preserved under
trace inclusion in finite structures if, and only if, it is logically equivalent to a formula ψ ∈ ∃+fMLk.

8 Characterisation theorem

One of the most celebrated results in modal logic is the Van Benthem Characterisation theorem [15]. It
states that modal logic is the bisimulation invariant fragment of first order logic. In other words, this
demonstrates that modal logic is as expressive as first-order logic with respect to bisimulation invari-
ant properties. Rosen [13] extended the result to finite Kripke frames and Otto [12] later provided a
generalisation consolidating the two proofs into one.

In this section, we prove a Van Benthem-Rosen characterisation theorem demonstrating that a first-
order formula ϕ of rank r is invariant under labelled trace equivalence if, and only if, it is logically
equivalent to a formula in ∃fMLk, where k = 2r. The proof will follow a similar strategy to Otto’s proof
[12]. Namely, as Proposition 7.1 demonstrates, formulas in ∃fMLk can be identified with subcategories
which are saturated under ∼ltr

k , or equivalently, ↔C
k for C = RML

k (σ). Thus, to prove the characterisation

theorem, one has to show that the class of models satisfying a first-order formula ϕ is saturated under ∼ltr

k
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whenever ϕ is invariant under labelled trace equivalence.

Theorem 8.1 (Van Benthem-Rosen characterisation theorem). Let ϕ be a first-order-formula of quantifier
rank r. Then ϕ is invariant under labelled trace equivalence iff ϕ is logically equivalent to a formula
ψ ∈ ∃fMLk, where k = 2r.

As mentioned above, the characterisation theorem has two versions depending on whether the ambient
category of the evaluated pointed structures is infinite i.e. Struct⋆(σ), or finite i.e. Structf⋆ (σ). Following
Otto[12], we aim to provide a uniform consolidated proof that captures both versions.

We use the notation A+ B for the standard disjoint union of two structures A,B ∈ Struct(σ), i.e. the
coproduct in Struct(σ). Given a sentence ϕ, we say that ϕ is invariant under disjoint extensions if for all
(A, a) ∈ Struct⋆(σ) and B ∈ Struct(σ) we have

(A, a) |= ϕ ⇐⇒ (A + B, a) |= ϕ.

As the elements of B are not reachable from a, the number of traces does not increase under disjoint
extensions and thus (A, a) ∼ltr (A+ B, a). Accordingly, we obtain the following:

Lemma 8.2. Invariance under labelled trace equivalence implies invariance under disjoint extensions.

Given A ∈ Struct⋆(σ), we define a metric d on A as d(a, b) = n ∈ N whenever the path distance
between a and b in the Gaifman graph G(A) is n, and d(a, b) =∞ whenever there is no path between a
and b in G(A). We write A[a; k] for the ball centred on a with radius k. Given (A, a) ∈ Struct⋆(σ), we
define Sk(A, a) = (A[a; k], a), where (A[a; k], a) is the substructure induced by A[a; k].

Let ≡r denote equivalence in first-order logic up to quantifier rank r. A key step in our argument for
the characterisation theorem is a general result called the Workspace Lemma. Intuitively, we would like
to show that a structure A is ≡r-equivalent to a local window A[a; k] inside of A. The obvious problem
with demonstrating this through an r-round Ehrenfeucht-Fräıssé game is that Spoiler can win by playing
outside of the local window A[a; k]. The Workspace Lemma states that if we expand both A and A[a; k]
by a structure B consisting of sufficiently many disjoint copies of A + A[a; k], Duplicator can use the
additional workspace in B to evade Spoiler’s non-local moves and win the r-round Ehrenfeucht-Fräıssé
game between the expanded structures. The proof of the Workspace Lemma can be found in [2].

Lemma 8.3 (workspace lemma). Given (A, a) ∈ Struct⋆(σ) and r > 0, there exists B ∈ Struct(σ) such
that (A+ B, a) ≡r (A[a; k] + B, a), where k = 2r. Moreover, B is bounded by the size of A as |B| ≤ 2r|A|.
Therefore, if A is finite, then so is B.

The key feature of tree models, such as ML(A, a) or the modal comonad M(A, a), in proofs of charac-
terisation theorems, is that they satisfy a companion property, e.g. ML(A, a) ∼ltr (A, a). However, since
M

L(A, a) is always infinite, this creates an obstacle for a uniform proof of the characterisation theorem

that works for both finite and infinite structures. Instead of usingML(A, a), we use a structureML(k)(A, a)
which is finite whenever (A, a) is finite. Intuitively, this construction unravels the first k-steps of a trace
into elements of ML

k (A, a) and then proceeds to finish the remainder of the trace in a copy of A. We define

M
L(k)(A, a) :=

(

(ML
k (A, a) +

∑

(s,k)∈ML
k
(A,a),|s|=k

A)/ ≃, 〈a〉
)

,

where ≃ is the equivalence relation generated from (s, k) ≃ ((s, k), εA(s, k)) and 〈a〉 is the equivalence
class with the representative a under the equivalence relation ≃.

In other words, we graft a disjoint copy of A onto each leaf of ML
k (A, a) labelled by the maximal path

s paired with its last index. Note that ML(k)(A, a) is bounded by the size of A. In particular, the size of

M
L(k)(A, a) is at most |ML

k (A, a)|(1 + |A|).

Proposition 8.4. For all (A, a) ∈ Struct⋆(σ), (A, a) ∼
ltr

M
L(k)(A, a).

We can relate M
L
k , M

L(k) and Sk in the following way.
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Proposition 8.5. Given (A, a) ∈ Struct⋆(σ), Sk(M
L(k)(A, a)) ∼= M

L
k (A, a).

We are now ready to prove the main part of the characterisation theorem.

Proposition 8.6. Let ϕ be a first-order formula of quantifier rank r. If ϕ is invariant under labelled trace
equivalence, then it is equivalent to a formula ψ ∈ ∃fMLk, where k = 2r.

The proof of Theorem 8.1 involves categorical constructions such as invariance under coproducts and
the comonads ML

k and Sk. More specifically, we use Lemma 8.2 to show that ϕ is invariant under disjoint
extensions. We can then use Lemma 8.3 and Theorem 6.6.(ii) together with propositions 8.4 and 8.5 to
derive that (B, b) |= ϕ by assuming (A, a) |= ϕ and (A, a) ∼ltr

k (B, b). Since ∼ltr ⊆ ∼ltr

k , it follows by
Theorem 6.6.(ii) that formulas in ∃fMLk are invariant under labelled trace equivalence. By combining
Theorem 6.6.(ii) and Proposition 8.6, we obtain the characterisation theorem in Theorem 8.1, addressing
both the finite and infinite cases.

9 Future Work

For future work, we highlight two possible research avenues: First, one can investigate the construction
in a linear arboreal category which captures truth preservation in fMLk; this corresponds to a relation
reminiscent (albeit incomparable) of ready trace equivalence [16]. More generally, one can provide categor-
ical semantics for other relations in the linear-time branching-time spectrum in terms of linear arboreal
and arboreal categories. This work will explore how to adapt different notions of coalgebraic bisimulation,
such as cospans of open maps, to generalise these relations.

Second, there are many similarities linking our research and the strand of research categorifying be-
havioural relations via graded monads and fibrations. In particular, linear arboreal categories centre
around a notion of paths and utilise open maps as in [18]; furthermore, they employ resource indexing and
grading as in [9]. On the other hand, there are some obvious differences.

In particular, these lines of research study coalgebras over endofunctors, monads, and graded monads;
whereas we study coalgebras over comonads. The conceptual perspectives behind these formalisms also
differ, in a somewhat subtle fashion. Relating these approaches may yield valuable new insights.
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