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Abstract

Nominal algebra includes α-equality and freshness constraints on nominal terms endowed with a nominal set semantics that
facilitates reasoning about languages with binders. Nominal unification is decidable and unitary, however, its extension with
equational axioms such as Commutativity (which is finitary) is no longer finitary unless permutation fixed-point constraints
are used. In this paper, we extend the notion of nominal algebra by introducing fixed-point constraints and provide a sound
semantics using strong nominal sets. We show, by providing a counter-example, that the class of nominal sets is not a sound
denotation for this extended nominal algebra. To recover soundness we propose two different formulations of nominal algebra,
one obtained by restricting to a class of fixed-point contexts that are in direct correspondence with freshness contexts and
another obtained by using a different set of derivation rules.
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1 Introduction

Nominal algebra [16,15] provides a sophisticated framework to interpret and reason algebraically about
systems with binding. The term language of nominal algebra is an extension of first-order terms, called
nominal terms [22]. Nominal syntax includes names (representing object-level variables, or atoms), along
with meta-level variables (called just variables) and constructs to specify binding (nominal abstraction).
The α-equivalence relation between nominal terms is defined using name permutations and an auxiliary
freshness relation.

Gabbay and Mathijssen [16] define a sound and complete proof system for nominal algebra, where
derivation rules are subject to freshness conditions a#t (read “a is fresh for t” [22]). Nominal algebra with
freshness constraints has a semantics in the class of nominal sets (sets with a finitely supported permutation
action) which have a rich structure to reason about names, the permutation of names, and name binding.
This approach to the specification of syntax with binding has many advantages: Matching and unification
modulo α-equivalence are decidable [22] and moreover there are efficient algorithms to compute unique most
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general unifiers (pairs of a freshness context and a substitution) for solvable unification problems [8,19].
These algorithms have been used to implement rewriting, functional languages and logic programming
languages (see, e.g., [14,21,9]). Disunification problems are also decidable [5], as well as the more general
class of equational problems [6,3].

Since applications in theorem proving and rewrite-based programming languages often require the use
of associative-commutative operators, nominal unification algorithms have been extended to deal with
equational axioms such as Associativity (A) and Commutativity (C) [7]. C-unification and AC-unification
are decidable and finitary, however, although nominal C-unification and nominal AC-unification are de-
cidable, they are not finitary when solutions are expressed using substitutions and freshness constraints.
To overcome this limitation, fixed-point constraints π f t (read “the name permutation π fixes t”) should
be used: indeed, nominal unification modulo C and AC theories is finitary if solutions are expressed us-
ing substitutions, freshness and fixed-point constraints; moreover, freshness constraints can in turn be
expressed using fixed-point constraints [4].

The relation between freshness and fixed-point equations was initially proposed by Pitts [1], by the
equivalence a#x ⇐⇒ Nc.(a c) · x = x, where a and c are atoms and x is an element of a nominal set.
The equivalence uses the N(‘new’) quantifier that quantifies over new/fresh names. Thus, the equivalence
means that a is fresh for x if and only if swapping a for any new name c in x does not alter x, in other
words, the action of the permutation (a c) fixes x. The fixed-point constraints πf t are more general, since
π is not restricted to be of the form (a c) for a new name c. For example, depending on the chosen model,
a fixed-point constraint (a b)f X does not necessarily imply a#X. Thus, the semantics of general fixed-
point constraints differs from the semantics of freshness constraints and it needs to be determined so that
the meaning of the developments in nominal techniques using fixed-point constraints can be established.

In this paper we address this gap. We consider nominal algebras that use fixed-point constraints
instead of freshness constraints. Initially, the semantics for nominal algebras with fixed-point constraints
was expected to use nominal sets as carriers. However, through the analysis presented in this paper, we
show that this assumption is not valid by providing counterexamples. We also show that soundness can be
recovered by using a subclass of the class of nominal sets, called strong nominal sets, or by strengthening
the derivation rules using a restricted class of fixed-point contexts and the Nquantifier from nominal logic.

Summarising, our main contributions are:

(i) A novel semantic interpretation of general fixed-point constraints.

(ii) The definition of a notion of strong nominal algebra as well as notions of strong axioms and theories.

(iii) A counter-example showing that the class of nominal sets is not a sound denotation for nominal
theories using general fixed-point constraints.

(iv) A proof that strong nominal sets are a sound denotation for nominal theories with fixed-point con-
straints.

(v) An alternative formulation of a nominal theory with fixed-point constraints, whose denotational
semantics is the whole class of nominal sets.

(vi) An analysis of the correspondences between approaches with freshness and fixed-point constraints.

The above results open the way for a generalisation of the algorithms used to check nominal equational
problems to the case where the signature includes associative and commutative operators. Recall that
equational problems are first-order formulas where the only predicate is equality. They have numerous
applications in programming and theorem proving (see, e.g., [11,10,12,13,18]). Extensions to nominal
syntax with α-equality and freshness constraints have already been studied [6], but in order to consider
syntax modulo equational theories and preserve the properties of the algorithms (in particular to preserve
finitary unification) fixed-point constraints are needed, together with a corresponding notion of nominal
algebra that can provide sound denotations for the problems. In future work, we will develop algorithms
to solve nominal equational problems modulo associative and commutative axioms.
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Organisation.
Section 2 contains the basic definitions and notations used throughout the paper. Section 3 establishes

the semantics of fixed-point constraints, as well as the failure of soundness for standard derivation rules.
Section 4 characterises a class of models for which soundness holds. Section 5 discusses alternative ap-
proaches to recover soundness. Applications of the results are discussed in Section 6. Section 7 concludes
the paper.

2 Preliminaries

Syntax.
Fix disjoint countably infinite collections A = {a, b, c, . . .} of atoms and V = {X,Y,Z, . . .} of unknowns

or variables. We consider a signature Σ, finite set of term-formers (f, g, . . .) - disjoint from A and V - such
that each f ∈ Σ has a fixed arity, say n, which is a non-negative integer; we write f : n to denote that f
has arity n. Unless stated otherwise, we follow Gabbay’s permutative convention [17]: atoms a, b range
permutatively over A therefore saying two atoms a and b are distinct is unnecessary. We use permutations
to be able to rename atoms, for the purpose of α-conversion. A finite permutation π of atoms is a bijection
A → A such that the set dom(π) := {a ∈ A | π(a) 6= a} is finite; we say that π has finite domain/support.
Write id for the identity permutation, π ◦π′ for the composition of permutations π and π′, and π−1 for the
inverse of π. This makes permutations into a group; we will write Perm(A) to denote the group of finite
permutations of atoms.

The syntax of nominal terms is defined inductively by the following grammar:

s, t ::= a | π ·X | [a]t | f(t1, . . . , tn)

where a is an atom, [a]t denotes the abstraction of the atom a over the term t, f(t1, . . . , tn) is the application
of the term-former f : n to a tuple (t1, . . . , tn) and π ·X is a suspension, where π is an atom permutation.
Intuitively, π ·X denotes that X will get substituted for a term and then π will permute the atoms in that
term accordingly (i.e., the permutation π is suspended). Suspensions of the form id ·X will be represented
simply by X. The set of all nominal terms formed from a signature Σ will be denoted by F(Σ,A,V) or
simply F(Σ,V) since A will be fixed.

Abstractions will be used to represent binding operators. A fundamental example is the lambda
operator from the λ-calculus. Terms in the λ-calculus will be represented using the signature Σ = {lam :
1, app : 2}. If one consider λ-variables as atoms, λ-terms can be inductively generated by the grammar:

e ::= a | app(e, e) | lam([a]e)

To sugar the notation, we write app(s, t) as (s t) and lam([a]s) as λa.s.
The lambda operator is just one example amongst many others. We can also use abstractions to

represent various other binding operators, such as the existential (∃) and universal (∀) quantifiers of
first-order logic, or the (ν) operator in the π-calculus.

We say that a nominal term is ground (in a fixed signature Σ) when it does not mention unknowns
(and mentions only term-formers in Σ). These are inductively defined by the grammar:

g, h ::= a | [a]g | f(g1, . . . , gn)

where here f ranges over elements of Σ. The set of all ground terms will be denoted by F(Σ). We define
the set of free names of a ground term g inductively by fn(a) := {a}, fn(f(g1, . . . , gn)) =

⋃n
i=1 fn(gi), and

fn([a]g) := fn(g) \ {a}.
Write t ≡ u for syntactic identity of terms. We define a ∈ t (reads: “a occurs in t”) inductively by:

a ∈ a a ∈ [a]t
a ∈ t
a ∈ [b]t

a ∈ dom(π)

a ∈ π ·X

a ∈ ti (1 ≤ i ≤ n)

a ∈ f(t1, . . . , tn)
.
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When a ∈ t does not hold, we write a /∈ t and say that “a does not occur in t”. Furthermore, we define
Atm(t) := {a | a ∈ t}, the set of atoms that occur in t.

We define X ∈ t (reads: “X occurs in t”) inductively by:

X ∈ π ·X

X ∈ t
X ∈ [b]t

X ∈ ti (1 ≤ i ≤ n)

X ∈ f(t1, . . . , tn)
.

When X ∈ t does not hold, we write X /∈ t and say that “X does not occur in t”. Furthermore, we define
Var(t) := {X | X ∈ t}, the set of variables that occur in t. Terms whose set of variables is empty, that is,
there is no occurrence of variables in their structures, are ground terms.

Write (a b) for the permutation that swaps a for b, i.e., it maps a to b, b to a and all other c to themselves,
take (a a) = id. To swap atoms a and b in a term t, we use the swapping (a b) and write (a b) · t to denote
the action of replacing a for b and vice-versa in t. An atom permutation is built as a list of swappings.
Given two permutations π and ρ, the permutation πρ = ρ ◦π ◦ρ−1 denotes the conjugate of π with respect
to ρ. Permutation action on terms is given by: π ·a = π(a), π · (π′ ·X) = (π ◦π′) ·X,π · ([a]t) = [π(a)](π · t),
and π · f(t1, . . . , tn) = f(π · t1, . . . π · tn).

Substitutions, denoted by σ, are finite mappings from variables to terms, which extend homomorphically
over terms. Atoms can be abstracted by an abstraction operator as in [a]t but cannot be instantiated by
a substitution, while unknowns cannot be abstracted but can be instantiated by a substitution.

Constraints, Judgements and Theories.
Differently from the standard nominal approach [1,17,16], we do not use freshness constraints 4 , instead

we consider the following two kinds of constraints:

• A fixed-point constraint is a pair πf t of a permutation π and a nominal term t. A fixed-point constraint
πfX is called primitive. Write Υ and Ψ for finite sets of primitive fixed-point constraints and call them
fixed-point contexts. Υ|X denotes the restriction of Υ to X and perm(Υ|X) is the set of permutations
such that π f X is in Υ.

Intuitively, π f t means that t is a fixed-point of π (i.e., the permutation π fixes t): π · t = t.

• An α-equality constraint (or just equality) is a pair t = u where t and u are nominal terms.
Equality constraints will be used to state that two terms are provably equal.

Accordingly, we consider two judgement forms:

• A fixed-point judgement form Υ ⊢ πf t is a pair of a fixed-point context Υ and a fixed-point constraint
π f t.

• An equality judgement form Υ ⊢ t = u is a pair of a fixed-point context Υ and an equality constraint
t = u.

We may write ∅ ⊢ π f t as ⊢ π f t. Similarly for ∅ ⊢ t = u.

Definition 2.1 [Theory] A theory T = (Σ, Ax) consists of a signature Σ and a (possibly) infinite set of
equality judgement forms Ax, known as the axioms.

Example 2.2 COREf represents a theory with no axioms. More specifically, for any signature Σ, there
exists one such theory. Hence, COREΣ

f = (Σ, ∅).

Derivation rules for fixed-point and α-equality judgements are given in Figure 1. Rules (fa) and (ff)

are straightforward. In the rule (fvar), the condition dom(ππ′−1

) ⊆ dom(perm(Υ|X)) means that the atoms

affected by the permutation ππ′−1

are in the domain of the permutations that fixX. The rule (fabs) states
that [a]t is a fixed-point of π if π fixes (a c1) · t, where c1 is a fresh atom for t (the latter is indicated by the
fact that (c1 c2) fixes t). Rules (refl), (symm) and (tran) ensure that equality is an equivalence relation,
and the rules (cong[]) and (congf) ensure that it is a congruence. The (axΥ′⊢t=u) rule instantiates axioms

4 Pairs of the form a#t meaning that “a does not occur free in t”.
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π(a) = a
(fa)

Υ ⊢ π f a

Υ ⊢ π f t1 . . . Υ ⊢ π f tn (ff)
Υ ⊢ π f f(t1, . . . , tn)

dom(ππ′−1

) ⊆ dom(perm(Υ|X))
(fvar)

Υ ⊢ π f π′ ·X

Υ, (c1 c2) f Var(t) ⊢ π f (a c1) · t
(fabs)

Υ ⊢ π f [a]t

(refl)
Υ ⊢ t = t

Υ ⊢ t = u (symm)
Υ ⊢ u = t

Υ ⊢ t = u Υ ⊢ u = v (tran)
Υ ⊢ t = v

Υ ⊢ (π ·Υ′)σ
(axΥ′⊢t=u)

Υ ⊢ π · tσ = π · uσ

Υ ⊢ t = u (cong[])
Υ ⊢ [a]t = [a]u

Υ ⊢ t = u (congf)
Υ ⊢ f(. . . , t, . . .) = f(. . . , u, . . .)

Υ, π f X ⊢ t = u (dom(π) ⊆ dom(perm(Υ|X)))
(fr)

Υ ⊢ t = u

Υ, (c1 c2) f Var(t) ⊢ (a c1) f t Υ, (d1 d2) f Var(t) ⊢ (b d1) f t
(perm)

Υ ⊢ (a b) · t = t

Fig. 1. Derivation rules; c1, c2, d1, d2 are fresh names. Also, π f Var(t) = {π f X | X ∈ Var(t)}.

in derivations. In rule (ax) we use the notation (π ·Υ′)σ = {π′π
f π ·Xσ | π′

fX ∈ Υ′}. The (perm) rule
states that if swapping a with a new name c1 fixes t and similarly swapping b with a new name d1 fixes
t, then swapping a and b does not affect t. Finally, (fr) (read top-down) is a strengthening rule. Note
that the (perm) rule together with the (f) rules implements α-equivalence. For example, we can prove
⊢ [a]a = [b]b as follows:

(b c4) · b = c4 and (a c1)(c4) = c4

⊢ (a c1) f (b c4) · b
(fa)

⊢ (a c1) f [b]b
(fabs)

(b c3) · b = c3 and (b c2)(c3) = c3

⊢ (b c2) f (b c3) · b
(fa)

⊢ (b c2) f [b]b
(fabs)

⊢ (a b) · [b]b = [b]b
(perm)

In the following, Υ ⊢ πft denotes that πft is derivable using at most the elements of Υ as assumptions.
We write Υ 6⊢ πf t when Υ ⊢ πf t is not derivable. Similarly, for equality judgments we write Υ ⊢T t = u
if t = u can be derived i) using assumptions from Υ; ii) for each occurrence of (axΥ′⊢t=u) used in the
derivation, (Υ′ ⊢ t = u) ∈ Ax; iii) only terms in the signature Σ are mentioned in the derivation.

2.1 Nominal Sets

We recall some basic definitions on nominal sets [1].
A Perm(A)-set, denoted by X , is a pair (|X |, ·) consisting of an underlying set |X | and a permutation

action ·, which is a group action on |X |, i.e., an operation · : Perm(A)× |X | → |X | such that id · x = x
and π · (π′ ·x) = (π ◦π′) ·x, for every x ∈ |X | and π, π′ ∈ Perm(A). Sometimes, we will write π ·X x, when
we want to make X clear.

For B ⊆ A write pfix(B) = {π ∈ Perm(A) | ∀a ∈ B. π(a) = a}, that is, pfix(B) is the set of
permutations that fix pointwise the elements of B. A set of atomic names B ⊆ A supports an element
x ∈ |X | when for all permutations π ∈ Perm(A), π ∈ pfix(B) =⇒ π · x = x. Additionally, we say that B
strongly supports x ∈ |X | if for all permutations π ∈ Perm(A), π ∈ pfix(B) ⇐⇒ π · x = x.

A nominal set is a Perm(A)-set X all of whose elements are finitely supported. X ,Y ,Z will range over
nominal sets. A nominal set is strong if every element is strongly supported by a finite set 5 . The support

5 The class of strong nominal sets is a subclass of the class of nominal sets



6–6 Strong Nominal Semantics for Fixed-Point Constraints

of an element x ∈ |X | of a nominal set X is defined as supp(x) =
⋂
{B | B is finite and supports x}.

This implies that supp(x) is the least finite support of x. In the case where X is strong, if x is strongly
supported by a finite set B ⊆ A, then B = supp(x).

For any nominal sets X ,Y , call a map f : |X | → |Y | equivariant when π · f(x) = f(π · x) for all
π ∈ Perm(A) and x ∈ |X |. In this case we write f : X → Y . For instance, any constant map is easily an
equivariant map.

Example 2.3 [Some simple nominal sets]

(i) The Perm(A)-set (A, ·) with the action π ·A a = π(a) is a nominal set and supp(a) = {a}.

(ii) Consider the set Pfin(A) = {B ⊂ A | B is finite}. Then the Perm(A)-set (Pfin(A), ·) with the action
π ·Pfin(A) B = {π ·A a | a ∈ B} is a nominal set and supp(B) = B. Observe that Pfin(A) is not strong
because if we take B = {a, b} and π = (a b), then π ·B = B but π /∈ pfix(B).

(iii) The singleton set {⋆} equipped with the action π · ⋆ = ⋆ is a strong nominal set and supp(⋆) = ∅.

(iv) The set A
∗ =

⋃
{a1 · · · an | ∀i, j ∈ {1, . . . , n}.ai ∈ A ∧ (j 6= i ⇒ aj 6= ai)}, that is, the set of finite

words over distinct atoms, is a strong nominal set when equipped with the permutation action given
by π · (a1 · · · an) = π(a1) · · · π(an), and supp(a1 · · · an) = {a1, . . . , an}.

(v) F(Σ) with the action π · a ≡ π(a), π · [a]t ≡ [π(a)]π · t and π · f(t1, . . . , tn) ≡ (π · t1, . . . , π · tn) forms a
nominal set and supp(g) = Atm(g) for all g ∈ F(Σ). The relation ∼ defined by g ∼ g′ iff ⊢T g = g′ is an
equivariant equivalence relation. The set F(Σ)/∼ is a nominal set and supp(g) =

⋂
{supp(g′) | g′ ∈ g}

for any g ∈ F(Σ)/∼ (see Proposition 2.30 [1]). We denote F(Σ)/∼ by F(T,Σ). In the case where
T = ∅, the relation ∼ is the α-equivalence relation between ground terms and supp(g) = fn(g) for all
g ∈ F(∅,Σ).

3 Semantics

In this section we provide a semantics for fixed-point constraints using nominal sets, and denote its
semantic interpretation as fsem. We then build upon the semantic definition of f and define concepts
such as (strong) Σ-algebras, valuations, interpretations, models, etc. These are necessary ingredients
to determine validity of judgements in terms of fsem, and consequently, establish soundness of nominal
algebra with fixed-point constraints.

Below we overload the symbol = to denote equality between elements of a nominal set.

3.1 Semantics for f

The semantics of fixed-point constraints fsem differs from #sem and it is defined in terms of fixed-point
equations, and not in terms of the support. For an element of a nominal set x ∈ X , if a /∈ supp(x),
we write a#sem x. We refer to [16] for more details about the semantics of nominal algebra defined by
freshness constraints. Below we define fsem.

Definition 3.1 Let X be a nominal set, x ∈ |X |, a ∈ A, and π ∈ Perm(A). We write π fsem x to denote
that π · x = x.

Lemma 3.2 Let X be a nominal set and x ∈ |X |. If dom(π) ∩ supp(x) = ∅ then π fsem x.

Proof. Direct from the definition of support. ✷ ✷

However, the other direction does not hold in general: if we take x = {a, b} and π = (a b) as in Example
2.3(ii), π fsem x but dom(π) ∩ supp(x) = {a, b}. The converse does hold for strong nominal sets.

Lemma 3.3 Let X be a nominal set and x ∈ |X |. Then

a ∈ supp(x) ⇐⇒ {c | (a c)fsem x} is finite
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Proof. The left-to-right implication follows by showing that {c | (a c)fsemx} ⊆ supp(x). The right-to-left
implication follows by contradiction and Lemma 3.2. ✷ ✷

Theorem 3.4 Let X be a strong nominal set, x ∈ |X |, and π, γ1, . . . , γn ∈ Perm(A). If γi fsem x for
every i = 1, . . . , n, and dom(π) ⊆

⋃
1≤i≤n dom(γi), then π fsem x.

Proof. For each i = 1, . . . , n the following hold:

γi fsem x ⇐⇒ γi · x = x ⇐⇒ γi ∈ pfix(supp(x)).

The first equivalence comes from Definition 3.1 and the second from the fact that X is a strong nominal
set. Then by the inclusion dom(π) ⊆

⋃
1≤i≤n dom(γi), we deduce that π ∈ pfix(supp(x)) which implies, by

definition, that π fsem x. ✷ ✷

Note that Theorem 3.4 is not true in the class of nominal sets. For instance, take X as Pfin(A),
x = {a, b}, π = (a c), γ1 = (a b), γ2 = (c d). Then, γ1 fsem x, γ2 fsem x, and dom(π) ⊆ dom(γ1) ∪ dom(γ2),
but π 6fsem x.

3.2 Strong Nominal Σ-algebras

We can now define a semantics for nominal algebra with fixed-point constraints in (strong) nominal sets.

Definition 3.5 [(Strong) Σ-algebra] Given a signature Σ, a (strong) nominal Σ-algebra A consists of:

(i) A (strong) nominal set A = (|A |, ·) - the domain.

(ii) An equivariant map atomA : A → |A | to interpret atoms; we write the interpretation atom(a) as
aA ∈ |A |.

(iii) An equivariant map absA : A × |A | → |A | such that {c ∈ A | (a c) 6fsem abs
A(a, x)} is finite, for all

a ∈ A and x ∈ |A | (by Lemma 3.3 this is equivalent to saying that a /∈ supp(absA(a, x))); we use
this to interpret abstraction.

(iv) An equivariant map fA : |A |n → |A |, for each f : n in Σ to interpret term-formers.

We use A,B,C to denote (strong) Σ-algebras.

Remark 3.6 The standard definition of the condition in item 3 via freshness constraints is
a#semabs

A(a, x) (see, for instance, [16]). Here, we use the following equivalence (valid in nominal sets):

a#semabs
A(a, x) ⇔ a /∈ supp(absA(a, x)) (Definition 4.2, [16])

⇔ {c ∈ A | (a c) 6fsem abs
A(a, x)} is finite (Consequence of Lemma 3.3)

A valuation ς in a (strong) Σ-algebra A maps unknowns X ∈ V to elements ς(X) ∈ |A |. Below we
define an equivariant function J·KAς : T (Σ,A,V) → |A | to interpret nominal terms w.r.t. a valuation ς.

Definition 3.7 [Interpretation] Let A be a (strong) Σ-algebra. Suppose that t ∈ T (Σ,A,V) and consider
a valuation ς in A. The interpretation JtKAς , or just JtKς , if A is understood, is defined inductively by:

JaKAς = aA Jπ ·XKAς = π · ς(X)

Jf(t1, . . . , tn)K
A
ς = fA(Jt1K

A
ς , . . . , JtnKAς ) J[a]tKAς = abs(aA, JtKAς ).

Lemma 3.8 The term-interpretation map J·KAς is equivariant, that is, π·JtKAς = Jπ·tKAς for any permutation
π and term t.

Proof. The proof is by induction on the structure of the term t. ✷ ✷

Definition 3.9 [Context and Judgement Validity] For any (strong) Σ-algebra A:
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• JΥKAς is valid iff π fsem JXKAς , for each π f X ∈ Υ;

• JΥ ⊢ π f tKAς is valid iff JΥKAς (valid) implies π fsem JtKAς ;

• JΥ ⊢ t = uKAς is valid iff JΥKAς (valid) implies JtKAς = JuKAς .

More generally, JΥ ⊢ πf tKA is valid iff JΥ ⊢ πf tKAς is valid for all valuations ς. Similarly for JΥ ⊢ t = uKA.

Then a (strong) model of a theory is an interpretation that validates its axioms as follows:

Definition 3.10 [(Strong) Model] Let T = (Σ, Ax) be a theory. A (strong) model of T is a (strong)
Σ-algebra A such that

JΥ ⊢ t = uKA is valid for every axiom Υ ⊢ t = u in Ax and every valuation ς.

We are now ready to define validity with respect to a theory.

Definition 3.11 For any theory T, define (strong) validity with respect to T for judgement forms as follows:

• Write Υ �T πf t (resp. Υ �
s
T
πf t) iff JΥ ⊢ πf tKA is valid for all models A of T (resp. all strong models

of T).

• Write Υ �T t = u (resp. Υ �
s
T
t = u) iff JΥ ⊢ t = uKA is valid for all models A of T (resp. all strong

models of T).

Lemma 3.12 Define the singleton interpretation S to have as domain the strong nominal set {⋆}, with
atomS, absS, fS constant functions with value ⋆. Then S is a strong Σ-algebra and a model for every
theory.

Proof. To verify that S is a model of T, check that JΥ ⊢ t = uKSς is valid for each axiom Υ ⊢ t = u ∈ Ax

and valuation ς (which maps all unknowns to ⋆). If JΥKSς is valid, then JtKSς = JuKSς = ⋆, confirming S as
a model. ✷ ✷

Remark 3.13 Lemma 3.12 shows that we do not need to require the map atom to be injective.

3.3 Counter-Example: Soundness Failure

Soundness of a derivation system means that derivability implies validity. More precisely, in a sound
system the following should hold:
(Soundness) Suppose T = (Σ, Ax) is a theory.

(i) If Υ ⊢ π f t then Υ �T π f t.

(ii) If Υ ⊢T t = u then Υ �T t = u.

Note that by definition, for a judgement to be valid it has to hold in all models A of T for every
valuation ς. We present two counter-examples that illustrate two different points where soundness fails.

3.3.1 Rule fvar.
The problem arises from the rule (fvar):

dom(ππ′−1

) ⊆ dom(perm(Υ|X))
(fvar)

Υ ⊢ π f π′ ·X

Claim 3.14 There exist a Σ-algebra A, a valuation ς and a derivation using rule (fvar) such that Υ ⊢
π f π′ ·X but JΥ ⊢ π f π′ ·XKAς is not valid.

First of all, fix an enumeration of V = {X1,X2, . . .} and A = {a1, a2, . . .}. Now, let’s give the nominal set
Pfin(A) a Σ-algebra structure.

(i) Consider the domain of A as the nominal set A = (Pfin(A), ·) presented in Example 2.3(ii).
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(ii) Define atomA : A → Pfin(A) by atomA(a) = {a}.

(iii) Define absA : A× Pfin(A) → Pfin(A) by absA(a,B) = B \ {a}.

(iv) For each term-former f : n ∈ Σ, we associate a map fA : Pfin(A)
n → Pfin(A) defined by

fA(B1, . . . , Bn) =
⋂n

i=1Bi.

It is easy to see that the functions atomA, absA, fA are equivariant.
Define the valuation ς : V → Pfin(A) by ς(Xi) = {ai, ai+1}. Now, let’s build a derivation using the

rule (fvar) and interpret it in A. Consider Υ = {(a1 a2)f X1, (a3 a4)f X1} and write γ1 = (a1 a2) and
γ2 = (a3 a4). Take π = (a1 a3). Hence

dom(π) = {a1, a3} ⊆ {a1, a2, a3, a4} = dom(γ1) ∪ dom(γ2).

So Υ ⊢ π f X1 is derivable. All we need to do now is to verify the validity of JΥ ⊢ π f X1K
A
ς . In order

to so, we need to prove that

If JΥKAς is valid then π fsem JX1K
A
ς .

First, observe that JΥKAς is in fact valid:

γ1 · JX1K
A
ς = γ1 · {a1, a2} = {a1, a2} = JX1K

A
ς

γ2 · JX1K
A
ς = γ2 · {a1, a2} = {a1, a2} = JX1K

A
ς .

However,

π · JX1K
A
ς = π · ς(X1)

= π · {a1, a2}

= {a3, a2} 6= {a1, a2} = ς(X1) = JX1K
A
ς .

3.3.2 Non-strong Axioms.
Let C be the commutativity axiom: C = {⊢ X+Y = Y +X}. Consider the Σ-algebra with domain F(C,Σ),
that is the set of ground nominal terms quotiented by C and α-equality. Let [t]C denote the equivalence
class of t ∈ F(Σ) modulo α, C.

Consider the same permutations γ1, γ2, π as above, so again we can derive Υ ⊢ π f X1.
Take ς(X1) = [a1 + a2]C. Then JΥKAς is valid:

γ1 · JX1K
A
ς = [a2 + a1]C = JX1K

A
ς γ2 · JX1K

A
ς = [a2 + a1]C = JX1K

A
ς .

However, π 6fsem JX1K
A
ς since π · JX1K

A
ς = [a3 + a2]C 6= [a1 + a2]C = JX1K

A
ς .

Remark 3.15 F(C,Σ) is not a strong nominal set: note that (a b)fsem [a+b]C, since (a b)·[a+b]C = [a+b]C,
but (a b) 6fsem a, i.e., (a b) /∈ pfix(supp([a+ b]C)) = pfix({a, b}).

4 Recovering Soundness: Strong Models

To avoid the problems discussed in the previous section, we now focus on strong models. With these
models, it is possible to ensure soundness.

Theorem 4.1 (Soundness for strong Σ-algebras) Suppose T = (Σ, Ax) is a theory. Then the follow-
ing hold:

(i) If Υ ⊢T π f t then Υ �
s
T
π f t.

(ii) If Υ ⊢T t = u then Υ �
s
T
t = u.
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Proof. The proof is done by induction on the derivation of Υ ⊢ π f t, focusing on the last rule applied.
Here, we demonstrate the most interesting case, where the last rule is (fvar):

dom(ππ′−1

) ⊆ dom(perm(Υ|X))
(fvar)

Υ ⊢ π f π′ ·X

Suppose that JΥKAς is valid. We need to show that π · Jπ′ ·XKAς = Jπ′ ·XKAς .

If perm(Υ|X) = {γ1, . . . , γn}, then from the inclusion dom(ππ′−1

) ⊆ dom(perm(Υ|X)) we get dom(ππ′−1

) ⊆⋃n
i=1 dom(γi).

Moreover, the validity of JΥKAς implies that γifsemJXKAς for every γifX ∈ Υ. Thus, ππ′−1

·JXKAς = JXKAς
by Theorem 3.4. The result follows by noticing that ππ′−1

· JXKAς = JXKAς ⇐⇒ π · Jπ′ ·XKAς = Jπ′ ·XKAς .✷

4.1 Strong Axioms

Example 3.3.2 demonstrates that there exist theories T for which F(T,Σ) is not a strong nominal set. This
observation rises the following question: are there theories T for which F(T,Σ) forms a strong nominal set?
We propose to characterise such theories by defining a notion of strong axiom, and we will refer to them
as strong theories.

In the definition below, let <lex be the lexicographic ordering of the positions in a term: e.g., 1.2 <lex

2.2, 1.1 <lex 1.2.
Given a term t, we can order the occurrences of variables in t according to their position: we write

X <t Y if X occurs in t at a position p and Y occurs in t at a position q such that p <lex q.
We say that a term t is well-ordered if <t is a strict partial order, i.e., there is no X,Y ∈ Var(t) such

that X <t Y and Y <t X. We will only consider axioms with well-ordered first-order terms.

Definition 4.2 An axiom Υ ⊢ t = u is strong if the following hold:

(i) t and u are first-order terms (i.e., they are built using function symbols and variables), and Υ = ∅;

(ii) u and t are well-ordered;

(iii) the order of the variables that occur in t and in u is compatible: i.e., if X <t Y then it is not the case
that Y <u X.

Note that it could be that the variables X and Y occur in t and not in u, the important fact is that there
are no disagreements in the ordering in t and u.

Condition (i) excludes axioms such as Ax = { ⊢ a = b}, Ax = { ⊢ a + b = b + a} and Ax = { ⊢
f([a]X, [b]Y ) = g([b]X, [a]Y )}. Condition (ii) excludes axioms such as distributivity D = { ⊢ X ∗(Y +Z) =
X ∗Y +X ∗Z}. Permutative theories, where axioms have the form ⊢ f(X1, . . . ,Xn) = f(Xρ(1), . . . ,Xρ(n)),
for some permutation ρ of {1, . . . , n}, do not satisfy the definition either, i.e. permutative axioms are not
strong.

Example 4.3 [Strong Axioms] The following axioms (and their combinations) are strong: Associativity
A = { ⊢ f(f(X,Y ), Z) = f(X, f(Y,Z))}. Homomorphism Hom = { ⊢ h(X + Y ) = h(X) + h(Y )}.
Idempotency I = { ⊢ g(X,X) = X}. Neutral element N = { ⊢ X ∗ 0 = 0}. Left-/right-projection
Lproj = { ⊢ pl(X,Y ) = X} and Rproj = { ⊢ pr(X,Y ) = Y }.

Example 4.4 [Theory ATOM] Consider the axiom Ax = { ⊢ a = b} that generates the theory ATOM. By
our Definition 4.2, this axiom is not strong.

Theorem 4.5 If T is a strong theory then F(T,Σ) is a strong nominal set.

Proof. First, as observed in Example 2.3(v) the set F(T,Σ) is a nominal set and supp(g) =
⋂
{supp(x) |

x ∈ g} for all g ∈ F(T,Σ). It remains to prove that supp(g) is a strong support, that is, for all permutations
π, the following holds

π fsem g =⇒ π ∈ pfix(supp(g)).
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Assume, by contradiction, that π fsem g and π /∈ pfix(supp(g)), that is, there is an atom a ∈ supp(g)
such that π(a) 6= a; let’s assume π(a) = b.

From π fsem g it follows, by definition, that π · g = π · g = g. Thus, ⊢T π · g = g (see Example 2.3(v)).
Now, we proceed by analysing the derivation of ⊢T π · g = g:

• If rule (ax) is not applied in the derivation, then ⊢ π · g = g. Since the application of a permutation
does not change the structure of terms, it must be the case that π ·c = c, for every free atom c of g. This
contradicts the assumption above that π(a) = b. Therefore, π ∈ pfix(supp(g)) and the result follows.

• If rule (ax) is applied in the derivation of ⊢T π ·g = g, assume it is the last step (the reasoning generalises
by induction). Suppose the axiom ⊢ t = u ∈ Ax (in T) is used. Since the axiom is strong, the order of
the atoms a, b, that are introduced by instantiation of the variables in the axiom, is preserved in both
sides. Thus, the order of these atoms is preserved in the derivation of ⊢T π · g = g. This contradicts the
hypothesis that π(a) = b: if a occurs before b in an instance of t that is equal to g (in an application
of (ax)), then b will occur before a, in π · g, and this contradicts the fact that T is strong. Therefore,
π ∈ pfix(supp(g)), and the result follows.

✷

5 Recovering Soundness: Alternative Approaches

In the previous section we proved soundness with respect to strong models (where carriers are strong
nominal sets). Here our goal is to recover soundness while using a nominal set semantics. For this, we
need to address the mismatch between the derivations and the notion of validity. We can proceed in
different ways:

(i) we can change the form of the judgements and adapt the rules to ensure only the ones that are valid
in all models can be derived; or

(ii) we do not change the judgements but we change the derivation rules to prevent the derivation of
judgements that are not valid in all models.

The challenge with the second approach is to ensure the system is sufficiently powerful to derive all the
valid judgements. The challenge with the first is to ensure that we do not lose expressive power. In this
section we show how to address these challenges: we define two sound systems for nominal algebra with
fixed-point constraints and nominal set semantics, one with similar rules as before but stronger judgements
and another with the same judgements as before but stronger rules.

5.1 Using Strong Fixed-Point Contexts

In this section we present an alternative proof system for nominal algebra with fixed-point constraints.
It restricts the form of fixed-point contexts in judgements, which will now be called strong fixed-point
contexts and include a N-quantifier [20] to keep track of new atoms in fixed-point constraints.

Definition 5.1 [Strong Fixed-Point Context] A strong fixed-point context is a finite set ΥA,C that contains
only primitive constraints of the form Nc.(a c)f X such that a ∈ A and c ∈ C, for two given disjoint set
of atoms A and C. We will move the N-quantifiers to the front and write NC.ΥA,C . We will omit the
indices A, C when there is no ambiguity. As before, we will use the symbols Υ,Ψ, . . . to represent strong
contexts.

Intuitively, strong fixed-point contexts contain only fixed-point constraints that correspond directly to
freshness constraints if we assume that the set C contains new atoms: Nc.(a c)fX corresponds to a#X.

Definition 5.2 [Strong Judgements] A strong fixed-point judgement has the form Nc.(ΥA,c0 ⊢ πf t) where
ΥA,c0 is a strong fixed-point context and c0 ⊆ c. Similarly, a strong α-equality judgement has the form

Nc.(ΥA,c0 ⊢ s
f

≈ t) where ΥA,c0 is a strong fixed-point context and c0 ⊆ c.
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π(a) = a
(fa)

Nc.ΥA,c0 ⊢ π f a

dom(πρ−1

) \ c ⊆ dom(perm(ΥA,c0 |X))
(fvar)

Nc.ΥA,c0 ⊢ π f ρ ·X

Nc.ΥA,c0 ⊢ π f t1 . . . Nc.ΥA,c0 ⊢ π f tn
(ff)

Nc.ΥA,c0 ⊢ π f f(t1, . . . , tn)

Nc, c1.ΥA,c0 ⊢ π f (a c1) · t
(fabs)

Nc.ΥA,c0 ⊢ π f [a]t

(
f

≈ a)
Nc.ΥA,c0 ⊢ a

f

≈ a

dom(ρ−1 ◦ π) \ c ⊆ dom(perm(ΥA,c0 |X))
(
f

≈ var)
Nc.ΥA,c0 ⊢ π ·X

f

≈ ρ ·X

Nc.ΥA,c0 ⊢ t1
f

≈ t′1 . . . Nc.ΥA,c0 ⊢ tn
f

≈ t′n
(
f

≈ f)
Nc.ΥA,c0 ⊢ f(t1, . . . , tn)

f

≈ f(t′1, . . . , t
′

n)

Nc.ΥA,c0 ⊢ t
f

≈ t′

(
f

≈ [a])
Nc.ΥA,c0 ⊢ [a]t

f

≈ [a]t′

Nc.ΥA,c0 ⊢ s
f

≈ (a b) · t Nc, c1.ΥA,c0 ⊢ (a c1) f t
(
f

≈ ab)
Nc.ΥA,c0 ⊢ [a]s

f

≈ [b]t

Fig. 2. Derivation rules for strong judgements. Here, c denotes a list of distinct atoms c1, . . . , cn. In all the rules c0 ⊆ c.

∆ ⊢ a#b
(#a)

π−1(a)#X ∈ ∆

∆ ⊢ a#π ·X
(#var)

∆ ⊢ a#[a]t
(#[a])

∆ ⊢ a#t

∆ ⊢ a#[b]t
(#abs)

∆ ⊢ a#t1 . . . ∆ ⊢ a#tn

∆ ⊢ a#f(t1, . . . , tn)
(#f)

∆ ⊢ a ≈ a
(≈ a)

ds(π, π′)#X ⊆ ∆

∆ ⊢ π ·X ≈ π′ ·X
(≈ var)

∆ ⊢ s ≈ t

∆ ⊢ [a]s ≈ [a]t
(≈ [a])

∆ ⊢ s ≈ (a b) · t ∆ ⊢ a#t

∆ ⊢ [a]s ≈ [b]t
(≈ ab)

∆ ⊢ s1 ≈ t1 . . . ∆ ⊢ sn ≈ tn

∆ ⊢ f(s1, . . . , sn) ≈ f(t1, . . . , tn)
(≈ f)

Fig. 3. Standard derivation rules for freshness and α-equivalence. Here, ds(π, π′) = {a ∈ A | π(a) 6= π′(a)}.

Note that the Nquantifiers at the front of the judgement quantify the constraints in the context: for

example in the judgement Nc1, c2.(a c1)f X, (a c2)f X ⊢ s
f

≈ t we have Nc1.(a c1)f X in the context.
The alternative proof system is given in Figure 2. It is a modified version of a system introduced in [4],

that also used Nin the derivable constraints (on the rhs of the ⊢), but did not use strong fixed-point
contexts. In Figure 2 we adapt the notations dom(perm(ΥA,c|X)) = {a | (a c)f X ∈ ΥA,c}.

The following correctness result states that, under strong fixed-point judgements, the fixed-point con-
straint f is still a fixed-point relation.

Theorem 5.3 (Correctness) Nc.ΥA,c0 ⊢ π f t iff Nc.ΥA,c0 ⊢ π · t
f

≈ t, where c0 ⊆ c.

Proof. The proof follows by induction on the derivations. ✷ ✷

5.1.1 From # to f and back.
We recall some basic definitions of nominal algebra with freshness constraints. A freshness constraint is a
pair of the form a#t where a is an atom and t is a nominal term, and it denotes the fact that ‘a is fresh
for t’, that is, if a occurs in t it must occur abstracted. A freshness context (denoted ∆,∇) is a finite set
of primitive freshness constraints of the form a#X. An α-equality constraint in the nominal algebra with
# is denoted s ≈ t, where s and t are nominal terms. A judgement has the form ∆ ⊢ a#t or ∆ ⊢ s ≈ t.
The standard proof system for deriving freshness judgements is defined by the rules in Figure 3.

Recall that the notion of an atom a being fresh for an element x in nominal set is defined using the
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N-quantifier and a fixed-point equation as follows [1]:

a#x ⇐⇒ Nc.(a c) · x = x.

We explore this relationship and define mappings that translate strong judgements using f and
f

≈ into
judgments using # and ≈, and vice-versa. Below we denote by F# the family of (primitive) freshness
constraints, and by Ff the family of primitive strong fixed-point constraints. The mapping [·]f associates
each primitive freshness constraint with a primitive strong fixed-point constraint; it extends to freshness
contexts in a natural way

[·]f : F# → Ff

a#X 7→ Nca.(a ca)f X

We denote by [∆]f the image of ∆ under [·]f . The mapping [·]# associates each primitive strong fixed-point
constraint with a freshness constraint; it extends to fixed-point contexts in a natural way.

[·]# : Ff → F#

Nc.(a c)f X 7→ a#X.

Our translations map strong fixed-point judgments into freshness judgements. The next result estab-
lishes that every derivable freshness judgement can be mapped, via [·]f to a strong fixed-point constraint.

Theorem 5.4 (From and to [·]f) The following hold, for some c (possibly empty):

(i) ∆ ⊢ a#t ⇐⇒ Nc, c′.[∆]f ⊢ (a c′)f t.

(ii) ∆ ⊢ s ≈ t ⇐⇒ Nc.[∆]f ⊢ s
f

≈ t.

Proof. The proof is by induction on the last rule applied in the derivation. We will prove only the
interesting case involving the abstraction rule for item (i). The proof for item (ii) is analogous.

(⇒) : If the last rule applied is (#abs), then t ≡ [b]t′ and there is a derivation

∆ ⊢ a#t′
(#abs)

∆ ⊢ a#[b]t′

By induction, there exists a proof Nc, c′.([∆]f)A,c0 ⊢ (a c′)f t′. Note now that for any fresh name c1 for
the derivation Nc, c′.([∆]f)A,c0 ⊢ (a c′)f t′, the permutation ρ = (b c1) is such that dom(ρ)∩(c∪{c′}) = ∅.
Using Equivariance, we have Nc, c′.([∆]f)A,c0 ⊢ (a c′)f (b c1) · t

′. By the definition of N, we can express
this as Nc1.( Nc, c′.([∆]f)A,c0 ⊢ (a c′)f (b c1) · t

′), implying Nc, c′, c1.([∆]f)A,c0 ⊢ (a c′)f (b c1) · t
′. We

can put Nc1 inside because c1 is a fresh atom distinct from every atom occurring in ([∆]f)A,c0 , and thus,
the result we aimed follows by rule (fabs).

(⇐) : If the last rule applied is (fabs), then we have two cases.
• The first case is when t ≡ [a]t′. In this case, ∆ ⊢ a#[a]t′ follows trivially by rule (#[a]).
• The other case is when t ≡ [b]t′. In this case, we have a derivation

Nc, c′, c1.([∆]f)A,c0 ⊢ (a c′)f (b c1) · t
′

(fabs)
Nc, c′.([∆]f)A,c0 ⊢ (a c′)f [b]t′

By the induction hypothesis, we have ∆ ⊢ a#(b c1) · t
′ and we can build the derivation

∆ ⊢ a#(b c1) · t
′

(#abs)
∆ ⊢ a#[c1](b c1) · t

′

Given the equivalence ∆ ⊢ a#[c1](b c1) · t
′ ⇐⇒ ∆ ⊢ a#(b c1) · [b]t

′, we can apply the Equivariance of
freshness with ρ = (b c1). This yields: ∆ ⊢ a#[b]t′. ✷
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✷

The next result states that derivation of certain fixed-point constraints can be mapped, via [·]#, to
derivations of freshness constraints, and vice-versa. Similarly for α-equality constraints.

Theorem 5.5 (From and to [·]#) The following hold, for c0 ⊆ c:

(i) Nc, c1.ΥA,c0 ⊢ (a c1)f t ⇐⇒ [ΥA,c0]# ⊢ a#t.

(ii) Nc.ΥA,c0 ⊢ s
f

≈ t ⇐⇒ [ΥA,c0 ]#, c#Var(s, t) ⊢ s ≈ t.

Proof. Again, in both cases the proof is by structural induction and follows by analysing the last rule
applied in the derivation of the judgement. Here, we choose to prove only the interesting case involving
the variable rule

(i) (⇒) : The last rule applied is (fvar):

{π−1(a)} = dom((a c′)π
′−1

) \ c ∪ {c′} ⊆ dom(perm(ΥA,c0 |X))
(fvar)

Nc, c′.ΥA,c0 ⊢ (a c′)f π′ ·X

That is, by hypothesis, Ncπ′−1(a).(π
′−1(a) cπ′−1(a))f ∈ ΥA,c0 |X and by the translation [·]# and [·]f

we have π′−1(a)#X ∈ [ΥA,c0|X ]# ⊆ [ΥA,c0]#. Then [ΥA,c0]# ⊢ a#π′ ·X by rule (#var).
(⇐) : The last rule applied is (#var):

π−1(a)#X ∈ [ΥA,c0 ]# (#var)
[ΥA,c0 ]# ⊢ a#π ·X

By the translation, Ncπ′−1(a).(π
′−1(a) cπ′−1(a)) f X ∈ ΥA,c0 |X and so π−1(a) is in

dom(perm(ΥA,c0 |X)). Thus {π−1(a)} = dom((a c′)π
−1

) \ {c, c′} ⊆ dom(perm(ΥA,c0 |X)) and the result
follows by rule (fvar).

(ii) (⇒) : The last rule applied is (
f

≈ var):
In this case t ≡ π ·X, s ≡ π′ ·X, Var(s, t) = {X} and there is a derivation

dom(π′−1 ◦ π) \ c ⊆ dom(perm(ΥA,c0 |X))
(
f

≈ var)
Nc.ΥA,c0 ⊢ π ·X

f

≈ π′ ·X

We want to show that [ΥA,c0]#, c#X ⊢ π ·X ≈ π′ ·X. There are two cases to consider:
• If dom(π′−1 ◦ π) \ c = ∅, then ds(π, π′) = dom(π′−1 ◦ π) ⊆ c. Consequently, ds(π, π′)#X ⊆
[ΥA,c0 ]#, c#X holds true because c#X ⊆ [ΥA,c0]#, c#X . Therefore, [ΥA,c0 ]#, c#X ⊢ π·X ≈ π′·X
follows by (#var).

• Now, suppose dom(π′−1 ◦ π) \ c 6= ∅, then there are atoms in dom(π′−1 ◦ π) that are not in c. If
b ∈ dom(π′−1 ◦ π) \ c then b ∈ dom(perm(ΥA,c0|X)), so by the definition of [·]#, we have dom(π′−1 ◦

π) \ c#X ⊆ [ΥA,c0]#. Consequently, dom(π
′−1 ◦ π) \ c#X ⊆ [ΥA,c0]#, c#X . Additionally, c#X ⊆

[ΥA,c0 ]#, c#X. Hence, dom(π′−1 ◦ π) ⊆ [ΥA,c0 ]#, c#X, and the result follows by (#var) because
dom(π′−1 ◦ π) = ds(π, π′).

(⇐) : The last rule applied is (#var):

ds(π, π′)#X ⊆ [ΥA,c0 ]#, c#X
(#var)

[ΥA,c0 ]#, c#X ⊢ π ·X ≈ π′ ·X

We want to show that Nc.ΥA,c0 ⊢ π · X
f

≈ π′ · X. In order to do this, we must show that
dom(π−1 ◦ π) \ c ⊆ dom(perm(ΥA,c0 |X)).

From ds(π, π′)#X ⊆ [ΥA,c0]#, c#X , we have ds(π, π′) \ c#X ⊆ [ΥA,c0]#|X . By the translation
[·]#, we have that every atom in ds(π, π′) \ c is in dom(perm(ΥA,c0 |X)). Then the result follows
because ds(π, π′) = dom(π′−1 ◦ π). ✷
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✷

The following example shows that not all derivable strong fixed-point judgments can be mapped to a
freshness judgement in the expected way.

Example 5.6 It is easy to see that the judgement Nc1, c2.(a c1)f X, (b c2)f X ⊢ (a b)f X is derivable
using the rule (fvar) from Figure 2 for dom((a b))\{c1, c2} ⊆ {a, b}. However, since neither a nor b are new
names, we cannot use our translation to derive a freshness judgement as in Theorem 5.5(i). It follows from
Theorem 5.3 (correctness) that there exists a derivation of the judgement Nc1, c2.(a c1)f X, (b c2)f X ⊢

(a b) ·X
f

≈ X, and by Theorem 5.5(ii), there is a derivation of an equivalent α-equality judgement via #.

Since our rules in Figure 2 do not include a rule to deal with equational theories, the following result
holds for the theory T = COREf :

Theorem 5.7 Nominal sets are sound denotational semantics for the nominal algebra with strong fixed-
point constraints and judgements.

Proof. The proofs follow from the translation [·]f and from the fact that nominal sets are sound denota-
tional semantics for the nominal algebra with freshness constraints [16]. ✷

5.2 Using More Powerful Rules

In this section, we discuss an alternative approach to nominal algebra with fixed-point constraints that is
also sound for all nominal set models. The changes proposed in Section 5.1 focused on restricting the form
of the fixed-point contexts, which became equivalent to freshness contexts. Alternatively, we can keep the
judgements and rules in Figure 1 as much as possible untouched and adapt only the problematic rules.
Thus, in this subsection, we propose a change in the rule (fvar) where we consider the permutation group
generated by the permutations in the fixed-point context (denoted 〈perm(Υ|X)〉) and the other rules are
left as in Figure 1. The new rule is called Gvarf:

πρ−1

∈ 〈perm(Υ|X)〉

Υ ⊢ π f ρ ·X
Gvarf

In the proof of soundness (Theorem 4.1), we used the hypothesis of A being a strong nominal algebra in
the proof of the variable case. The next theorem shows that for the new set of rules, we do not need this
hypothesis any longer.

Theorem 5.8 (Soundness) Suppose T = (Σ, Ax) is a theory. Then

(i) If Υ ⊢ π f t then Υ �T π f t.

(ii) If Υ ⊢T t = u then Υ �T t = u.

Proof. In both cases, the proof is by induction on the rule applied. The interesting case is for the rule
Gvarf. Then the derivation is

πρ−1

∈ 〈perm(Υ|X)〉
Gvarf

Υ ⊢ π f ρ ·X

Suppose that JΥKAς is valid. We need to show that π · Jρ ·XKAς = Jρ ·XKAς .

If perm(Υ|X) = {γ1, . . . , γn}, then from the inclusion πρ−1

∈ 〈perm(Υ|X)〉, we get πρ−1

= γα1

1 ◦ . . .◦γαn
n ,

for α1, . . . , αn ∈ N. Moreover, the validity of JΥKAς implies that γi fsem JXKAς for every γi f X ∈ Υ. Thus,

πρ−1

· JXKAς = JXKAς follows from the fact that it is in the generated group. ✷ ✷
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5.2.1 Expressive Power
The new Gvarf rule is sound, but more restrictive. The next two examples (Example 5.9 and Exam-
ple 5.10) are about judgements that are derivable using the rules in Figure 1, but not with the new version
using Gvarf. These examples illustrate two different aspects where the group of generated permutations
is more restrictive.

Example 5.9 It was possible to derive (a b) f X, (c d) f X ⊢ (a c) f X with the rules in Figure 1
including (varf), however, it is not possible to derive this judgement using the new Gvarf rule because
(a c) is not in the group generated by the permutations (a b) and (c d), i.e., (a c) /∈ 〈(a b), (c d)〉 =
{id, (a b), (c d), (a b) ◦ (c d)}.

We recall the fact that the new names are not annotated with the quantifier Nin Figure 1, the
information about new names is relegated to the meta-language as usual when discussing languages with
binders (such as the λ-calculus). As we can see below, this ‘sugared’ notation (without N) for new names
causes some problems:

Example 5.10 In this example we want to mimic the derivation in Figure 3 of a, b#X =⇒ (a b) · [a]X ≈
[a]X. Suppose Υ = {(b d′) f X}. It is possible to derive (b d′) f X ⊢ (a b) · [a]X = [a]X using f

via the rules of Figure 1. However, with the new rule Gvarf the same judgement is not derivable: The
first difficulty is that we can’t inform Υ that b is fresh, the formal way would be to have the constraint
Nd′.(b d′) f X ∈ Υ. In the meta-language, this reduces to (b d′) f X ∈ Υ and records the information

‘where d′ is a new name’. However, this is not satisfactory since d′ can be any new name, as we can see
below.

(c3 c1) /∈ 〈(c1 c2), (c3 c4), (b d′)〉

Υ, (c1 c2) f X, (c3 c4) f X ⊢ (a c1) f (a c3) ·X

Υ, (c1 c2) f X ⊢ (a c1) f [a]X

(b d1) /∈ 〈(d1 d2), (c
′

3 c′4), (b d′)〉

Υ, (d1 d2) f X, (c′3 c′4) f X ⊢ (b d1) f (a c′3) ·X

Υ, (d1 d2) f X ⊢ (b d1) f [a]X
(perm)

Υ ⊢ (a b) · [a]X = [a]X

where c1, c2, c3, c4, d1, d2, c
′
3, c

′
4 are new/fresh names.

Notice that none of the sub-derivation (in the branches) are possible. However, looking closely, the
conditions needed to close the above derivation, i.e., (c3 c1) ∈ 〈(c1 c2), (c3 c4), (b d′)〉 and (b d1) ∈
〈(d1 d2), (c

′
3 c′4), (b d′)〉, aim to check whether b and c3 are fresh for X, and this information could be

derived from the context, however, using different new names ((b d′) is in Υ instead of (b d1)). The problem
is that the new names do not interact with the old names when generating the group of permutations.

We conjecture that a simple solution for both examples would consist of a combination of strong
fixed-point contexts together with the generation of a larger group of permutations: including the group
of permutations generated by the new atoms of Example 5.10, i.e., to consider the permutation group
〈Perm({c1, c2, c3, c4, c

′
3, c

′
4, d1, d2, d

′}), (b d′)〉. Similarly, for Example 5.9 we would need to specify the new
atoms in the context and generate the permutation group of these new atoms. However, we need to check
if relaxing the group generator restriction in this way does not introduce inconsistencies.

6 Discussion, Applications and Future Work

In the standard nominal approach, using freshness constraints, nominal unification problems [22], denoted
Pr, are finite sets of constraints of the form s ≈? t and a#?t. Solutions to (nominal) unification problems
are pairs (∆, σ) consisting of a freshness context ∆ and a substitution σ such that: (i) ∆ ⊢ sσ ≈ tσ, for
each s ≈? t ∈ Pr; (ii) ∆ ⊢ a#tσ, for each s#?t ∈ Pr; and (iii) ∆ ⊢ Xσ ≈ Xσσ, for all X ∈ Var(Pr).
Derivability in items (i)-(iii) is established by the rules in Figure 3.

We are interested in nominal equational unification problems, that is, in solving equations in the
ground term algebra when in addition to α-equivalence and freshness constraints, one is also interested in
equational theories (such as commutativity, associativity, etc). Nominal equational unification problems,
denoted PrE, are finite sets of constraints s ≈?

E
t and a#?t. Solutions of PrE are defined in terms of ≈E, as

expected, and rely on extending the rules in Figure 3 with the appropriate rules for the equational theory
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E. For example, in the case of the commutative theory C: first we need to specify the commutative function
symbol fC and the axiom that establishes the commutativity for this symbol C = { ⊢ fC(X,Y ) = fC(Y,X)}.
Now we extend and modify the rules of Figure 3 as follows: (i) replace ≈ for ≈C in all the rules; (ii) add

the rule
∆ ⊢ t1 ≈C si ∆ ⊢ t2 ≈C s3−i

∆ ⊢ fC(t1, t2) ≈C f
C(s1, s2)

. Together, these rules implement α, C-equality.

Nominal unification algorithms are defined in terms of simplification rules that can be seen as bottom-
up applications of derivation rules defining ≈ and #. More details can be found in [3].

Example 6.1 Consider the nominal C-unification problem PrC = {fC(X,Y ) ≈?
C
fC(c, (a b) · X)}. This

problem reduces to two simpler problems:

=⇒
{X ≈?

C
c, Y ≈?

C
(a b) ·X}

PrC =⇒ {Y ≈?
C
c,X ≈?

C
(a b) ·X}

The top branch has a solution {X 7→ c, Y 7→ c}. The bottom branch is more problematic due to the
fixed-point equation {X ≈?

C
(a b) ·X}.

We have seen in previous works on nominal unification (without equational theories) that the usual
simplification rule for fixed-point equations on variables is π · X ≈ π′ · X =⇒ ds(π, π′)#X. However,
this rule is not complete for the commutative case, since we lose solutions such as X 7→ fC(a, b), X 7→
fC(fC(a, b), fC(a, b)), X 7→ ∀[c]g(fC(a, b), c), etc. We have shown in [2] that there are infinite independent
solutions for this problem.

Currently, there are two approaches to solving nominal equational problems:

(i) Do not attempt to solve fixed-point equations and leave them as part of solutions [3]. Thus, solutions
of unification problems would be triples (∆, σ, P ), where P is a finite set of fixed-point equations of
the form X ≈E π ·X, and we can use extension of Figure 3 to validate solutions.

(ii) Use a different and more expressive formalism, using fixed-point constraints that capture fixed-point
equations [4]. Solutions to unification problems are again pairs (Υ, σ), but with fixed-point contexts,
and solutions are validated using the rules in Figure 1 taking into account the axioms defining the
theory E.

First, with the approach (i) the solutions to Example 6.1 are expressed by the triples (∅, {X 7→ c, Y 7→
c}, ∅) and (∅, {Y 7→ c}, {X ≈?

C
(a b) ·X}). Second, with the approach (ii) the solutions to the problem in

Example 6.1 are expressed by the pairs (∅, {X 7→ c, Y 7→ c}) and ({(a b) f X}, {Y 7→ c}}), and concrete
instances δ of X that validate (a b)fX, when composed with {Y 7→ c} (i.e. {Y 7→ c}δ), are also solutions
to the initial problem.

6.1 A sound fixed-point approach for commutativity: group generator

By Theorem 4.1, fixed-point constraints are a sound approach for proving validity of judgements in strong
models, and these do not accept permutative theories, such as commutativity. But we can reason modulo
the theories defined by the axioms in Example 4.3.

The use of more powerful rules proposed in Section 5.2 might be useful for commutativity, although
limited in terms of derivable judgements. First we consider the following modification of the rules of
Figure 1:

• Consider the (ax) rule with the axiom C = {fC(X,Y ) = fC(Y,X)}, where fC ∈ Σ;

• Replace the (fvar) rule for Gvarf.

The soundness is trivial, as it is a direct consequence of Theorem 5.8.
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6.2 Another sound fixed-point approach for commutativity: strong judgements

The use of strong judgements as proposed in Section 5.1 also seems promising for dealing with commuta-
tivity. First we consider the following modification of the rules of Figure 2:

• Replace
f

≈ for
f

≈C in all the rules.

• Replace f for fC in all the rules.

• Add the following rule for commutativity
Nc.ΥA,c0 ⊢ t1

f

≈C si Nc.ΥA,c0 ⊢ t2
f

≈C s3−i

Nc.ΥA,c0 ⊢ fC(t1, t2)
f

≈C f
C(s1, s2)

We conjecture that we can extend the translations defined in Section 5.1 to take into account the
commutativity theory in order to obtain soundness by extending Theorem 5.7. The expected extension
of the translation would map judgements of the form Nc.ΥA,c0 ⊢ (a b) fC X where b is not N-quantified

(and that are not equivalent to a freshness judgments) to a fixed-point equation (a b) · X
f

≈α,C X. (cf.
Example 5.6). This provides a foundation for unification algorithms modulo α and C.

7 Conclusion

We formalised the intentional semantics for fixed-point constraints and verified that strong nominal sets are
a sound denotational semantics for nominal algebra with fixed-point constraints. We proposed alternatives
to regain soundness for the whole class of nominal sets, by proposing more powerful rules or stronger
judgements and new rules. Our developments provide a sound approach for solving nominal equational
problems modulo strong theories. However, the best approach to deal with non-strong theories, such as
the permutative theories, still have to be investigated. Investigations towards completeness are under
development and will be reported in future work.
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