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Abstract

It is well known that Kleisli categories provide a natural language to model side effects. For instance, in the theory of coalge-
bras, behavioural equivalence coincides with language equivalence (instead of bisimilarity) when nondeterministic automata
are modelled as coalgebras living in the Kleisli category of the powerset monad. In this paper, our aim is to establish decorated
trace semantics based on language and ready equivalences for conditional transition systems (CTSs) with/without upgrades.
To this end, we model CTSs as coalgebras living in the Kleisli category of a relative monad. Our results are twofold. First, we
reduce the problem of defining a Kleisli lifting for the machine endofunctor in the context of a relative monad to the classical
notion of Kleisli lifting. Second, we provide a recipe based on indexed categories to construct a Kleisli lifting for general
endofunctors.
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1 Introduction

Coalgebras [27] are a categorical generalisation of labelled transition systems (LTSs) and state-based
systems in general, where the branching type is parameterised by an endofunctor over a category. Coalgebra
homomorphisms between any two coalgebras are behaviour preserving maps between the underlying sets
of states; often they correspond to some form of functional bisimulations. Under certain restrictions—
for instance, when the underlying endofunctor over the category Set of sets is bounded [27]—the final
coalgebra exists which can be seen as a universe of all coalgebras of the same type.

As coalgebra homomorphims in the category Set of sets correspond to functional bisimulations, the
behavioural equivalence induced by the unique coalegbra homomorphism into the final coalgebra coincides
with some form of bisimilarity. Nevertheless, there are many interesting notions of behavioural equiva-
lences other than bisimilarity; for instance, decorated trace equivalences (like trace/language/failure/ready
equivalences) on the states of an LTS (see the linear time-branching time spectrum [30]).
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The clue to get coarser notions than bisimilarity is to consider TB-coalgebras with side effects, where T
is a monad modelling the implicit side effects (like the powerset monad) and B = A× is the endofunctor
modelling the explicity branching with the set A of actions. Moreover, if B : Set → Set has a Kleisli
lifting B, then a TB-coalgebras living in Set could also be viewed as a B-coalgebra living in the Kleisli
category Kℓ(T ) and the unique coalgebra homomorphism, in the context of LTSs, maps a state to the set
of traces generated by the state [19]. This idea was developed further by Hasuo et al. [13] by showing the
behavioural equivalence in the chosen Kleisli category coincides with (probabilistic) language equivalence;
in other words, language equivalence for various types of automata can be captured coinductively.

In a similar spirit, one can recover various forms of decorated trace equivalences coinductively by
moving from the category Set of sets to an Eilenberg-Moore category (cf. [7,17]) and graded algebras (cf.
[23,10]) induced by graded monads. Nevertheless, these coinductive characterisations of decorated trace
equivalences based on Eilenberg-Moore categories and graded monads [11] require a preprocessing step to
determinise the given coalgebra (generalising the well-known determinisation procedure of an automaton);
as a result, there is an exponential blowup on the underlying state space unlike in the Kleisli case.

In this paper, our aim is to use a coalgebraic machinery to synthesise decorated trace semantics
(language equivalence, failure and ready equivalences) for conditional transition systems (CTS). CTSs
[1,4,5,6] are generalisations of traditional LTSs where each transition is guarded by a condition. CTSs
come in two flavours based on whether the set of conditions are ordered or unordered. In the unordered
case, CTSs and featured transition systems [22], a well-known operational model for software product
lines, are equally expressive and we are able to characterise the above three decorated trace equivalence
coinductively. In the ordered case, CTSs can model adaptive software product lines where certain features
(encoded as conditions) can get upgraded to better versions modelled by the order relation; in this case, we
present coinductive characterisations of language and ready equivalences (but not for failure equivalences).
Nonetheless, for both types of systems, decorated trace semantics coarser than conditional bisimilarity
[1,4,5,6] are not yet developed.

Our first contribution is to model CTSs without upgrades as TGB-coalgebras, where B = A × + O
is the endofunctor modelling the explicit branching with the set A of actions/alphabet and the set O of
observations attributed to various notions of decorated traces. The essential difference with the case of an
LTS is to model the implicit branching by a relative monad TG [2] induced by the powerset monad and
the writer comonad G = K× . This is to handle the ‘conditional’ transition relation →⊆ X ×A×K×X
of a CTS with a set X of state space. Operationally, a CTS (without upgrade) executes by selecting a
condition and, henceforth, behaviour evolves like in an LTS. This state-transition structure enriched with
conditions from K can be modelled as a coalgebra of type K ×X → P(K × (A ×X + O)); or simply as
an arrow X → A×X + O in the Kleisli category Kℓ(TG) induced by the relative monad TG. The set O
of observations attributed to various notions of decorated traces (cf. Section 5). Now the final coalgebra
homomorphism X → A⋆ × O in Kℓ(TG) is a function of type K × X → P(K × A⋆ × O) matching our
intuition of mapping a state x ∈ X and a condition to the set of decorated traces generated by x and the
condition obtained after executing a decorated trace (cf. Theorem 28).

For CTSs with upgrades we move to the category Pos of partially ordered sets and order preserving
functions as morphisms with T fixed to be the downset monad (cf. Section 5). However, the difference
with [6] is that we consider relative monads in this paper and thus, coalgebras in the Kleisli category
Kℓ(TG) induced by a relative monad TG. Just like one needs to define a Kleisli lifting of an endofunctor
in the classical case [19,13], we prove a similar result (cf. Lemma 8) in the context of relative monad TG.

The conditions, though, of this lemma on the existence of Kleisli lifting B̂ : Kℓ(TG) → Kℓ(TG) are quite
strong; for instance, G does not preserve B = A× +O because GBX 6∼= BGX even when O = 1.

Despite this hurdle we are able to reduce the problem of defining a Kleisli lifting B̂ for the endofunctor
B = A × + O in the context of a relative monad to the classical notion of Kleisli lifting [13,19,24].
Furthermore, we were able to use a result by Freyd [12] to prove that the initial algebra and final coalgebra

for the functor B̂ coincide under the conditions that Kℓ(T ) is Cppo-enriched and the ω-directed joins
commute with coproducts (cf. Theorem 10). These form the second contribution of the paper—paving a
way to characterise decorated trace equivalences in a coinductive manner.
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Our final contribution is to provide a recipe to construct a Kleisli lifting of a functor F : C → C in the
context of just a monad T : C → C. The key idea here is the following correspondence

X → TY

X × IY → Ω,

which says that a Kleisli arrow is in one-to-one correspondence with a predicate over X×IY (here, I : C →
C is an endofunctor and Ω is a truth value object in the category C). Once we have this correspondence,
we can employ techniques from coalgebraic modal logic (like predicate and relation liftings) to define a
distributive law ϑ of type FT ⇒ TF , which is equivalent to a Kleisli lifting of F (cf. [24]). In particular,
under certain technical assumptions (A3.1-A3.4) we are able to define ϑ (cf. Proposition 12) as the
transpose (under the above correspondence) of a relation lifting applied to the relation ∈X : TX×IX → Ω.
This relation coincides with the membership relation when T = P is the powerset monad and I = Id is
the identity functor on Set. Moreover, if the relation lifting preserves the diagonal relation ∆ (defined as
the transpose of the unit of T ) and the relation composition (defined using the Kleisli composition), then
the constructed natural transformation ϑ is well-behaved with the unit (cf. Lemma 18) and multiplication
(cf. Lemma 19) of the monad T , respectively. As a result, in the context of C = Set or C = Pos, we
obtain that the constructed natural transformation ϑ is a distributive law of type FT ⇒ TF whenever F
preserves the weak pullback squares.

2 Preliminaries

The objective of this section is to set the notations for this paper and recall the preliminaries related to
coalgebraic modelling in a Kleisli category from [13].

We assume familiarity with basic category theory and the theory of coalgebras. We use meta-predicates
X,Y ∈ C and f ∈ C(X,Y ) to denote objects X,Y and an arrow f of the category C, respectively. If
X,Y ∈ C have a coproduct, we write ιX : X → X + Y for the inclusion map. Dually, we write the
projection map prX : X × Y → X whenever the product X × Y exists. Moreover, when f ′ : X ′ → Y ′ ∈ C
and the coproducts X +X ′ and Y + Y ′ exist, we denote by f + f ′ : X +X ′ → Y + Y ′ the unique arrow
from the universal property of coproduct X + X ′ such that the equations ιY ◦ f = (f + f ′) ◦ ιX and
ιY ′ ◦ f ′ = (f + f ′) ◦ ιX′ hold. Dually, if X ×X ′ and Y × Y ′ exist, we define f × f ′ : X ×X ′ → Y × Y ′ to
be the unique map given by f ◦ prX , f ′ ◦ prX′ and the universal property of Y × Y ′.

2.1 Coalgebras in a Kleisli category

We fix a category C and a monad (T, η, µ) on C. Recall the Kleisli category Kℓ(T ) induced by T : C → C:

X ∈ C

X ∈ Kℓ(T )

f : X → TY ∈ C

f : X → Y ∈ Kℓ(T ).

The Kleisli composition g • f of two arrows f : X → Y, g : Y → Z is given by the composition µZ ◦ Tg ◦ f .
Throughout this section, we fix a coalgebra c : X → TBX ∈ C, where B is an endofunctor on C.

Typical examples are nondeterministic automata (NDAs), when B = A × + 1 and T = P, or their
probabilistic/weighted variant, when T is sub-distribution monad [13] or semiring monad [17].

It is well known—for instance in the context of NDAs—that the coalgebra homomorphisms correspond
to functional bisimulations which are too strong to capture language equivalence (either by taking the
span or cospan of coalgebra homomorphisms). This mismatch is avoided, as first noted in [19], by moving
to the Kleisli category Kℓ(P). In particular, NDAs can also be seen as the coalgebra X → BX ∈ Kℓ(P),
where B is the Kleisli lifting of the endofunctor B = A× + 1.

In general, a functor B : Kℓ(T ) → Kℓ(T ) is a Kleisli lifting of B : C → C whenever the following
square (drawn on the left) commutes, i.e.B ◦ L′ = L′ ◦ B. Here L′ is the free functor that maps an
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object X to the free algebra (TX,µX) and is left adjoint to the forgetful functor R′ : Kℓ(T ) → C with
R′(X) = TX (for X ∈ Kℓ(T )) and R′(f) = µ′

X ◦ Tf (for f : X → Y ∈ Kℓ(T )).

Kℓ(T ) Kℓ(T )

C C

B

L′

B

L′

TB BT

B

ϑ

ηB
Bη

(1)

BTT TBT TTB

BT TB

ϑT

Bµ

Tϑ

µB

ϑ

(2)

Moreover, B is a Kleisli lifting of B [13,24] iff there is a natural transformation ϑ : BT ⇒ TB satisfying
the laws indicated above in the middle and on the right. Such natural transformations were coined Kℓ-laws
in [17]. The upshot of having a Kleisli lifting is that (probabilistic) language equivalence can be captured
in a coinductive manner [13], i.e. whenever the final B-coalgebra exists.

Hasuo et al. [13] presented two conditions (of increasing strengths) on a Kleisli lifting B that ensured
when the initial B-algebra in C (if it exist) coincides with the final B-coalgebra in Kℓ(T ). In this paper,
we will use the following result due to Freyd [12] and generalise it to the level of relative monads. The
other condition in [13, Theorem 3.3] requires that B is locally monotone instead of locally continuous;
though we work with stronger assumption since B in our case studies will be locally continuous.

Definition 1. A category C is a Cppo-enriched category whenever its hom-set forms a ω-cpo with a
bottom and the composition of arrows is a continuous function. In particular,

• for each X,Y ∈ C, the set C(X,Y ) is partially ordered �X,Y with a bottom ⊥X,Y ∈ C(X,Y ) (we
drop the subscripts whenever it is clear from the context);

• for every increasing ω-chains (fi ∈ C(X,Y ))i∈N (i.e. fi � fi+1), the join
∨

i∈N fi ∈ C(X,Y ) exists.

• for every increasing ω-chains (fi ∈ C(X,Y ))i∈N and every g ∈ C(Y, Y ′), h ∈ (X ′,X) we have g ◦
(
∨

i∈N fi) =
∨

i∈N g ◦ fi and (
∨

i∈N fi) ◦ h =
∨

i∈N fi ◦ h.

Theorem 2 ([12,13]). Let Kℓ(T ) be a Cppo-enriched category whose composition is left strict (i.e. ⊥Y,Y •
f = ⊥Y,Y for every f ∈ Kℓ(T )(X,Y )) and B : Kℓ(T ) → Kℓ(T ) be a locally continuous endofunctor. Then

an initial algebra α : B(µB)
∼=
−→ µB ∈ C (if it exists) induces a final coalgebra B(α) : µB → B(µB) ∈ Kℓ(T ).

2.2 Decorated trace equivalences coinductively

In this subsection, we apply Theorem 2 to characterise failure and ready equivalences using coinduction, i.e.
we will characterise these equivalences as the equivalence induced by a unique coalgebra homomorphism
from the underlying coalgebra to the final coalgebra. Though the presentation is new and the results
follow directly from the above theorem, but we do not claim novelty (perhaps this is folklore). To the best
of our knowledge, these decorated trace equivalences were only characterised by considering coalgebras in
Eilenberg-Moore categories [7,17] or in the setting of graded algebras [10], but not in a Kleisli setting.

Throughout this subsection, we fix the endofunctor B = A× + O where A and O are some fixed sets
with O indicating the observations that make these decorated trace equivalences distinct among themselves.
So a labelled transition system (LTS) enriched with observations from O is a coalgebra c : X → PBX.

Proposition 3. For the endofunctor B = A × + O on Set, the initial algebra exists and is given by
µB = A⋆×O (the product of the sets of finite words induced by A and observations). Moreover, the algebra

h+ h′ : BµB

∼=
−→ µB is given by h′(o) = (ǫ, o) and h(a,w, o) = (aw, o) (for a ∈ A, w ∈ A⋆, o ∈ O).

Moreover, Kℓ(P) is a Cppo-enriched category (cf. [13]) where the order is given by the subset inclusion
and ⊥ is given by the empty relation (recall that Kℓ(P ) is isomorphic to the category Rel of sets as objects
and relations as morphisms). The functor B has a Kleisli lifting B, which acts on a relation f : Rel(X,Y )
as follows (which can be derived using the machinery developed in Section 4; see Example 26):

Bf = {(o, o) | o ∈ O} ∪ {((a, x), (a, y)) | a ∈ A ∧ x f y}. (3)

Now Theorem 2 becomes applicable and we have
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Proposition 4. The final coalgebra for B exists in Kℓ(P) and is given by A⋆ ×O.

Moreover, it is instructive to verify that the unique coalgebra homomorphism f : X → A⋆×O ∈ Kℓ(P)
from the coalgebra c : X → BX ∈ Kℓ(P) maps a state x to a set of tuples (w, o) ∈ A⋆ × O such that o is
an observation after performing the trace w from the state x. In addition, by modelling refusal sets [30]
in the coalgebra map c when O = PA, i.e. for any x ∈ X we impose on c(x) ⊆ A×X +PA the condition

o ∈ c(x) ⇐⇒ o is the set of actions disallowed from the state x

for any o ∈ O, we obtain that the unique coalgebra homomorphism f maps a state to its failure pairs [30].
A failure pair of a state x is a tuple (w, o) where w is a trace starting from x to some x′ and, moreover, o
is a ‘refusal’ set of actions disallowed from x′. As a result, we get a coinductive characterisation of failure
equivalence. Similarly, modifying the above coalgebra map to a map with the condition

o ∈ c(x) ⇐⇒ o is the set of actions enabled from the state x

for any o ∈ O, obtain that the unique coalgebra homomorphism f maps a state to its ready pairs [30]. A
ready pair of a state x is a tuple (w, o) where w is a trace starting from x to x′ and o is a ‘ready’ set of
actions enabled from the state x′. Thus, obtaining a coinductive characterisation of ready equivalence.

3 Relative monads, Kleisli categories, and Kleisli liftings

In Section 5 it will become apparent that CTSs are modelled as coalgebras living in a Kleisli category
induced by a relative monad. Relative monads in Computer Science were introduced in [2]; in particular,
they worked out the so-called Kleisli and Eilenberg-Moore constructions of a relative monad. Nevertheless,
the question of Kleisli lifting of an endofunctor was not considered in op. cit. and is particularly relevant
for coalgebraic modelling of CTSs with and without upgrades. Therefore, in this section, we are going to
recall the Kleisli construction of a relative monad from [2] and give sufficient conditions that ensure that
the resulting functor is a Kleisli lifting of a given endofunctor.

Definition 5. Given a functor 4 G : C → C, then a G-relative monad [2] is given by the following data:

(i) an object mapping T : C → C;

(ii) for every object X ∈ C, there is a unit map ηX ∈ C(GX,TX);

(iii) for every arrow f ∈ C(GX,TY ) there is a map f ♯ ∈ C(TX, TY ) called the Kleisli lifting of f
satisfying the unit and associative laws, i.e. for any g ∈ C(GY, TZ) the following diagrams commute:

GX TX

TY

ηX

f
f♯

(4a)

TX

TX

η
♯
X

idTX
(4b)

TX TZ

TY

f♯

(g♯◦f)♯

g♯
(4c)

Just like how a traditional monad gives rise to a Kleisli category, so does the relative monad in the
manner explained next. Given a G-relative monad T , its Kleisli category, denoted Kℓ(TG), is given by
objects from C and maps between any X and Y by maps between GX and TY in C, i.e.

X ∈ C

X ∈ Kℓ(TG)

f : GX → TY ∈ C

f : X → Y ∈ Kℓ(TG). (5)

4 Our presentation of relative monad is an instance of a more general formulation in [2] where G is not necessarily
an endofunctor.
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The identity morphism on X is provided by ηX , which is a left and right unit according to Eqs. (4a)

and (4b), respectively. Composition of two morphisms X
f
−→ Y

g
−→ Z in Kℓ(TG) is given by g♯ ◦ f in C.

Associativity of this composition is ensured by Eq. (4c).
The usual free-forgetful adjunction between the Kleisli category and its underlying base category gets

a bit subtle in the presence of relative monads. The notion of adjunction generalises to that of a (left)
G-relative adjunction L ⊣ R : G → D between an endofunctor G on C and another category D. It
consists of two functors L : C → D and R : D → C such that we have the natural bijection

GX → RY ∈ C

LX → Y ∈ D .

Proposition 6. For any endofunctor G and monad T , both on C, there is a G-relative adjunction L ⊣
R : G → Kℓ(TG), called the relative Kleisli adjunction, given by the functors L,R:

LX = X, Lf = ηGY ◦Gf, (6a)

RX = TX, Rg = g♯, (6b)

where f : X → Y and g : GX → TY .

Every monad induces a relative monad

Now fix an endofunctor G on a category C, then every monad (T, η, µ) on C gives rise to a relative monad
TG with TGX = TGX (for X ∈ C), the unit given by ηG, and f ♯ = µGY ◦ Tf (for f : GX → TGY ).

Proposition 7. [2, § 2.4] The three categories are formally related as follows:

Kℓ(TG) Kℓ(T )

C C
R

D

R′L

G

L′ ⊣

Where L′ ⊣ R′ is the classical Kleisli adjunction, DX = GX, and Df = f (for X, f ∈ Kℓ(TG)).

Note that the construction TG resembles the “Kleisli-like” construction KT
G,T from Hirsch’s thesis [14,

p. 44], where it was assumed that G is a comonad. He explores different ways to combine monads and
comonads in programming language semantics and applies his results to security policies.

Kleisli lifting of an endofunctor

In the sequel, all our relative monads are induced by monads; so, in this section, we explore how to extend

a given endofunctor B : C → C to an endofunctor B̃ : Kℓ(TG) → Kℓ(TG). Just like in the traditional

case, we say an endofunctor B̃ : Kℓ(TG) → Kℓ(TG) is a Kleisli lifting of B iff B̃ ◦ L = L ◦B.

GBX TGBY

BGX TBGY

ρX∼=

B̃f

B̄f

Tρ−1
Y

∼= (7)

Lemma 8. If G preserves B, i.e. there is a natural isomorphism ρ : GB ∼= BG, the existence of a Kleisli

lifting Kℓ(T )
B
−→ Kℓ(T ) of B implies the existence of a Kleisli lifting Kℓ(TG)

B̃
−→ Kℓ(TG) of B. In

particular, B̃X = BX (for X ∈ C) and B̃f (for an arrow f : X → Y ∈ Kℓ(TG)) is defined as in (7)

Moreover, if B is locally continuous (when Kℓ(T ) is Cppo-enriched), then so is B̃ as defined above.
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Unfortunately, unlike in the traditional case, we have to enforce some restriction on G (cf. Lemma 8)
to characterise a Kleisli lifting in terms of certain distributive laws. Note that this condition is, perhaps,
not that surprising when compared to other existing results that lift traditional results known on mon-
ads/adjunctions to relative monads/adjunctions. For instance, the well known result that colimits are
preserved by left adjoints does not hold in general in the context of relative adjunctions; it is only those
colimits that are preserved by G are preserved by the left adjoint in this new setting [29].

Kleisli lifting of Machine endofunctor B = A× +O

The condition in Lemma 8 that G preserves the endofunctor B is too strong because GBX 6∼= BGX
(for X ∈ Set, any nonempty set O, and G = K × with K 6= ∅). In this section, we further impose
the restriction on G to preserve coproducts, which allows us to define a Kleisli lifting for the machine
endofunctor. Assume that the working category C has binary products and coproducts, so that we can
define the machine endofunctor B = A × +O, where A, O ∈ C are two fixed objects in the category C.
For brevity, the functor A× is denoted by A.

Throughout this section, we further assume that

A1 the functor G preserves coproducts;

A2 the functor G preserves A (cf. Lemma 8);

A3 A : Kℓ(T ) → Kℓ(T ) is a Kleisli lifting of A (thus Ã : Kℓ(TG) → Kℓ(TG) exists).

These assumptions allow us to define the mapping B̂, which will become our lifting: It maps an object X
to BX and for a given arrow f : X → Y ∈ Kℓ(TG) we define (note A2 ensures that Lemma 8 is applicable
for the endofunctor A):

G(AX +O) TG(AY +O)

GAX +GO TGAY + TGO

B̂f

Ãf+ηGO

GιAX▽GιO ∼= TGιAY ▽TGιO
(8)

where f ▽ f ′ : X +X ′ → Y , “codiagonal”, is defined as the universal arrow of two morphisms f : X → Y
and f ′ : X ′ → Y with joined codomain. It is actually the map given from the pair (f, f ′) as the adjunct
of the adjunction between the coproduct and the diagonal functor X 7→ (X,X) from C to Cat({1, 2},C).
Later in Section 4 we will also use the dual version △ of ▽.

Theorem 9. The above mapping B̂ : Kℓ(TG) → Kℓ(TG) is a functor. Moreover, B̂ is also a Kleisli lifting

of B, i.e. B̂ ◦ L = L ◦B.

Theorem 10. Let T be a monad on C and G an endofunctor on C.

(i) If G preserves colimits and the initial algebra h : B(µB)
∼=
−→ µB of B exists in C, then Lh : B̂(µB)

∼=
−→

µB is the initial algebra of B̂ in Kℓ(TG).

(ii) If Kℓ(T ) is Cppo-enriched, A is locally continuous, and the operation + g commutes with the
ω-directed joins, i.e. for any increasing families of arrows (fi ∈ Kℓ(T )(X,Z))i∈N we have

∨

i∈N

(fi + g) = (
∨

i∈N

fi) + g,

then B̂ is locally continuous.

As a result, µB is the final coalgebra of (Lh)−1 : µB → B̂(µB) of B̂ in Kℓ(TG).
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4 On constructing a Kleisli lifting

In the previous section and in the context of endofunctor B = A × + O, we reduced the problem of
defining a Kleisli lifting of A = A× w.r.t. a relative monad TG by simply defining the Kleisli lifting of A
w.r.t. a monad T (cf. A3). The remaining assumptions A1 and A2 are straightforward to satisfy in our
case studies (cf. Section 5). The objective of this section is to give a general recipe to construct a Kleisli
lifting F : Kℓ(T ) → Kℓ(T ) of an endofunctor F : C → C. And recall from [17] that a Kleisli lifting F is
in one-to-one correspondence with a Kℓ-law ϑ : FT ⇒ TF . The rest of this section is devoted to define
such a Kℓ-law ϑ internally using the framework of indexed categories/fibrations.

To motivate our assumptions that follow, consider the Kleisli category Kℓ(P) induced by the powerset
monad. It is well known that the set of Kleisli arrows Set(X,PY ) are in one-to-one correspondence with
the set P(X × Y ) of binary relations, i.e.

Set(X,PY ) ∼= P(X × Y ) ∼= Set(X × Y, 2),

where 2 is a two element set {0,1}. However, in the Kleisli category Kℓ(P↓) for the downset monad
P↓ : Pos → Pos over the category of posets, this idea of representing a Kleisli arrow as homming into 2
(ordered by the smallest poset generated by the relation {(0, 1)}) is subtly different (see Proposition 30):

Pos(X,P↓Y ) ∼= {R ⊆ X × Y | R is up (down) closed in the first (second) argument} ∼= Pos(X × Y o, 2),

where Y o denotes the dual poset of Y . Thus, in general, we require an endofunctor I : C → C such that
the arrows X → TY can be internally represented as fibres Φ(X × IY ) in an indexed category.

A3.1 There is an indexed category Φ: Cop → Pos with a bifibration structure, i.e. for each f : X → Y ∈ C
there is an adjoint situation ∃f ⊣ f∗ : ΦX → ΦY . Note it is customary to write Φf as f∗ (cf. [18]).

A3.2 There is an endofunctor I : C → C such that F ◦ I = I ◦ F .

A3.3 There is a monad (T, η, µ) on C with the following correspondence

θX,Y : C(X,TY ) ∼= Φ(X × IY ) (for each X,Y ∈ C)

such that the following diagrams commute for each f : X → X ′, g : Y → Y ′ ∈ C.

C(X,TY ) Φ(X × IY ) C(X,TY ) Φ(X × IY )

C(X ′, TY ) Φ(X ′ × IY ) C(X,TY ′) Φ(X × IY ′)

θX,Y

A3.3a Tg◦

θX,Y

A3.3b ∃(X×Ig)◦f

θX′,Y

(f×IY )∗

θX,Y ′

A3.4 There is an indexed morphism (aka predicate liftings) σ : Φ ⇒ ΦF .

Note that our technical objective of this section is to show that Assumptions A3.1-A3.4 imply Assump-
tion A3; hence the use of nesting in the above naming convention.

Some remarks are in order on the indexed category Φ. Intuitively, in our case-studies, A3.1 will be
the fibres Φ(X) containing predicates of type X → Ω ∈ C with Ω ∈ C modelling the truth value object.
For our purposes Ω = 2 the two-pointed set with the order 0 < 1 (when C = Pos). The left adjoint ∃f of
f∗ is used in categorical logic [18] to model the existential quantifier, which is originally due to Lawvere
[21]. Below we will use such left adjoints to construct a relation lifting from the predicate lifting σ, which
are used to define semantics of a modality in coalgebraic modal logics.

The general idea is to define a Kℓ-law ϑ : FT ⇒ TF internally using the language of fibred categories.
For instance, thanks to the isomorphism in A3.3, ϑX : FTX → TFX (for some X ∈ C) can be defined
internally by an element in the fibre Φ(FTX × IFX). To this end, we start by the identity arrow idTX
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and consider the element called ‘membership relation’

∈X
def
= θTX,X(idTX) ∈ Φ(TX × IX).

This notation is motivated by one of the case studies: when C = Set, I = Id, and T = P, this element
will correspond to the element relation ∈X ⊆ TX ×X.

Note that technically ∈X is an element in the fibre Φ(TX × IX). Now applying the predicate lifting
σ on ∈X gives an element σTX×IX(∈X) ∈ ΦF (TX × IX). We are now a step away from defining our
distributive law. First recall the following arrows defined thanks to the universal property of product and
the equation I ◦ F = F ◦ I (cf. A3.2):

λX,Y = F (prX) △ F (prIY ) : F (X × IY ) → FX × FIY = FX × IFY

where f△f ′, the “diagonal operation”, is, in general, defined for any two arrows f : X → Y and f : X → Y ′

in C with common domain X. It is the dual to ▽ introduced in connection with Eq. (8). Our distributive
law ϑX is simply the mapping of σTX×IX(∈X) by the map θ−1

FTX,FX ◦∃λTX,X
: ΦF (TX×IX) → Φ(FTX×

IFX) → C(FTX, TFX); thus, we define by composition of maps

ϑX
def
= θ−1

FTX,FX ◦ ∃λTX,X
◦ σTX×IX (∈X) = θ−1

FTX,FX ◦ ∃λTX,X
◦ σTX×IX ◦ θTX,X(idTX). (9)

Lemma 11. Let f : X → Y ∈ C. Then we have ∃TX×If (∈X) = (Tf × IY )∗(∈Y ).

As a result, we get the following result which is one of the basic requirements for ϑ to be a Kℓ-law.

Proposition 12. The map ϑ defined in (9) is a natural transformation of type FT ⇒ TF .

On relation lifting

Before we establish the compatibility of ϑ with unit η and multiplication µ of the monad T , respectively,
in the subsequent subsections, we need that the mapping

Φ(X × IY )
σX×IY
−−−−→ ΦF (X × IY )

∃λX,IY
−−−−→ Φ(FX × IFY )

is a relation lifting in the following sense. Notice that, in the sequel, the fibres Φ(X × IY ) over the object
X × IY ∈ C are maps of type X × IY → Ω ∈ C, which we simply call as relations. Thus, the above
map abbreviated σ̃X,Y = ∃λX,IY

◦ σX×IY is a candidate to what is known as F -relators in the literature
on coalgebras. Actually, there is no common consensus on the ‘categorical’ definition of an F -relator (cf.
[16, Chapter 4]), however, for our purpose we require a relator to be an indexed morphism, i.e. a natural
transformation of type Φ( × IX) ⇒ Φ( × IFX) (for every X ∈ C). Thus, in the parlance of relators, our
natural transformation ϑ on a component is nothing but a relation lifting of the membership relation ∈.

Definition 13. Given a commuting diagram below on the left, we say the Beck-Chevalley condition for
(10a) holds iff the square (10b) on the right commutes.

X Y

Z Z ′

f

g k

h

(10a)

Φ(X) Φ(Y )

Φ(Z) Φ(Z ′)

∃f

g∗

∃h

k∗ (10b)

Lemma 14. If in (10b) k∗ ◦ ∃h ≤ ∃f ◦ g
∗, then the Beck-Chevalley condition holds for (10a).

Corollary 15. Let C be Set or Pos and Ω = 2 with the order generated by 0 < 1 when C = Pos. If
Φ is the indexed category of predicates, i.e. Φ = C( ,Ω), then the Beck-Chevalley condition holds for the
square in (10a) whenever it is a weak pullback square.
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Theorem 16. The square Eq. (11a) below commutes for any f : X → X ′ and g : Y → Y ′.

F (X × IY ) FX × FIY

F (X ′ × IY ′) FX ′ × FIY ′

λX,Y

F (f×Ig) Ff×FIg

λX′,Y ′

(11a)

F (X × IY ) FX × IFY

F (X ′ × IY ) FX ′ × IFY

F (f×IY )

λX,Y

Ff×IFY

λX′,Y

(11b)

Moreover:

(i) If the Beck-Chevalley condition holds in the special cases of Eq. (11b) (for any f) then the map
σ̃ ,Y : Φ( × IY ) ⇒ Φ(F × IFY ) (for each Y ∈ C) is a natural transformation (i.e. a relation lifting).

(ii) If F preserves weak-pullbacks, then Eq. (11a) is a weak pullback-square.

(iii) In the context of C is Set or Pos and Ω = 2, the Beck-Chevalley condition holds for the above square
whenever F preserves weak pullback squares.

On compatibility of ϑ with η and µ

It turns out that these compatibility properties, i.e. Equations (1) and (2), are intrinsically related with
Kleisli compositions. Note that because of A3.3 we can define the composition ⊙ of relations of type:

⊙ : Φ(Y × IZ)× Φ(X × IY ) → Φ(X × IZ) S ⊙R = θX,Z

(
θ−1
Y,Z(S) • θ

−1
X,Y (R)

)
(12)

Proposition 17. The identity relation ∆X
def
= θX,X(ηX) is the unit to the relational composition ⊙.

Lemma 18. If the Beck-Chevalley conditions holds for the squares in 11b (for every f ∈ C) then the
relation lifting σ̃ preserves the identity relation, i.e. σ̃X,X(∆X) = ∆FX (for each X ∈ C) if, and only if,
ϑ is compatible with the unit η (i.e. Eq. (1) holds).

Proof. First observe that
σ̃X,X(∆X) = ∆FX

σ̃X,XθX,X(ηX) = θFX,FX(ηFX)

θ−1
FX,FX σ̃X,XθX,X(ηX) = ηFX

Def. of ∆

.

Next observe that the diagram

C(TX, TX) Φ(TX × IX) Φ(FTX × FIX) C(FTX,FTX)

C(X,TX) Φ(X × IX) Φ(FX × FIX) C(FX,TX)

θTX,X

η∗X

σ̃TX,X

(ηX×IX)∗

θ−1
FTX,FX

(FηX×FIX)∗ (FηX)∗

θX,X σ̃X,X θ−1
FX,FX

commutes by Theorem 16 and Assumption A3.3a. Chasing idTX through the diagram gives

(
θ−1
FTX,FX ◦ σ̃TX,X ◦ θTX,X(idTX)

)
◦ FηX = θ−1

FX,FX σ̃X,XθX,X(idTX ◦ ηX)

ϑX ◦ FηX = θ−1
FX,FX σ̃X,XθX,X(ηX)

Eq. (9)
.

Combining the observations of this an the preceding paragraph gives the lemma.

Lemma 19. Assume that the Beck-Chevalley conditions holds for the squares in 11b (for every f ∈ C).
If the relation lifting σ̃ preserves the relational composition, i.e. for each R ∈ Φ(X × IY ), S ∈ Φ(Y × IZ)

σ̃X,Z(S ⊙R) = σ̃FY,FZ(S)⊙ σ̃FX,FY (R), (13)



Luckhardt, Beohar & Küpper 16–11

then ϑ is compatible with the multiplication µ (i.e. Eq. (2) holds). Conversely, if the compatibility with
multiplication occurs, then Eq. (13) holds at least in the instance R = ∈X and S = ∈TX .

Proof. First note that using Kleisli composition condition Eq. (2) can be expressed by

θX ◦ FµX = θX • θTX (14)

for X ranging over all objects in C. Second, we consider the same diagram as in the proof of Lemma 18
but with the multiplication µ in place of the unit η:

C(TX, TX) Φ(TX × IX) Φ(FTX × FIX) C(FTX,FTX)

C(TTX, TX) Φ(TTX × IX) Φ(FTTX × FIX) C(FTTX, TX)

θTX,X

µ∗

X

σ̃TX,X

(µX×IX)∗

θ−1
FTX,FX

(FµX×FIX)∗ (FµX)∗

θTTX,X σ̃TTX,X θ−1
FTTX,FX

Again the diagram commutes due to Theorem 16 and Assumption A3.3a. Again we chase idTX through
the diagram. We obtain

(
θ−1
FTX,FX ◦σ̃TX,X ◦θTX,X(idTX)

)
◦FµX = θ−1

FTTX,FXσ̃TTX,XθTTX,X ◦(µX ◦idTTX)

which becomes using Eq. (9)

ϑX ◦ FµX = θ−1
FTTX,FX σ̃TTX,XθTTX,X(µX ◦ idTTX)

= θ−1
FTTX,FX σ̃TTX,XθTTX,X(idTX • idTTX)

= θ−1
FTTX,FX σ̃TTX,XθTTX,X(θ−1

TX,X(∈X) • θ−1
TTX,TX(∈TX))

Eq. (12)
= θ−1

FTTX,FX σ̃TTX,X(∈X ⊙∈TX)

Eq. (13)
= θ−1

FTTX,FX

(
σ̃TX,X(∈X)⊙ σ̃TTX,TX(∈TX)

)

Eq. (12)
= θ−1

FTX,FX(σ̃TX,X∈X) • θ−1
FTTX,FTX(σ̃TTX,TX∈TX)

Eq. (9)
= θX • θTX .

This concludes the forward direction by Eq. (14). For the converse direction note that in the single
instance where Eq. (13) was used when R = ∈X and S = ∈TX is an equivalence since θFTTX,FX is
bijective. All other steps in the last calculation were equivalences as well.

Now we can state the main result of this section.

Theorem 20. Let C be either Set or Pos and Ω = 2. If F preserves weak pullbacks, then the natural
transformation ϑ defined in Eq. (9) is a Kℓ-law.

We end this section by giving an example of Kℓ-law which is a direct consequence of the above theorem.
Moreover, the general results of neither [13, Lemma 2.4] nor [19, Section 4] are applicable in Example 21
since our functor F is not shapely [13] and T is a generalisation of powerset monad.

Example 21. We work with the Lawvere quantale 5 Ω and let T = PΩ be the Ω-valued powerset monad
[15, Remark 1.2.3] on Set defined as PΩ = ΩX on objects and as Tf(g)(y) = inff(x)=y g(x) (for f : X → Y )
on arrows. Its unit ηX : X → PΩX is given by ηX(x)(x′) = 0 if x = x′ and 1 (the empty meet) otherwise.
Multiplication µX : PΩPΩX → PΩX is defined as µX(G)(x) = infg∈PΩX G(g) ⊕ g(x). It is not hard to
see that a Kleisli arrow X → Y ∈ Kℓ(PΩ) corresponds to a Ω-valued matrix of dimension X × Y (i.e.
the functor I is set to be the identity functor); the latter are known as Ω-valued relations in [8]. The
indexed category Φ(X × Y ) of Ω-valued relations forms a bifibration; the left adjoint ∃f (for a function

5 The Lawvere quantale is given by the poset ([0, 1],≥) with the monoidal operation given by truncated addition
⊕, i.e. r ⊕ r′ = min(r + r′, 1).
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f : X → Y ) is given by ∃f (p)(y) = inffx=y p(x). Moreover, every weak pullback square in Set satisfies the
Beck-Chevalley condition in this quantalic context.

Now consider the functor F = D the distribution functor and the predicate lifting σX : ΩX → ΩDX

given by the expectation Eµ(p):

σX(p)(µ) = Eµ(p) =
∑

x∈X

p(x) · µ(x) (for each µ ∈ DX)

(note that the sum is automatically defined as it ranges over non-negative values and is in Ω due to
the assumptions on p and µ). Furthermore, the relation ∈X is given by evaluation (p, x) 7→ p(x) and
the natural transformation λ : D(X × Y ) → D(X) × D(Y ) maps a joint distribution ω ∈ D(X × Y ) 7→
(
∑

y∈Y ω( , y),
∑

x∈X ω(x, )) to its corresponding marginal distributions. Thus, using the terminology

of optimal transport, the left adjoint ∃λX
(M)(µ, ν) = infλX(ω)=(µ,ν) M(ω) computes the best possible

coupling of a given pair of distributions µ, ν in M . This gives rise to a Kℓ-law ϑ : DPΩ → PΩD as follows:

ϑX(M)(µ) = inf
λTX,X(ω)=(M,µ)

Eω(∈X) = inf
λDX,X(ω)=(M,µ)

∑

(p,x)∈PΩX×X

p(x) · ω(p, x),

where M ∈ D(PΩX) and µ ∈ D(X).

5 A case study on conditional transition system (CTS)

In this section, we will apply Theorem 10 to synthesise language, failure and ready equivalences for CTSs.
CTSs are a generalisation of labelled transitions systems (LTSs) aimed at modelling a family of LTSs in a
compact manner; thus, they are suited to formally model a software product line [4].

Definition 22. A conditional transition system (CTS) over an alphabet A and a finite poset K of condi-
tions is a quadruple (X,A,K,→), where X is a set of states and → ⊆ X × A × K ×X is the transition

relation satisfying the following condition (below we write x
a,k
−−→ y to denote the predicate (x, a, k, y) ∈ →):

∀x,y∈X,a∈A,k,k′∈K (x
a,k
−−→ y ∧ k′ ≤ k) =⇒ x

a,k′

−−→ y.

The operational intuition behind a CTS with upgrades is as follows. A CTS starts executing its
behaviour from a state x and by arbitrarily choosing a condition k ∈ K. Note that all the transitions
that are enabled at x and are guarded by a condition greater than or equal to k are activated, while the
remaining transitions remain inactive. Henceforth, the system behaves like a traditional LTS, though at
any point in its evolution the system may upgrade to a condition k′ ≤ k. If the set K is trivially ordered,
then we call the system as a CTS without upgrades (originally introduced in [1]).

In the sequel we will fix a set of actions A that, whenever order is taken into account, is trivially ordered
(i.e. by equality). For the systems we model, we additionally assume that the state space, usually denoted
by X, is always trivially ordered. We define the behavioural notions for CTS as follows:

Definition 23 (Behavioural Equivalences). Let (X,A,K,→) be a CTS over K then we define:

• Assume ↓⊆ X modelling the set of accepting/terminating states, then the k-language of a state x ∈ X:

L(x, k) = {w ∈ A⋆ | ∃x′ x′ ∈ X ∧ x
w,k
−−→→ x′ ∧ x′ ∈ ↓},

where
k
−→→ ⊆ X × A⋆ ×X is the usual reachability relation on the state space.

• Taking into consideration that upgrades may allow additional steps, we call x and y equivalent for a
condition k ∈ K iff ∀k′ ≤ k : L(k′, x) = L(k′, y). Two states are conditionally language equivalent, if
they are language equivalent for all k ∈ K.
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• We define the failure pairs, resp. ready pairs, of a state x ∈ X for a condition k ∈ K as:

F (x, k) = {(w,U) | ∃x′∈X x
w,k
−−→→ x′ ∧ ∀a∈U∄x′′ x′

a,k
−−→ x′′}

R(x, k) = {(w,U) | ∃x′∈X x
w,k
−−→→ x′ ∧ ∀a∈U∃x′′∈X x′

a,k
−−→ x′′}.

• Taking into consideration that upgrades may allow additional steps we call two states x, y ∈ X failure
(resp. ready) equivalent for a condition k ∈ K iff F (x, k′) = F (y, k′) (resp. R(x, k′) = R(y, k′)) for
all k′ ≤ k. We call them conditionally failure equivalent (resp. conditionally ready equivalent), if
F (x, k) = F (y, k) for all conditions k ∈ K.

The three notions of behaviour we want to model coalgebraically can all be modelled by variations

of the functor B̂ from Theorem 10 either for the Kleisli category induced by the powerset monad P on
Set or the downset monad P↓ on Pos. We can choose the behavioural notion by our choice of the set of
observations O and we can vary between systems with and without upgrades by giving K an order or no
order. The following table shows the modelling choices succinctly:

K unordered K ordered

O = {1} ô = (k, •) if x ∈↓ ô = (k, •) if x ∈↓

O = P(A) (refusal sets) ô = {(k, a) | ∄x′ x
k,a
−−→ x′} undefined

O = P(A) (ready sets) ô = {(k, a) | ∃x′ x
k,a
−−→ x′} ô = {(k′, a) | k′ ≤ k ∧ ∃x′ x

k′,a
−−→ x′}

In particular, for a coalgebraic modelling of a CTS (X,A,K,→) (with or without upgrades), we consider
the following function α : K×X → T (K× A×X +O) where

α(k, x) = {(k′, a, x′) | x
k′,a
−−→ x′ ∧ k′ ≤ k} ∪ {ô ∈ K×O | ô as defined in the above table},

T = P,C = Set for CTSs without upgrades and T = P↓,C = Pos for CTSs with upgrades. In other
words, the coalgebra map models local conditional behaviour, i.e. it models immediate transitions and
immediate ready sets from a state at a particular condition. Note that α(k, x) need not be a downward
closed set if we incorporate refusal sets in the ordered case like the ready sets, i.e. by including the clause

o = {(k′, a) | k′ ≤ k ∧ ∄x′ x
k′,a
−−→ x′} in the definition of α. This is because refusal sets are order reversing,

unlike ready sets which are order preserving. As a result, we are unable to capture conditional failure
equivalence coinductively for CTSs with upgrades; but we can without upgrades (cf. Theorem 28) since
α(k, x) (for arbitrary k ∈ K, x ∈ X) is downward closed when K is trivially ordered.

So the functor G throughout this section is the writer comonad K × . Moreover, K × ⊣ K both
in Set and Pos, we immediately have that Assumption A1 is valid since left adjoints preserve colimits.
In addition, Assumption A2 holds because GAX = K × A × X ∼= A × K × X = AGX. The next two
subsections are on Assumption A3, i.e. a Kleisli lifting A exists for the functor A : C → C (given by
AX = A×X for X ∈ C and C ∈ {Set,Pos}).

CTS without upgrades when C = Set and T = P

Recall that a Kleisli category X → PY ∈ Set is isomorphic to a binary relation X × Y → 2, where
2 = {0, 1}. Thus, we let I = Id and Φ: Setop → Pos be the indexed category of (Boolean) predicate, i.e.
ΦX = Set(X, 2) ∼= PX and f∗ is given by the inverse image f−1 (for each f ∈ Set). Moreover, Φ has
the bifibration structure since the left adjoint ∃f (for a function f : X → Y ∈ Set) is given by the direct
image ∃f (U) = {fx | x ∈ U} (for each U ∈ ΦX). Thus, Assumptions A3.1 and A3.2 hold.

Proposition 24. With the above definitions of I and Φ, Assumption A3.3 is valid.
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To satisfy Assumption A3.4, consider the predicate lifting σX : ΦX → Φ(AX) given by the mapping

U ⊆ X 7→ σX(U) = {(a, x) | x ∈ U ∧ a ∈ A} = A× U.

Clearly, σ is an indexed morphism because f∗ is a functor. Now we can compute the relation lifting
σ̃X,Y : Φ(X × Y ) → Φ(AX ×AY ) to be:

σ̃X,Y R = ∃λX,Y
σX×Y (R) = {λX,Y (a, x, y) | x R y ∧ a ∈ A} =

{(
(a, x), (a, y)

)
| x R y ∧ a ∈ A

}
.

Proposition 25. The above relation lifting σ̃ preserves identity relations and relational composition.

And thanks to Theorem 20, Eq. (9) gives a Kℓ-law ϑ : AP ⇒ PA. More concretely, on a component
X ∈ Set, it is given as ϑX = θ−1

APX,AX ◦ σ̃PX×X(∈X) = θ−1
APX,AX{((a, U), (a, x)) | x ∈ U}. Thus,

ϑX(a, U) = {(a, x) | x ∈ U}.

So we obtain Kleisli liftings A : Kℓ(P) → Kℓ(P) of A (below X ∈ Set and f : X → PY ∈ Set)

AX = AX = A×X and Af(a, x) = {(a, y) | y ∈ fx}.

Example 26. In the above paragraph, let F : Set → Set be B = A× +O (instead of just A× ). Now
the following predicate lifting σ : ΦX → ΦFX induces a relation lifting σ̃ : Φ(X × Y ) → Φ(FX × FY ):

U ⊆ X 7→ σXU = O ∪ {(a, x) | x ∈ U ∧ a ∈ A}

R ⊆ X × Y 7→ σ̃XU = ∆O ∪ {((a, x), (a, y)) | x R y ∧ a ∈ A}

So from Theorem 20 we get a Kℓ-law ϑ : FP ⇒ PF , which on a component X ∈ Set is ϑX(a, U) =
{a} × U and ϑX(o) = {o}. This induces a Kleisli lifting B as BX = BX and Bf = ϑY ◦ Bf (for every
f ∈ X → Y ∈ Kℓ(P)). The latter coincides with the definition of Bf given in Eq. (3).

Theorem 9 is now applicable and giving us a Kleisli lifting B̂ : Kℓ(PG) → Kℓ(PG), which on objects

is B̂(X) = BX = A×X +O (for each X ∈ Set) and on an arrow f : Kℓ(PG)(X,Y ) is defined as follows:

B̂(f)(k, o) = {(k, o)} and using Eq. (8) we get

B̂(f)(k, a, x) = TGιAY ◦ Ãf(k, a, x) = {(k′, (a′, y)) | (k′, y) ∈ f(k, x)}

The next proposition is a consequence of Theorem 10.

Proposition 27. The Kleisli lifting A is locally continuous and the operation + f (for every fixed
arrow f ∈ Kℓ(P)) on Kleisli homsets commutes with ω-directed joins. As a result, the initial algebra

L(µB) = A⋆ ×O coincides with the final coalgebra of B̂ in Kℓ(PG).

Theorem 28. Let α : X → AX +O ∈ Kℓ(PG) be a coalgebra.

(i) If O = 1 then the unique coalgebra homomorphism is given by the mapping (k, x) 7→ {k} × L(x, k).

(ii) If O = PA and α models the ready set (resp. refusal set) of a state, i.e. (k, o) ∈ α(k, x) iff o is
the set of actions enabled (resp. disabled) from the state x at condition k, then the unique coalgebra
homomorphism is given by the mapping (k, x) 7→ {k} ×R(x, k) (resp. (k, x) 7→ {k} × F (x, k)).

CTSs with upgrades when C = Pos and T = P↓

We begin by recalling the downset monad P↓ on the category Pos of posets that maps a poset to its
downward closed subsets. In particular,

P↓(X) = {U ⊆ X | U = ↓U} ↓U = {x′ | ∃x x ∈ U ∧ x′ ≤ x}.
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On an arrow f : X → Y ∈ Pos, P↓ maps a downward closed subset U ⊆ X to the downward closed subset
↓f(U). Moreover, the unit ηX maps a point x to its history ↓{x} and the multiplication µ is given by
union. Now a Kleisli arrow f : X → P↓Y ∈ Pos and the relation θX,Y (f) = {(x, y) | y ∈ fx}. It is not
hard to see that the relation is upward closed in X and downward closed in Y (or alternatively upward
closed in the dual poset Y o). Moreover, it is well known that upward closed sets of a poset X are in
correspondence with poset maps of type X → 2 where 2 = {0, 1} and is ordered by 0 < 1.

Due to these considerations, define an indexed category Φ: Posop → Pos of upward closed subsets of
a poset and I : Pos → Pos to be the functor that maps a poset to its dual. Moreover, the reindexing f∗

(for an arrow f ∈ Pos) is given by the inverse image f−1 (since inverse image preserves upward closed
subsets). Moreover, Φ has the bifibration structure since the left adjoint ∃f (for f : X → Y ∈ Pos) is
given by the set ∃f (U) = {y ∈ Y | ∃x x ∈ U ∧ fx ≤ y}, for each U ∈ ΦX.

Proposition 29. With the above definition of Φ, Assumption A3.1 is valid. Moreover, Assumption A3.2
is also valid when F = A.

Proposition 30. With the above definitions of I and Φ, a poset arrow f : X → P↓Y is in correspondence
with the relation R ⊆ X × Y satisfying: ∀x,x′∈X,y,y′∈Y (x R y ∧ x ≤ x′ ∧ y′ ≤ y) =⇒ x′ R y′. Moreover,
Assumption A3.3 is valid.

We take the same predicate lifting σ as in the previous case since σX(U) = A × U is upward closed
whenever U is upward closed. So, Assumption A3.4 is also valid. Now we again compute a relation lifting
σ̃X,Y : Φ(X × IY ) → Φ(AX × IAY ) to be (below ↑ denotes the upward closure of a subset):

σ̃X,Y R = ∃λX,IY
σX×IY R

= ∃λX,IY
{(a, x, y) | x R y ∧ a ∈ A}

= ↑{λX,IY (a, x, y) | x R y ∧ a ∈ A}

= ↑
{(

(a, x), (a, y)
)
∈ AX × IAY | x R y ∧ a ∈ A

}

=
{(

(a, x), (a, y)
)
∈ AX × IAY | x R y ∧ a ∈ A

}
.

Proposition 31. In this setting, the ‘identity’ relation ∆X ⊆ X × IX (for each X ∈ Pos) is given by
{(x, x′) | x′ ≤ x∧x ∈ X}. The ‘relational’ composition ⊙, in this setting, coincides with the usual relational
composition of binary relations. Moreover, the relation lifting σ̃X,Y : Φ(X×IY ) → Φ(AX×IAY ) preserves
identity relations and relational compositions.

Moreover, the relation lifting σ̃ on a component evaluates like in the case of Set, we obtain a Kℓ-law
ϑ : AP↓ ⇒ P↓A given by ϑX(a, U) = {(a, x) | x ∈ U}, for each X ∈ Pos. So we get a Kleisli lifting

A : Kℓ(P↓) → Kℓ(P↓) which is defined exactly like in the previous case. Nevertheless, the Kleisli lifting

B̂ : Kℓ(P↓
G) → Kℓ(P↓

G) (due to Theorem 9) on an arrow f : Kℓ(P↓
G)(X,Y ) is a bit different and it

evaluates as follows: B̂(f)(k, o) = ↓{(k, o)} and using Eq. (8) we get

B̂(f)(k, a, x) = TGιAY ◦ Ãf(k, a, x)

= TGιAY {(k
′, (a, y)) | (k′, y) ∈ f(k, x)}

= ↓
{(

k′, (a, y)
)
| (k′, y) ∈ f(k, x)

}

=
{(

k′, (a, y)
)
| (k′, y) ∈ f(k, x)

}
.

Note that Kℓ(P↓) is Cppo-enriched by taking the pointwise order, i.e. f ≤ g iff ∀x∈X fx ⊆ gx for any
f, g : X → Y ∈ Pos, and the join is given by the union (since it preserves downward closed subsets).

Proposition 32. The Kleisli lifting A is locally continuous and the operation +f (for every f ∈ Kℓ(P↓))
on Kleisli homsets commutes with ω-directed joins. Moreover, the initial algebra of B is A⋆ × O. As a

result, the initial algebra L(µB) = A⋆ ×O coincides with the final coalgebra of B̂ in Kℓ(P↓
G).
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Theorem 33. Let α : X → AX +O ∈ Kℓ(P↓
G) be a coalgebra.

(i) If O = 1 then the unique coalgebra homomorphism is given by (k, x) 7→
⋃

k′≤k{k
′} × L(x, k′).

(ii) If O = P(A) and α models the ready set of a state, i.e. (k′, o) ∈ α(k, x) iff o is the set of actions
enabled from the state x at condition k′ ≤ k, then the unique coalgebra homomorphism is given by
(k, x) 7→

⋃
k′≤k{k

′} ×R(x, k′).

6 Conclusion and future work

In this paper, we developed a coalgebraic framework to describe CTSs with and without upgrades that
allowed us to synthesise language, failure and ready equivalences through our main theorem, Theorem 10.
The crucial assumption for this main theorem turned out to be the lifting property to the Kleisli category,
which is equivalent to defining a Kℓ-law. Under certain assumptions, we characterised a Kℓ-law internally
living in the fiber of an indexed category. We demonstrated how these assumptions can be easily checked
in both cases—with and without upgrades.

Based on the development in Section 4, perhaps in the future, it would be worthwhile to investigate the
sufficient conditions that guarantee the existence of initial algebra and final coalgebra for the Kleisli lifting
F : Kℓ(T ) → Kℓ(T ) constructed via the Kℓ-law ϑ : FT → TF . Moreover, if both exist, a question of
particular interest will be whether they coincide. A major contribution would be, if one could attack this
question by weakening the assumption of a celebrated result to this effect by Freyd [12] for Cppo-enriched
categories, a set-up we alluded to. To this end, it would be also fruitful to seek conditions when the Kleisli
lifting constructed in Eq. (8) is actually locally continuous.

Another fruitful direction would be to develop coinductive characterisation of failure equivalence in
the presence of upgrades and consider other monads than the powerset monad in modelling quantitative
extensions of CTSs. Such an extension may enrich the transitions with real-time [9], probability [26] or
even weights from a semiring modelling some resource usage [25,28]. Probabilistic extensions are among
the upmost exciting one—specially so-called “parametric Markov models”—see [3, Def. 3.6], and also
[20]—in which one considers the distribution monad and which originated from the formal verification of
probabilistic systems.
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