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Abstract

We consider the problem of designing typed concurrent calculi with non-deterministic choice in which types leverage linearity
for controlling resources, thereby ensuring strong correctness properties for processes. This problem is constrained by the
delicate tension between non-determinism and linearity. Prior work developed a session-typed π-calculus with standard non-
deterministic choice; well-typed processes enjoy type preservation and deadlock-freedom. Central to this typed calculus is
a lazy semantics that gradually discards branches in choices. This lazy semantics, however, is complex: various technical
elements are needed to describe the non-deterministic behavior of typed processes. This paper develops an entirely new
approach, based on an eager semantics, which more directly represents choices and commitment. We present a π-calculus
in which non-deterministic choices are governed by this eager semantics and session types. We establish its key correctness
properties, including deadlock-freedom, and demonstrate its expressivity by correctly translating a typed resource λ-calculus.

Keywords: Concurrency, process calculi, linear type systems, session types, intersection types, non-determinism.

1 Introduction

This paper addresses the problem of designing concurrent calculi with non-deterministic choice in which
types leverage linearity for controlling resources. Specifically, our interest is in variants of the π-calculus,
the paradigmatic calculus of concurrency and interaction [7,13]; here the resources are the names (or
channels) that communicating processes use to perform protocols described by session types [5,6]. This is a
challenging design problem, due to the delicate tension between non-determinism and linearity. On the one
hand, resource control based on linearity is essential to statically enforce important correctness properties
for processes: protocol fidelity (processes respect their protocols), communication safety (processes never
incur into message mismatches), and deadlock-freedom (processes never get stuck). On the other hand,
implementing the usual (non-confluent) semantics of non-deterministic choice is at odds with linearity: a
careless handling of discarded branches in choices can jeopardize resources meant to be used exactly once.

To better understand the problem, it is instructive to recall the reduction rule for the (untyped)
π-calculus (e.g., [13]):

(x[z];P1 +M1) | (x(y);P2 +M2) −→ P1 | P2{z/y} (1)
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Rule (1) specifies the interaction between two (binary) choices: it coalesces a synchronization along name
x (whereby name z is passed around) with the commitment to retaining the branches involved in the
exchange. Indeed, after reduction the two branches not involved in the synchronization, M1 and M2,
are discarded. While appropriate in the untyped setting, it would be unwise to adopt this rule in a
linearly-typed setting: clearly, M1 and M2 could as well denote resources that must be used exactly once.

The core technical problem is then how to devise formulations for non-determinism that preserve the
non-confluent character captured by Rule (1)—which effectively expresses commitment in specifications—
while respecting the principles of linearity-based resource control.

As an answer to this problem, our prior work [15] introduced a typed process model with a new non-
deterministic choice operator, denoted P ||−Q, in which P and Q act upon the same (linear) resources—they
are branches that denote different implementations of the same session protocols. This choice operator is
governed by a lazy semantics that minimizes commitment as much as possible. Roughly speaking, the lazy
semantics distinguishes between “possible” and “impossible” branches, depending on the synchronizations
enabled in a process and its context. This distinction allows us to reduce the set of branches under
consideration: the actual choice (as in Rule (1)) is enacted at the level of possible branches.

The lazy semantics meets our desiderata: it expresses commitment and respects linearity of resources.
Also, the resulting typed process model enforces the three correctness properties given above, and is also
expressive enough to precisely encode a resource λ-calculus with non-deterministic behavior and explicit
failures. Still, the lazy approach is not entirely satisfactory: its definition is complex and so the behavior
of non-deterministic choices cannot be easily discerned. The lazy semantics rests upon a pre-order on
processes (which captures the intermediate distinction between possible and impossible branches) and a
compatibility relation on prefixes; also, it needs to be indexed by the names involved in the synchronization.
This required machinery is not ideal, in particular if one contrasts it with the compact and effective Rule (1).

In this paper, we devise a formulation of non-determinism that is simpler and more direct than the lazy
semantics of [15]. We propose an eager semantics that enforces commitment by examining the contexts
under which reductions occur. This is an economical solution, as it rests upon a simple definition that is
arguably easier to understand and reason about than the lazy semantics. Perhaps more importantly, our
new eager semantics still meets our desiderata on commitment and linearity as enforced by typing.

Clearly, giving an alternative eager semantics for the typed process model in [15] immediately raises the
question of its positioning with respect to preceding developments. Several interesting issues arise. Does
the eager semantics fit well with the session type system in [15]? Because the typed process model with
the lazy semantics was shown to precisely encode a resource λ-calculus with non-determinism, we may
also ask: does moving to a simpler operational setting affect expressivity? Moreover, how does the eager
semantics compare to the lazy semantics, independently from the ability of encoding advanced λ-calculi?

This paper’s goal is to provide technical answers to these questions. The base language for our new
eager semantics is sπ!, the extension of the session π-calculus in [15] with unrestricted behaviors (client
and server constructs). This way, our developments are based on a richer setting than in [15] (where only
linear behaviors were considered). Having defined the eager semantics, we move to consider the associated
session type system. We actually consider the exact same type system as in [15] and establish that well-
typed processes satisfy the same properties (type preservation and deadlock-freedom). These results are
reassuring: they confirm that our eager semantics does not break properties derived from typing, and that
the eager/lazy distinction remains an operational concern, which does not transpire at the level of typing.

We then assess the expressiveness of the eager process model by giving a process interpretation of λC,
a resource λ-calculus with non-determinism. Also in this case, we consider an extension of the language
considered in [15]: the calculus λC features both linear and unrestricted resources, which requires several
innovations, in particular for the associated intersection type system (the λ-calculus in [15] is the sub-
language of λC with linear resources only). The translation of λC into sπ! we present here also features
innovations: while its linear portion (i.e., the translation of terms with linear resources into linear processes)
is the same as in [15], the translation of terms with unrestricted resources into client/server processes is
new to this presentation. Again, this corroborates that the eager/lazy distinction is not relevant at the
static level given by the translation. The salient differences appear at the dynamic level, i.e., in the
operational correspondence properties that relate the computations of a term in λC with the behavior of
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P,Q ::= 0 inaction | [x↔ y] forwarder | P |Q parallel

| (νx)(P |Q) connect | P ||−Q non-determinism | x.some;P available

| x[y]; (P |Q) output | x(y);P input | x.none unavailable

| x.ℓ;P select | x.case{i : P}i∈I branch | x.somew1,...,wn ;P expect

| ?x[y];P client request | !x(y);P server

| x[] close | x();P wait

.....................................................................................................................................................................

P ≡ P ′ [P ≡α P ′] [x↔ y] ≡ [y↔ x] P | 0 ≡ P

(P |Q) | R ≡ P | (Q | R) P |Q ≡ Q | P (νx)(P |Q) ≡ (νx)(Q | P )

P ||− P ≡ P P ||−Q ≡ Q ||− P (P ||−Q) ||−R ≡ P ||− (Q ||−R)

(νx)((P |Q) | R) ≡ (νx)(P |R) |Q [x /∈ fn(Q)]

(νx)((νy)(P |Q) | R) ≡ (νy)((νx)(P | R) |Q) [x /∈ fn(Q), y /∈ fn(R)]

(νx)(!x(y);P |Q) ≡ Q [x /∈ fn(Q)]

Fig. 1. sπ!: syntax (top) and structural congruence (bottom).

its corresponding process in sπ! (and vice versa). Indeed, it turns out that the eager semantics of sπ!

induces operational correspondences that are “looser” than in the lazy regime. That is, the lazy semantics
provides a tighter account of the dynamics of terms and their corresponding translations.

In summary, our paper extends and complements the results in [15] with the following contributions:

(i) A new eager semantics for sπ!, the session π-calculus with non-deterministic choice that extends the
calculus introduced in [15] with client/server behaviors (Section 2.3).

(ii) A type system for sπ!, which ensures type preservation and deadlock-freedom for well-typed processes
governed by the eager semantics (Section 2.4).

(iii) The resource calculus λC, which extends the one presented in [15] with unrestricted resources. Gov-
erned by intersection types, we establish subject reduction and subject expansion results (Section 3).

(iv) A typed translation of λC into sπ!, with an analysis of its static and dynamic correctness (Section 4),
and a comparison between our new eager semantics and the lazy semantics presented (Section 5).

Omitted material can be found in [14], which contains technical details for both lazy and eager semantics.
The PhD thesis of Paulus [9] also contains that omitted material and gives a complete treatment of other
related translations of typed λ-calculi into typed π-calculi. Throughout the paper we use different colors
(such as red and green) to improve readability. However, the paper can be followed in black-and-white.

2 A Typed π-calculus with Non-deterministic Choice

In this section, we start by giving the syntax of sπ!, a session-typed π-calculus with non-deterministic
choice. Following the linear calculus sπ+ given in [15], the key feature in sπ! is the non-deterministic choice
operator ‘P ||− Q’. The key novelty is the eagerly committing semantics for ‘||−’, which is compatible with
linearity (Section 2.3). Following its predecessors [2,15], we give a session type system for sπ!; intuitively,
session types express protocols to be executed along channels. We prove that well-typed processes under
the new eager semantics satisfy two key properties: type preservation and deadlock-freedom.

2.1 Syntax

We use P,Q, . . . to denote processes, and x, y, z, . . . to denote names representing channels. Figure 1 (top)
gives the syntax of processes. P{y/z} denotes the capture-avoiding substitution of y for z in P . Process 0
denotes inaction, and [x↔ y] is a forwarder: a bidirectional link between x and y. There are two forms of
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parallel composition: while the process P |Q denotes communication-free concurrency, process (νx)(P |Q)
uses restriction (νx) to express that P and Q communicate on x and do not share any other names.

Process P ||− Q denotes the non-deterministic choice between P and Q: intuitively, if one choice can
perform a synchronization, the other option may be discarded if it cannot. Since ||− is associative, we often

omit parentheses. Also, we write ||−
i∈I

Pi for the non-deterministic choice between each Pi for i ∈ I.

Our output construct integrates parallel composition and restriction: process x[y]; (P |Q) sends a fresh
name y along x and then continues as P |Q. Types will ensure that behaviors on y and x are implemented
by P and Q, respectively, which do not share any names; this is a form of communication-free concurrency
that is key to avoiding deadlocks. The input process x(y);P receives a name z along x and continues as
P{z/y}. Process x.case{i : Pi}i∈I denotes a branch with labeled choices indexed by the finite set I: it
awaits a choice on x with continuation Pj for each j ∈ I. The process x.ℓ;P selects on x the choice labeled
ℓ before continuing as P . Processes x[] and x();P are dual actions for closing the session on x.

Our language has server and client processes, not considered in [15]. The server process !x(y);P accepts
requests from clients, receiving a name z along x to spawn P{z/y}; the server process remains available
for further requests. A client request ?x[y];P sends a fresh name y along x and continues as P . Both
client and server prefixes bind y in P .

The remaining constructs define non-deterministic sessions which may provide a protocol or fail [2].
Process x.some;P confirms the availability of a session on x and continues as P . Process x.none signals the
failure to provide the session on x. Process x.somew1,...,wn ;P specifies a dependency on a non-deterministic
session on x (names w1, . . . , wn implement sessions in P ). This process can either (i) synchronize with a
‘x.some’ and continue as P , or (ii) synchronize with a ‘x.none’, discard P , and propagate the failure to
w1, . . . , wn. To reduce eye strain, in writing x.some we freely combine names and sets of names. This way,
e.g., we write x.somey,fn(P ),fn(Q) rather than x.some{y}∪fn(P )∪fn(Q).

Name y is bound in (νy)(P |Q), x[y]; (P |Q), and x(y);P . We write fn(P ) and bn(P ) for the free and
bound names of P , respectively. The sets fln(P ) and fpn(P ) contain the free linear and non-linear names
of P , respectively. Note that fpn(P ) = fn(P ) \ fln(P ). We adopt Barendregt’s convention.

As usual, we shall use a structural congruence (≡), the least congruence relation on processes induced
by the rules in Figure 1 (bottom). Like the syntax of processes, the definition of ≡ is aligned with the type
system (defined next), such that ≡ preserves typing (subject congruence, cf. Theorem 2.5). Notice that non-
deterministic choice does not distribute over parallel and restriction. The position of a non-deterministic
choice in a process determines how it may commit, so changing its position affects commitment.

2.2 The Lazy Semantics, by Example

Reduction defines the steps that a process performs on its own. A key contribution of our paper is an
eager semantics for sπ!, which we present in Section 2.3. Before going into details, we find it instructive
to illustrate the key ideas of the lazy semantics from [15].

The lazy semantics relies on a precongruence on processes, denoted �S, where S is a set that contains
the names involved in a reduction: S = {x} for a synchronization on x, and S = {x, y} when a forwarder
process [x↔ y] reduces. Building upon �S, the lazy semantics is then denoted ❀S . We omit the curly
braces; this way, e.g., we write ‘❀x,y’ instead of ‘❀{x,y}’. The following example illustrates �S and ❀S :

Example 2.1 Consider a server that offers watching a movie’s trailer or buying a movie using card or
cash. We define the process MovieServers := s(title);Moviess, where s is a name and Moviess is as follows:

Moviess := s.case{buy : MoviesBuys, peek : MoviesPeeks}

MoviesBuys := s.case{card : MoviesBuyCards, cash : MoviesBuyCashs}

MoviesBuyCards := s(info); s[movie]; s[]

MoviesBuyCashs := s[movie]; s[]

MoviesPeeks := s[trailer]; s[]

Now consider a client, Eve, undecided between buying ‘Barbie’ or watching its trailer. If she decides to
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buy the movie, she cannot decide between paying with card or cash. We model Eve as follows, again using
s to communicate with the movie server, and modeling her indecisiveness with non-deterministic choices:

MovieClients := s[Barbie];Eves
Eves := s.buy; s.card;EveBuyCards ||− s.buy; s.cash;EveBuyCashs ||− s.peek;EvePeeks

EveBuyCards := s[visa]; s(movie); s();0

EveBuyCashs := s(movie); s();0

EvePeeks := s(link); s();0

We compose our movie server and Eve on s. Initially, the movie title is sent without non-determinism;
notice how the reduction is annotated with ‘s’ to indicate that the exchange occurred on s:

(νs)(MovieServers |MovieClients)❀s (νs)(Moviess | Eves)

At this point, two communications on s are available: the selection of buy and the selection of peek. We
model Eve’s choice using the precongruence �s:

Eves �s s.buy; s.card;EveBuyCards ||− s.buy; s.cash;EveBuyCashs and Eves �s s.peek;EvePeeks.

Notice how in the buy-case the precongruence preserves the choice between the two methods of payment,
because both choices start with the same selection. As such, performing the buy-selection preserves this
choice, whereas performing the peek-selection results in a single alternative:

(νs)(Moviess | Eves)❀s (νs)
(
MoviesBuys | (s.card;EveBuyCards ||− s.cash;EveBuyCashs)

)

and (νs)(Moviess | Eves)❀s (νs)(MoviesPeeks | EvePeeks).
After the buy-selection, the choice cannot be preserved, because the branches start with different

selections; this is reflected by the precongruence on Eve’s process:

s.card;EveBuyCards ||− s.cash;EveBuyCashs �s s.card;EveBuyCards

and s.card;EveBuyCards ||− s.cash;EveBuyCashs �s s.cash;EveBuyCashs.
As such, after the buy-selection, two further reduction paths are possible. We give one of them:

(νs)
(
MoviesBuys | (s.card;EveBuyCards ||− s.cash;EveBuyCashs)

)
❀s (νs)(MoviesBuyCards | EveBuyCards)

2.3 The New Eager Semantics

The eager reduction semantics, denoted −→, is given in Figure 2. Intuitively, we follow the principles of
Rule (1), discussed earlier: a reduction step simultaneously expresses (i) the intended interaction (say, a
synchronization) and (ii) the transformation of the involved contexts so as to express commitment. To this
end, we rely on ND-contexts, denoted N, M, . . ., and their commitment, denoted LNM, LMM, . . ., respectively.

Definition 2.2 We define ND-contexts ( N, M) as follows:

N, M ::= [·] | N | P | (νx)(N | P ) | N ||− P

The process obtained by replacing [·] in N with P is denoted N[P ]. We refer to ND-contexts that do not
use the clause ‘ N ||− P ’ as D-contexts, denoted C, D.

This semantics implements the expected commitment of non-deterministic choices by transforming
ND-contexts to D-contexts as follows:
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[�Id] (νx)(N
[
[x↔ y]

]
|Q)−→ LNM[Q{y/x}] [�1⊥] (νx)(N[x[]] | N′[x();Q])−→ LNM[0] | LN′M[Q]

[�⊗ N] (νx)(N[x[y]; (P |Q)] | N′[x(z);R])−→ LNM
[
(νx)(Q | (νy)(P | LN′M[R{y/z}]))

]

[�⊕N] ∀k′ ∈ K. (νx)(N[x.k′;P ] | N′[x.case{k : Qk}k∈K ])−→ (νx)(LNM[P ] | LN′M[Qk′

])

[�?!] (νx)(N[?x[y];P ] | N′[!x(z);Q])−→ LN′M
[
(νx)

(
(νy)(LNM[P ] |Q{y/z}) | !x(z);Q

)]

[�some] (νx)(N[x.some;P ] | N′[x.somew1,...,wn ;Q])−→ (νx)(LNM[P ] | LN′M[Q])

[�none] (νx)(N[x.none] | N′[x.somew1,...,wn ;Q])−→ LNM[0] | LN′M[w1.none | . . . | wn.none]

[�≡]
P ≡ P ′ P ′ −→Q′ Q′ ≡ Q

P −→Q
[�ν ]

P −→ P ′

(νx)(P |Q)−→ (νx)(P ′ |Q)
[�|]

P −→ P ′

P |Q−→ P ′ |Q

[� ||−]
P −→ P ′

P ||−Q−→ P ′ ||−Q

Fig. 2. Eager reduction semantics for sπ!.

Definition 2.3 The commitment of an ND-context N, denoted LNM, is defined as follows:

L[·]M := [·] LN | P M := LNM | P L(νx)(N | P )M := (νx)(LNM | P ) LN ||− P M := LNM

Barring non-deterministic choice, the reduction rules in Figure 2 arise as directed interpretations of
proof transformations in the underlying linear logic. We follow Caires and Pfenning [3] and Wadler [16]
in interpreting cut-elimination in linear logic as synchronization in sπ+. As such, reduction rules are
standard but extended with non-determinism: the synchronizing subprocesses appear under ND-contexts
(Def. 2.2) before reductions, and under collapsed ND-contexts (Def. 2.3) after reductions. For example, in
Rule [�⊗ N], the send and receive appear under ND-contexts N and N′, respectively. After reduction, these
contexts collapse to LNM and LN′M, respectively; notice how the scope of LNM extends to the entire process
after the reduction, to avoid freeing names that were bound before by N.

Example 2.4 We revisit Example 2.1 now under the eager semantics. We can express (νs)(Moviess |Eves)
using ND-contexts. There is only one way to do so for Moviess, since it is deterministic:

Moviess = N[s.case{buy : MoviesBuys, peek : MoviesPeeks}] where N := [·].

There are three ways to do so for Eves, since there are three non-deterministic branches; for example:

Eves = N′[s.buy; s.cash;EveBuyCashs] where N′ := s.buy; s.card;EveBuyCards ||− [·] ||− s.peek;EvePeeks.

With LNM = LN′M = [·], we have, e.g., (νs)(Moviess |Eves)−→ (νs)(MoviesBuys | s.cash;EveBuyCashs). (This
is one of three possible reductions.) Note: the first reduction immediately determines the payment method.

2.4 Resource Control for sπ! via Session Types

We define a session type system for sπ!, following ‘propositions-as-sessions’ [3,16]. As already mentioned,
in a session type system, resources are names that perform protocols: the type assignment x : A says that
x should conform to the protocol specified by the session type A. We give the syntax of types:

A,B ::= 1 |⊥ |A⊗B |A N

B |⊕{i : A}i∈I | ?A | !A |N{i : A}i∈I | NA |⊕A
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[Tcut]
P ⊢ Γ, x:A Q ⊢ ∆, x:A

(νx)(P |Q) ⊢ Γ,∆
[Tmix]

P ⊢ Γ Q ⊢ ∆

P |Q ⊢ Γ,∆
[T ||−]

P ⊢ Γ Q ⊢ Γ

P ||−Q ⊢ Γ
[Tempty]

0 ⊢ ∅

[Tid]
[x↔ y] ⊢ x:A, y:A

[T1]
x[] ⊢ x:1

[T⊥]
P ⊢ Γ

x();P ⊢ Γ, x:⊥
[T⊗]

P ⊢ Γ, y:A Q ⊢ ∆, x:B

x[y]; (P |Q) ⊢ Γ,∆, x:A⊗B

[T

N

]
P ⊢ Γ, y:A,x:B

x(y);P ⊢ Γ, x:A NB
[T⊕]

P ⊢ Γ, x:Aj j ∈ I

x.j;P ⊢ Γ, x:⊕{i : Ai}i∈I

[TN]
∀i ∈ I. Pi ⊢ Γ, x:Ai

x.case{i : Pi}i∈I ⊢ Γ, x:N{i : Ai}i∈I

[TNsome]
P ⊢ Γ, x:A

x.some;P ⊢ Γ, x:NA
[TNnone]

x.none ⊢ x:NA
[T⊕some]

P ⊢ NΓ, x:A

x.somedom(Γ);P ⊢ NΓ, x:⊕A

[T?]
P ⊢ Γ, y:A

?x[y];P ⊢ Γ, x:?A
[T!]

P ⊢ ?Γ, y:A

!x(y);P ⊢ ?Γ, x:!A
[Tweaken]

P ⊢ Γ

P ⊢ Γ, x:?A
[Tcontract]

P ⊢ Γ, x:?A, x′:?A

P{x/x′} ⊢ Γ, x:?A

Fig. 3. Typing rules for sπ!.

The units 1 and ⊥ type closed sessions. A⊗B types a name that first outputs a name of type A and then
proceeds as B. Similarly, A

N

B types a name that inputs a name of type A and then proceeds as B. Types
⊕{i : Ai}i∈I and N{i : Ai}i∈I are given to names that can select and offer a labeled choice, respectively.

Type ?A is assigned to a name that performs a request for a session of type A, and type !A is assigned
to a name that offers a server of type A: the modalities ‘?’ and ‘!’ define non-linear (i.e., persistent) types.
Then, NA is the type of a name that may produce a behavior of type A, or fail; dually, ⊕A types a name
that may consume a behavior of type A.

For any type A we denote its dual as A. Intuitively, duality of types serves to avoid communication
errors: the type at one end of a channel is the dual of the type at the opposite end. Duality is an involution,
defined as follows:

1 = ⊥ A⊗B = A NB ⊕{i : Ai}i∈I = N{i : Ai}i∈I NA = ⊕A ?A = !A

⊥ = 1 A NB = A⊗B N{i : Ai}i∈I = ⊕{i : Ai}i∈I ⊕A = NA !A = ?A

Judgments are of the form P ⊢ Γ, where P is a process and Γ is a context, a collection of type
assignments. In writing Γ, x : A, we assume x /∈ dom(Γ). We write dom(Γ) to denote the set of names
appearing in Γ. We write NΓ to denote that ∀x : A ∈ Γ. ∃A′. A = NA′.

Figure 3 gives the typing rules: they correspond to the rules in Curry-Howard interpretations of classical
linear logic as session types (cf. Wadler [16]), with the rules for NA and ⊕A extracted from [2], and the
additional Rule [T ||−] for non-confluent non-deterministic choice, which modifies the confluent rule in [2].

We discuss selected rules. Rule [TNsome] types a process with a name whose behavior can be provided,
while Rule [TNnone] types a name whose behavior cannot. Rule [T⊕some] types a process with a name x
whose behavior may not be available. If the behavior is not available, all the sessions in the process must
be canceled; hence, the rule requires all names to be typed under the NA monad. Rule [T ||−] types our
non-deterministic choice operator; the branches must be typable under the same typing context. Hence, all
branches denote the same sessions, which may be implemented differently. In context of a synchronization,
branches that are kept are able to synchronize, whereas the discarded branches are not; nonetheless, the
remaining branches still represent different implementations of the same sessions.

Our type system ensures session fidelity (processes correctly follow their ascribed session protocols)
communication safety (no communication errors/mismatches occur). Both properties follow from the fact
that typing is consistent across structural congruence and reduction.

We state the main results of this section: sπ! with −→ satisfies type preservation and deadlock-freedom.

Theorem 2.5 (Type Preservation) If P ⊢ Γ, then both P ≡ Q and P −→Q imply Q ⊢ Γ.
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M,N,L ::= x[∗] variable |M [x̃← x] sharing

| λx.M abstraction |M〈〈B/x〉〉 intermediate substitution

| (M B) application |M〈|C/x1, . . . , xk|〉 linear substitution

| failx̃ failure |MTU/xW unrestricted substitution

[∗] ::= [l] | [i] i ∈ N annotations A,B ::= C ⋆ U bag

U, V ::= 1
! | *M+! | U ⋄ V unrestricted bag C,D ::= 1 | *M + ·C linear bag

C ::= | (C B) | C〈|C/x̃|〉 | CTU/xW | C[x̃← x] context

Fig. 4. Syntax of λC.

Theorem 2.6 (Deadlock-freedom) If P ⊢ ∅ and P 6≡ 0, then there is R such that P −→R.

3 A Non-deterministic λ-calculus with Unrestricted Resources

We present λC, a resource λ-calculus with non-determinism and lazy evaluation. Our calculus features
two kinds of resources: linear (to be used exactly once) and unrestricted (usable zero or more times). It
extends the resource λ-calculus studied in [15], which does not support unrestricted resources. In λC, non-
determinism is non-confluent and implicit, as it arises from the fetching of terms from bags of linear and
unrestricted resources. (In contrast, the choice operator ‘ ||−’ in sπ! specifies non-determinism explicitly.) A
mismatch between the number of variable occurrences and the size of the bag induces failure.

3.1 Syntax

Figure 4 gives the syntax of λC-terms (M,N,L) and bags (A,B) and contexts (C, C′). Variables x, y, z, . . .
have linear and unrestricted occurrences.

• Notation x[l] denotes a linear occurrence of x; we often omit the annotation ‘[l]’, and a sequence x̃
(finite sequence of pairwise distinct xi’s, with length |x̃|) always involves linear occurrences.

• Notation x[i] denotes an unrestricted occurrence of x, explicitly referencing the i-th element of an
unrestricted (ordered) bag. We write x! whenever the i in x[i] is unimportant.

A bag is split into a linear and an unrestricted part: linear resources in bags cannot be duplicated,
but unrestricted resources are always duplicated when consumed. The empty linear bag is denoted 1. We
use Ci to denote the i-th term in the linear bag C; also, size(C) denotes the number of elements in C.
To ease readability, we often write, e.g., *N1, N2+ as a shorthand notation for *N1 + · * N2+. The empty
unrestricted bag is denoted 1!. Notation Ui denotes the singleton bag at the i-th position in U ; if there is
no i-th position in U , then Ui defaults to 1!. We use ‘⋆’ to combine a linear and an unrestricted bag, and
unrestricted bags are joined via the non-commutative ‘⋄’.

An abstraction λx.M binds occurrences of x in M . Application (M C) is as usual. The term M〈〈B/x〉〉
is an intermediate substitution, which involves a bag B with linear and unrestricted parts. To distinguish
between linear and unrestricted occurrences of variables, we have two forms of explicit substitution:

• A linear substitution of a bag C for x̃ in M is denoted M〈|C/x̃|〉. We require size(C) = |x̃| and for each
xi ∈ x̃: (i) xi occurs in M ; (ii) xi is not a sharing variable; (iii) xi cannot occur in another explicit
substitution in M .

• An unrestricted substitution, denoted MTU/xW, concerns the substitution of a bag U for a variable x!

in M , with the assumption that x! does not appear in another unrestricted substitution in M .

The sharing construct M [x1, . . . , xn ← x], expresses that x may be used in M under “aliases”
x1, . . . , xn. Hence, it atomizes n occurrences of x in M , via an explicit pointer to n variables. In M [x̃← x],
we say that x̃ are the shared variables and that x is the sharing variable. We require for each xi ∈ x̃: (i) xi
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[RS:Beta]

(λx.M) B −→M〈〈B/x〉〉

[RS:Ex-Sub]

size(C) = |x̃| M 6= fail
ỹ

(M [x̃← x])〈〈C ⋆ U/x〉〉 −→M〈|C/x̃|〉TU/xW

[RS:Fetchℓ]
head(M) = xj 0 < i ≤ size(C)

M〈|C/x̃, xj |〉 −→ (M{Ci/xj})〈|(C \ Ci)/x̃|〉

[RS:Failℓ]
size(C) 6= |x̃| ỹ = (lfv(M) \ {x̃}) ∪ lfv(C)

(M [x̃← x])〈〈C ⋆ U/x〉〉 −→ fail
ỹ

[RS:Fetch!]

head(M) = x[i] Ui = *N+!

MTU/xW−→M{N/x[i]}TU/xW

[RS:Fail!]

head(M) = x[i] Ui = 1
!

MTU/xW−→M{fail∅/x[i]}TU/xW

[RS:Cons1]
ỹ = lfv(C)

fail
x̃ (C ⋆ U) −→ fail

x̃ ỹ

[RS:Cons2]
size(C) = |x̃| z̃ = lfv(C)

(failx̃∪ỹ[x̃← x])〈〈C ⋆ U/x〉〉 −→ fail
ỹ∪z̃

[RS:Cons3]
z̃ = lfv(C)

fail
ỹ∪x̃〈|C/x̃|〉 −→ fail

ỹ∪z̃

[RS:Cons4]

fail
ỹTU/xW−→ fail

ỹ

[RS : TCont]
M −→N

C[M ]−→C[N ]

where head(M) is defined as follows:

head(x) = x head(x[i]) = x[i] head(λx.M) = λx.M head((M C)) = head(M)

head(failx̃) = fail
x̃

head(M〈〈C/x〉〉) = M〈〈C/x〉〉 head(M〈|C/x̃|〉) = head(M) head(MTU/xW) = head(M)

head(M [x̃← x]) =

{
x head(M) = y and y ∈ x̃

head(M) otherwise

Fig. 5. Reduction rules for λC.

occurs exactly once in M ; (ii) xi is not a sharing variable. The sequence x̃ can be empty: M [← x] means
that x does not share any variables in M . Sharing binds the shared variables in the term. This way, e.g.,
the λ-term λx.(x x) is expressed in λC as λx.(x1 * x2 + [x1, x2 ← x]), where *x2+ is a bag containing x2.

The term failx̃ denotes failure; the variables in x̃ are “dangling” resources, which cannot be accounted
for after failure. We write fv(M) to denote the free variables of M . Term M is closed if fv(M) = ∅.

3.2 Reduction Semantics

Figure 5 gives the reduction semantics for λC, denoted −→. Rule [RS : Beta] induces an intermediate
explicit substitution. Rule [RS : Ex-Sub] reduces an intermediate substitution to an explicit substitution
that will manage the two-component format of bags. An explicit substitution (M [x̃← x])〈〈C ⋆ U/x〉〉 reduces
to a term in which the linear and unrestricted parts of the bag are separated into their explicit substitutions
M〈|C/x̃|〉TU/xW. This only occurs when the size of the bag equals the number of shared variables. The
fetching of linear/unrestricted resources from their corresponding bags is done by the appropriated fetch
rules [RS : Fetchℓ] or [RS : Fetch!]. In case of a mismatch, the term evolves into failure via Rule [RS : Failℓ].

An explicit substitution M〈|C/x̃|〉, where the head variable of M is xj ∈ x̃, reduces via

Rule [RS : Fetchℓ]. The rule extracts a Ci from C (for some 0 < i ≤ size(C)) and substitutes it for
xj in M ; this is how fetching induces a non-deterministic choice between size(C) possible reductions. The
reduction of an unrestricted substitution MTU/xW, where the head variable of M is x[i], depends on Ui:

• If Ui = *N+!, then the term reduces via Rule [R : Fetch!] by substituting the head occurrence of x[i] in
M with N , denoted M{N/x[i]}; note that Ui remains available after this reduction.

• If Ui = 1!, the head variable is instead substituted with failure via Rule [R : Fail!].

Rules [RS : Consj] for j ∈ {1, 2, 3} consume terms when they meet failure. Finally, Rule [RS : TCont] closes
reduction under contexts. The following example illustrates reduction.
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Example 3.1 Consider the term M0 = (λx.x1 *x2 *x3 1++[x̃← x]) *fail∅, y, I +, where I = λx.(x1[x1 ←
x]) and x̃ = x1, x2, x3. Here we simplify the notation of M0 by omitting the empty unrestricted bag, i.e.,
we write M * M ′+ to denote M * M ′ + ⋆1!. First, M0 evolves into an intermediate substitution (2). The
bag can provide for all shared variables, so it then evolves into an explicit substitution (3):

M0 −→ (x1*x2*x3 1++[x̃← x])〈〈*fail
∅, y, I+/x〉〉T1!/xW (2)

−→ (x1*x2*x3 1++)〈|*fail∅, y, I+/x̃|〉T1!/xW = M (3)

Since head(M) = x1, one of the three elements of the bag will be substituted. M represents a non-
deterministic choice between the following three reductions:

−→
(fail∅ * x2 * x3 1 + +)〈| * y, I + /x2, x3|〉T1

!/xW = N1

M −→ (y * x2 * x3 1 + +)〈| * fail∅, I + /x2, x3|〉T1
!/xW = N2−→

(I * x2 * x3 1 + +)〈| * fail∅, y + /x2, x3|〉T1
!/xW = N3

There are no rules for garbage collection; therefore, the normal forms maintain the explicit substitution
for empty unrestricted bags.

3.3 Resource Control for λC via Intersection Types

Our type system for λC is based on non-idempotent intersection types which, As in [8,1], intersection types
account for available resources in bags, which are unordered and have all the same type. Because we admit
the term failx̃ as typable, we say that our system enforces well-formedness rather than well-typedness.
As we will see, well-typed terms form the sub-class of well-formed terms that does not include failx̃.

Strict types (σ, τ, δ) and multiset types (π, ζ) are defined as follows:

σ, τ, δ ::= unit | (π, η)→ σ π, ζ ::=
∧

i∈I

σi | ω

η, ǫ ::= σ | ǫ ⋄ η list (π, η) tuple

Given a non-empty I, multiset types
∧

i∈I σi are given to bags of size |I|. This operator is associative,

commutative, and non-idempotent (i.e., σ ∧ σ 6= σ), with identity ω. Notation σk stands for σ ∧ · · · ∧ σ (k
times, if k > 0) or ω (if k = 0).

The list type ǫ ⋄ η types the concatenation of unrestricted bags. It can be recursively unfolded into a
finite composition of strict types σ1 ⋄ . . . ⋄ σn, for some n ≥ 1, with length n and σi its i-th strict type
(1 ≤ i ≤ n). We write x! : η to denote for x[1] : η1, . . . , x[k] : ηk where η has length k. The tuple type
(π, η) types concatenation of a linear bag of type π with an unrestricted bag of type η. Finally strict types
are amended to allow for unrestricted functional types which go from tuple types to strict types (π, η)→ σ
rather then multiset types to strict types.

Definition 3.2 [η ∼ ǫ] Let ǫ and η be two list types, with the length of ǫ greater or equal to that of η.
We say that ǫ embraces η, denoted η ∼ ǫ, whenever there exist ǫ′ and ǫ′′ such that: i) ǫ = ǫ′ ⋄ ǫ′′; ii) the
size of ǫ′ is that of η; iii) for all i, ǫ′i = ηi.

We separate contexts into two parts: linear (Γ,∆, . . .) and unrestricted (Θ,Υ, . . .):

Γ,∆ ::= - | Γ, x : π | Γ, x : σ Θ,Υ ::= - |Θ, x! : η

where - denotes the empty context. Both linear and unrestricted occurrences of variables may occur at
most once in a context. Judgments have the form Θ;Γ � M : τ . We write � M : τ to denote -; - � M : τ .
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[FS:varℓ]

Θ;x : σ � x : σ

[FS:var!]

Θ, x! : η;x : ηi,∆ � x : σ

Θ, x! : η;∆ � x[i] : σ

[FS:1ℓ]

Θ; - � 1 : ω

[FS:bagℓ]

Θ;Γ � M : σ Θ;∆ � C : σk

Θ;Γ,∆ � *M + ·C : σk+1

[FS:1!]

Θ; - � 1
! : σ

[FS:bag!]
Θ; - � U : ǫ Θ; - � V : η

Θ; - � U ⋄ V : ǫ ⋄ η

[FS:bag]

Θ; Γ � C : σk Θ; - � U : η

Θ;Γ � C ⋆ U : (σk, η)

[FS:fail]

dom(Γ↓) = x̃

Θ;Γ↓
� fail

x̃ : τ

[FS:weak]
Θ; Γ � M : τ

Θ;Γ, x : ω � M [← x] : τ

[FS:shar]
Θ; Γ, x1 : σ, · · · , xk : σ � M : τ x /∈ dom(Γ) k 6= 0

Θ;Γ, x : σk
� M [x1, . . . , xk ← x] : τ

[FS:abs-sh]

Θ, x! : η; Γ, x : σk
� M [x̃← x] : τ x /∈ dom(Γ)

Θ; Γ � λx.(M [x̃← x]) : (σk, η)→ τ

[FS:app]

Θ; Γ � M : (σj , η)→ τ Θ;∆ � B : (σk, ǫ) η ∼ ǫ

Θ;Γ,∆ � (M B) : τ

[FS:Esub!]

Θ, x!:η; Γ � M : τ Θ; - � U : ǫ η ∼ ǫ

Θ;Γ � MTU/xW : τ

[FS:Esub]

Θ, x! : η; Γ, x : σj
� M [x̃← x] : τ Θ;∆ � B : (σk, ǫ) η ∼ ǫ

Θ;Γ,∆ � (M [x̃← x])〈〈B/x〉〉 : τ

[FS:Esubℓ]

Θ; Γ, x1 : σ, · · · , xk : σ � M : τ Θ;∆ � C : σk

Θ;Γ,∆ � M〈|C/x1, · · · , xk|〉 : τ

Fig. 6. Well-Formedness Rules for λC.

We write dom(Γ) for the set of variables in Γ. For Γ, x : π, we assume x 6∈ dom(Γ). To avoid ambiguities,
we write x : σ1 to denote that the assignment involves a multiset type, rather than a strict type. Given Γ,
its core context Γ↓ concerns variables with types different from ω; it is defined as Γ↓ = {x : π ∈ Γ |π 6= ω}.

Definition 3.3 [Well-formedness in λC] A λC-term M is well-formed if there exists a context Θ and Γ and
a type τ such that the rules in Figure 6 entail Θ; Γ � M : τ .

In Figure 6, Rule [FS : varℓ] types variables. Rule [FS : 1ℓ] types the empty bag with ω. Rule [FS : bagℓ]
types the concatenation of bags. Rule [FS : fail] types the term failx̃ with a strict type τ , provided that
the domain of the core context coincides with x̃ (i.e., no variable in x̃ is typed with ω). Rule [FS : weak]
types M [← x] by weakening the context with x : ω. Rule [FS : shar] types M [x̃ ← x] with τ , provided
that there are assignments to the shared variables in x̃.

Rule [FS : abs-sh] types an abstraction λx.(M [x̃ ← x]) with σk → τ , provided that M [x̃ ← x] : τ can
be entailed from an assignment x : σk. Rule [FS : app] types (M C), provided that M has type σj → τ
and C has type σk. Note that, unlike usual intersection type systems, j and k may differ. Rule [FS : Esub]
types the intermediate substitution of a bag C of type σk, provided that x has type σj; again, j and k
may differ. Rule [FS : Esubℓ] types M〈|C/x̃|〉 as long as C has type σ|x̃|, and each xi ∈ x̃ is of type σ.

Well-formed terms satisfy subject reduction (SR):

Theorem 3.4 (SR in λC) If Θ;Γ � M : τ and M −→M ′ then Θ;Γ � M ′ : τ .

From our system for well-formedness we can extract a system for well-typed terms, which do not include
failx̃. Judgments for well-typedness are denoted Γ ⊢ M : τ , with rules adapted from Figure 6 (the rule
name prefix FS is replaced with TS), with the following modifications: (i) There is no rule [TS:fail];
(ii) Rules [TS:app] and [TS:Esub] do not allow a mismatch between variables and resources. This way, e.g.,

[TS:Esub]

Θ, x! : η; Γ, x : σj ⊢M [x̃← x] : τ Θ;∆ ⊢ B : (σk, η)

Θ; Γ,∆ ⊢ (M [x̃← x])〈〈B/x〉〉 : τ
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For the sake of completeness, the full set of rules is in Figure 7. Well-typed terms are also well-formed,
and thus satisfy SR. Moreover, well-typed terms also satisfy subject expansion (SE).

Theorem 3.5 (SE in λC) If Θ;Γ ⊢M ′ : τ and M −→M ′ then Θ;Γ ⊢M : τ .

[TS:varℓ]

Θ;x : σ ⊢ x : σ

[TS:var!]

Θ, x! : η;x : ηi,∆ ⊢ x : σ

Θ, x! : η; ∆ ⊢ x[i] : σ

[TS:1ℓ]

Θ; - ⊢ 1 : ω

[TS :weak]
Θ;Γ ⊢M : τ

Θ;Γ, x : ω ⊢M [← x] : τ

[TS:abs-sh]

Θ, x! : η; Γ, x : σk ⊢M [x̃← x] : τ x /∈ dom(Γ)

Θ; Γ ⊢ λx.(M [x̃← x]) : (σk, η)→ τ

[TS:bagℓ]

Θ; Γ ⊢M : σ Θ;∆ ⊢ C : σk

Θ;Γ,∆ ⊢ *M + ·C : σk+1

[TS:app]

Θ; Γ ⊢M : (σj , η)→ τ Θ;∆ ⊢ B : (σj , η)

Θ; Γ,∆ ⊢M B : τ

[TS:bag!]
Θ; - ⊢ U : ǫ Θ; - ⊢ V : η

Θ; - ⊢ U ⋄ V : ǫ ⋄ η

[TS:shar]
Θ; Γ, x1 : σ, . . . , xk : σ ⊢M : τ x /∈ dom(Γ) k 6= 0

Θ;Γ, x : σk ⊢M [x1, . . . , xk ← x] : τ

[TS:bag]

Θ; Γ ⊢ C : σk Θ; - ⊢ U : η

Θ;Γ ⊢ C ⋆ U : (σk, η)

[TS:Esubℓ]

Θ; Γ, x1 : σ, . . . , xk : σ ⊢M : τ Θ;∆ ⊢ C : σk

Θ;Γ,∆ ⊢M〈|C/x1, . . . , xk|〉 : τ

[TS:Esub!]

Θ, x!:η; Γ ⊢M : τ Θ; - ⊢ U : η

Θ;Γ ⊢MTU/x!W : τ

[TS:Esub]

Θ, x! : η; Γ, x : σj ⊢M [x̃← x] : τ Θ;∆ ⊢ B : (σk, η)

Θ;Γ,∆ ⊢ (M [x̃← x])〈〈B/x〉〉 : τ

Fig. 7. Well-Typed Rules for λC.

4 Translating λC into sπ
!

Clearly, sπ! and λC are different models. In particular, λC is a programming calculus in which implicit
non-determinism implements fetching of linear and unrestricted resources. To illustrate the potential of
sπ! to precisely model non-determinism as found in realistic programs/protocols using an eager approach,
we follow and extend the approach in [15], and give a translation of λC into sπ! which preserves types
(Theorem 4.2) and respects well-known criteria for dynamic correctness (Definition 4.3).

4.1 The translation

Given a λC-term M , its translation into sπ! is denoted JMKu and given in Figure 8. As in Milner’s classical
translation: every variable x in M becomes a name x in process JMKu, where name u provides the behavior
of M . To handle failures in λC, u is a non-deterministically session: the translated term can be available
or not, as signaled by prefixes u.some and u.none, respectively. As a result, reductions from JMKu include
synchronizations that codify M ’s behavior but also synchronizations that confirm a session’s availability.

We discuss Figure 8, focusing on constructs related to unrestricted resources, not considered in [15].
The translation of an unrestricted variable x[j] first connects to a server along channel x via a request

?x![xi] followed by a selection on xi.j. Process Jλx.(M [x̃← x])Ku first confirms its behavior along u,

followed by the reception of a channel x. The channel x provides a linear channel xℓ and an unrestricted
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JxK
u
= x.some; [x↔ u] Jx[j]K

u
= ?x![xi]; xi.j; [xi↔ u]

Jλx.MK
u
= u.some; u(x);x.some;x(xℓ);x(x!);x(); JMK

u

JM〈〈C ⋆ U/x〉〉K
u
= (νx)(x.some;x(xℓ);x(x!);x(); JMK

u
| JC ⋆ UK

x
)

JM(C ⋆ U)K
u
= (νv)(JMK

v
| v.someu,lfv(C); v[x]; (JC ⋆ UK

x
| [v↔ u]))

JC ⋆ UK
x
= x.somelfv(C);x[x

ℓ];
(
JCK

xℓ | x[x
!]; (!x!(xi); JUK

xi
| x[])

)

J * Mj + · CK
xℓ =

xℓ.somelfv(C);x(yi);x
ℓ.someyi,lfv(C);xℓ.some;

xℓ[zi]; (zi.somelfv(Mj); JMjKzi | (J(C \Mj)Kxℓ | yi.none))

J1K
xℓ = xℓ.some∅;x(yn); (yn.some; yn[] | x

ℓ.some∅;xℓ.none)

J1!K
x
= x.none J * N +! K

x
= JNK

x
JUK

x
= x.case{i : JUiKx}Ui∈U

JM〈| * M1 + · * M2 + /x1, x2|〉K u =
(νz1)(z1.somelfv(M1); JM1Kz1 | (νz2)(z2.somelfv(M2); JM2Kz2

| ||−
xi1

∈{x1,x2}
||−
xi2

∈{x1,x2\xi1
}
JMK

u
{z1/xi1}{z2/xi2}) . . .)

JMTU/xWK
u
= (νx!)(JMK

u
| !x!(xi); JUK

xi
)

JM [← x]Ku = xℓ.some;xℓ[yi]; (yi.someu,lfv(M); yi(); JMKu | x
ℓ.none)

JM [x̃← x]K
u
=

xℓ.some;xℓ[yi];
(
yi.some∅; yi();0

| xℓ.some;xℓ.someu,lfv(M)\x̃; ||−xi∈x̃
xℓ(xi); JM [(x̃ \ xi)← x]K

u

)

Jfailx1,...,xkKu = u.none | x1.none | . . . | xk.none

Fig. 8. Translation of λC into sπ!.

channel x! for dedicated substitutions of the linear and unrestricted bag components. This separation is
also present in the translation of JM〈〈B/x〉〉Ku, for the same reason.

Process JM (C ⋆ U)uK consists of synchronizations between the translation of JMKv and JC ⋆ UKx: the

translation of C ⋆ U evolves when M is an abstraction, say λx.(M ′[x̃← x]). The channel xℓ provides the
linear behavior of the bag C while x! provides the behavior of U . This is done by guarding the translation
of U with a server connection: every time a channel synchronizes with it a fresh copy of U is spawned.

As in [15], non-deterministic choices occur in the translations of M〈|C/x̃|〉 (explicit substitutions) and
M [x̃ ← x] (non-empty sharing). Roughly speaking, the position of ||− in the translation of M〈|C/x̃|〉
represents the most desirable way of mimicking the fetching of terms from a bag. This use of ||− is a central
idea in our translation: as we explain below, it allows for appropriate commitment in non-deterministic
choices, but also for delayed commitment when necessary.

For simplicity, we consider explicit substitutions M〈|C/x̃|〉 where C = *N1,N2+ and x̃ = x1, x2. The
translation JM〈|C/x̃|〉Ku uses the processes JNiKzi , where each zi is fresh. First, each bag item confirms its
behavior. Then, a variable xi ∈ x̃ is chosen non-deterministically; we ensure that these choices consider all

variables. Note that writing ||−
xi∈{x1,x2}

||−
xj∈{x1,x2}\xi

is equivalent to non-deterministically assigning xi, xj

to each permutation of x1, x2. The resulting choice involves JMKu with xi, xj substituted by z1, z2. Com-
mitment here is triggered only via synchronizations along z1 or z2; synchronizing with zi.somefv(Ni); JNiKzi
then represents fetching Ni from the bag.

The process JM [x̃← x]Ku first confirms its behavior along x. Then it sends a name yi on x, on
which a failed reduction may be handled. Next, the translation confirms again its behavior along x and
non-deterministically receives a reference to an xi ∈ x̃. Each branch consists of JM [(x̃\xi)← x]Ku. The

possible choices are permuted, represented by ||−
xi∈x̃

. Synchronizations with JM [(x̃\xi)← x]Ku and bags

delay commitment in this choice (we return to this point below). The process JM [← x]Ku is similar but
simpler: here the name x fails, as it cannot take further elements to substitute.
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JunitK = N1 JηK = !Nηi∈η{i : JηiK}

J(σk, η)→ τK = N(J(σk, η)K(σ,i) O JτK) J(σk, η)K(σ,i) = ⊕((Jσ
kK(σ,i))⊗ ((JηK)⊗ (1)))

Jσ ∧ πK(σ,i) = ⊕((N1) O (⊕N((⊕JσK)⊗ (JπK(σ,i)))))

JωK(σ,i) =

{
⊕((N1)

N

(⊕N1)) if i = 0

⊕((N1) N(⊕N((⊕JσK)⊗ (JωK(σ,i−1))))) if i > 0

Fig. 9. Translation of intersection types into session types (cf. Def. 4.1).

Process JMTU/xWKu consists of the composition of the translation of M and a server guarding the
translation of U : in order for JMKu to gain access to JUKxi

it must first synchronize with the server

channel x! to spawn a fresh copy of the translation of U . In case of a failure (i.e., a mismatch between the
size of the bag C and the number of variables in M), our translation ensures that the confirmations of C
will not succeed. This is how failure in λC is correctly translated to failure in sπ!.

4.2 Static Correctness: Type Preservation

Our translation preserves types: intersection types in λC are translated to session types in sπ! (Figure 9).
The translation of types describes how non-deterministic fetches are codified as non-deterministic session
protocols. As discussed in Section 2.4, session types effectively abstract away from the behavior of pro-
cesses, as all branches of a non-deterministic choice use the same typing context. Thus, it is expected that
the translation of types remains unchanged w.r.t. those in [10,15]. Our translation enjoys static correct-
ness: well-formed terms in λC translate to well-typed processes in sπ!. We need the following definition.

Definition 4.1 Let Γ = x1 : σ1, . . . , xm : σm, v1 : π1, . . . , vn : πn be a linear context. Also, consider the
unrestricted context Θ = x![1] : η1, . . . , x

![k] : ηk. Translation J · K in Figure 9 extends to Γ,Θ as follows:

JΓK = x1 : NJσ1K, . . . , xm : NJσmK, v1 : Jπ1K(σ,i1), . . . , vn : JπnK(σ,in)

JΘK = x![1] : Jη1K, . . . , x
![k] : JηkK

Theorem 4.2 (Type Preservation) Let B and M be a bag and an term in λC, respectively.

(i) If Θ;Γ � B : (σk, η) then JBKu ⊢ JΓK, u : J(σk, η)K(σ,i), JΘK.

(ii) If Θ;Γ � M : τ then JMKu ⊢ JΓK, u : JτK, JΘK.

4.3 Dynamic Correctness Under the Eager Semantics

To state dynamic correctness, we rely on established notions that (abstractly) characterize correct trans-
lations [4,11,12]. A language L = (L,→) consists of a set of terms L and a reduction relation → on L.
Each language L is assumed to contain a success constructor X. A term T ∈ L has success, denoted T ⇓ X,
when there is a sequence of reductions (using →) from T to a term satisfying success criteria.

Given L1 = (L1,→1) and L2 = (L2,→2), we seek translations J·K : L1 → L2 that are correct, i.e.,
translations that satisfy well-known correctness criteria. The next definition formulates such criteria.

Definition 4.3 (Correct Translation) Let L1 = (M,�1) and L2 = (P,�2) be two languages. Let ≍2

be an equivalence over L2. We use M,M ′ (resp. P,P ′) to range over terms in M (resp. P). Given a
translation J·K :M→ P, we define:

Completeness: For every M,M ′ such that M �∗
1 M

′, there exists P such that JMK �∗
2 P ≍2 JM ′K.

Weak Soundness: For every M and P such that JMK �∗
2 P , there exist M ′, P ′ such that M �∗

1 M
′ and

P �∗
2 P

′ ≍2 JM ′K.
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JMK
u
= (νz1)(z1.some∅; Jfail

∅K
z1
| (νz2)(z2.somey; JyK

z2
| (νz3)(z3.some∅; JIKz3

| ||−
(xi,xj ,xk)∈π({z1,z2,z3})

(νv)(xi.some; [xi↔ v] | v.somev,xj,xk
; v[z]; (J * xj * xk 1 + +K

z
| [v↔ u])))))

JMK
u

JN1Ku

∗

JN2Ku

∗

JN3Ku

∗

JMK
u

P1(z2, z3)

JN1Ku

� ||−

∗

P1(z3, z2)

JN1Ku

� ||−

∗

P2(z1, z3)

JN2Ku

� ||−

∗

P2(z3, z1)

JN2Ku

� ||−

∗

P3(z1, z2)

JN3Ku

� ||−

∗

P3(z2, z1)

JN3Ku

� ||−

∗

The processes above are as follows:

Q(a, b) = v.someu,a,b; v[z]; (J * a * b 1 + +K
z
| [v↔ u])

P1(a, b) = (νz2)(z2.somey ; JyK
z2
| (νz3)(x3.some∅; JIKz3 | (νv)(Jfail

∅K
v
|Q(a, b))))

P2(a, b) = (νz1)(z1.some∅; Jfail
∅K

z1
| (νz3)(x3.some∅; JIKz3 | (νv)(JyK

v
|Q(a, b))))

P3(a, b) = (νz1)(z1.some∅; Jfail
∅K

z1
| (νz2)(z2.somey; JyK

z2
| (νv)(JIK

v
|Q(a, b))))

Fig. 10. Example 4.7: Reductions of JMK
u
under ❀S and −→. We write ‘π(X)’ for the permutations of set X.

Success Sensitivity: For every M , we have M ⇓ X if and only if JMK ⇓ X.

Hence, to prove that our translation of λC into sπ! is correct, we need to instantiate Definition 4.3
appropriately. It turns out that to prove that our translation is correct, we need to instantiate ≍2 with a
pre-congruence on processes, denoted � ||−, defined as follows:

P � ||− P

Pi � ||− P ′
i i∈{1,2}

P1 ||− P2 � ||− P ′
i

P � ||− P ′ Q � ||− Q′

P |Q � ||− P ′ |Q′

P � ||− P ′

(νx)P � ||− (νx)P ′

Intuitively, P � ||− Q says that P has at least as many branches as Q. We have the following properties,
which are instances of those stated in Definition 4.3:

Theorem 4.4 (Loose Completeness) If N−→M for a well-formed closed λC-term N , then there exists
Q such that JNKu −→

∗ Q and JMKu � ||− Q.

Theorem 4.5 (Loose Weak Soundness) If JNKu−→
∗Q for a well-formed closed λC-term N , then there

exist N ′ and Q′ such that (i) N −→∗ N ′ and (ii) Q−→∗ Q′ with JN ′Ku � ||− Q′.

Theorem 4.6 (Success Sensitivity) M ⇓ Xλ iff JMKu ⇓Xπ for well-formed closed terms M .

Translation correctness up to � ||− thus means that −→ is “too eager”, as it prematurely commits to

branches. In contrast, the translation correctness properties established in [15] under the lazy semantics
hold by instantiating ≍2 simply with ≡. We thus conclude that moving from the (complex) lazy semantics
of [15] to the (simpler) eager semantics of Section 2.3 has a concrete effect in encodability properties: while
translation correctness in the lazy regime is tight, it becomes loose in the eager regime.

Example 4.7 To further contrast commitment in eager and lazy semantics (and their effect on the trans-
lation’s correctness), recall from Example 3.1 the term M (3) and the three branching reductions from M
to N1, N2 and N3. Figure 10 depicts a side-by-side comparison of the reductions of JMKu under the lazy

(❀) and eager (−→) semantics. We omit the translation of the empty unrestricted bag JT1!/xWKu in the
translations of JMKu and each of the JNiKu, since it does not add any insight. In the figure, ❀∗ and −→∗

denote the reflexive, transitive closures of ❀ and −→, respectively.
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Under ❀ there are three reduction paths, each resulting directly in the translation of one of N1, N2, N3:
after the first choice, the following choices are preserved. In contrast, under −→ there are six reduction
paths, each resulting in a process that relates to the translation of one of N1, N2, N3 through � ||−: after
the first choice for an item from the bag is made, the semantics commits to choices for the other items.

5 Comparing Lazy and Eager Semantics via Behavioral Equivalences

We now compare ❀ and −→ independently from λC by resorting to behavioral equivalences. We define
a simple behavioral notion of equivalence on sπ! processes, parametric in ❀ or −→; then, we prove that
there are classes of processes that are equal with respect to ❀, but incomparable with respect to −→
(Theorem 5.4). A key ingredient is the following notion of observable on processes:

Definition 5.1 A process P has a ready-prefix α, denoted P ↓α, iff there exist N, P ′ such that P ≡ N[α;P ′].

Definition 5.2 (Ready-Prefix Bisimilarity) A relation B on sπ! processes is a (strong) ready-prefix
bisimulation with respect to ❀ if and only if, for every (P,Q) ∈ B,

(i) For every P ′ such that P ❀ P ′, there exists Q′ such that Q❀Q′ and (P ′, Q′) ∈ B;

(ii) For every Q′ such that Q❀Q′, there exists P ′ such that P ❀ P ′ and (P ′, Q′) ∈ B;

(iii) For every α ⊲⊳ β, P ↓α if and only if Q ↓β .

P and Q are ready-prefix bisimilar with respect to ❀, denoted P ∼L Q, if there exists a relation B that is
a ready-prefix bisimulation with respect to ❀ such that (P,Q) ∈ B.

A (strong) ready-prefix bisimulation with respect to −→ is defined by replacing every occurrence of ‘❀’
by ‘−→’ in the definition above. We write P ∼E Q if P and Q are ready-prefix bisimilar with respect to −→.

Ready-prefix bisimulation can highlight a significant difference between the behavior induced the lazy
and eager semantics. To illustrate this, we consider session-typed implementations of a vending machine.

Example 5.3 (Two Vending Machines) Consider vending machines VM1 and VM2 consisting of three
parts: (1) an interface, which interacts with the user to send money and choose between coffee (c) and
tea (t); (2) a brewer, which produces either beverage; (3) a system, which collects the money and forwards
the user’s choice to the brewer. An sπ! specification follows (below € and €2 stand for names):

VM1 := (νx)
(
IF1 | (νy)(Brewer | System)

)
VM2 := (νx)

(
IF2 | (νy)(Brewer | System)

)

IF1 := x[€2];
(
€2[] | (x.c;x[] ||− x.t;x[])

)
IF2 := x[€2]; (€2[] | x.c;x[]) ||− x[€2]; (€2[] | x.t;x[])

System := x(€);x.case

{
c : y.c;x();€(); y[],

t : y.t;x();€(); y[]

}
Brewer := y.case{c : y();Brewc, t : y();Brewt}

where Brewc ⊢ ∅, Brewt ⊢ ∅, such that VM1 ⊢ ∅, VM2 ⊢ ∅.
The machines VM1 and VM2 are based on two different implementations of the interface. Machine VM1

uses IF1, which sends the money and then chooses coffee or tea. Machine VM2 uses IF2, which chooses
sending the money and then requesting coffee, or sending the money and then requesting tea.

We have VM1 6∼E VM2: the eager semantics distinguishes the machines; e.g., IF1 has a single money
slot, a button for coffee, and another button for tea, whereas IF2 has two money slots, one for coffee, and
another for tea. In contrast, the machines are indistinguishable under the lazy semantics: VM1 ∼L VM2.

Example 5.3 highlights a difference in behavior between ❀ and −→ when a moment of choice is subtly
altered. The following theorem captures this distinction; we need an auxiliary definition. Let ⊲⊳ denote
the least relation on prefixes defined by: (i) x[y] ⊲⊳ x[z], (ii) x(y) ⊲⊳ x(z), and (iii) α ⊲⊳ α otherwise.

Theorem 5.4 Take R ≡ N[α1; (P ||− Q)] ⊢ ∅ and S ≡ N[α2;P ||− α3;Q] ⊢ ∅, where α1 ⊲⊳ α2 ⊲⊳ α3 and
α1, α2, α3 require a continuation. Suppose that P 6∼L Q and P 6∼E Q. Then (i) R ∼L S but (ii) R 6∼E S.
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6 Conclusion

We studied how to reconcile non-deterministic choice and linearity in a session-typed π-calculus. We
extended and complemented the results in [15], which were based on a lazy semantics for expressing
commitment in non-deterministic choices. Our central contribution is an eager semantics that more directly
expresses such commitment while respecting linearity. We confirmed that this eager semantics fits well
with the session type discipline: both type preservation and deadlock-freedom properties are still ensured
in the eager regime. We also showed the expressivity of our typed model by giving a correct translation of a
resource λ-calculus, which extends the analogous results in [15] with unrestricted resources. We compared
the two semantics in two ways: (i) via the correctness properties they induce for the translation of resource
λ-calculi, and (ii) via a simple behavioral equivalence that captures different moments of choice. Based
on our results, we conclude that eager and lazy semantics are both worth studying, as each of them has
merits and shortcomings: the lazy semantics is complex but admits fine-grained observations; the new
eager semantics has a simpler definition but induces commitment that can be sometimes too premature.
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