
Electronic Notes in Volume 4

Theoretical Informatics ENTICS Proceedings of
And Computer Science https://entics.episciences.org MFPS 2024

Parametricity via Cohesion

C.B. Aberlé

Computer Science Department
Carnegie Mellon University

Pittsburgh, PA, USA

Abstract

Parametricity is a key metatheoretic property of type systems, which implies strong uniformity & modularity properties of
the structure of types within systems possessing it. In recent years, various systems of dependent type theory have emerged
with the aim of expressing such parametric reasoning in their internal logic, toward the end of solving various problems
arising from the complexity of higher-dimensional coherence conditions in type theory. This paper presents a first step toward
the unification, simplification, and extension of these various methods for internalizing parametricity. Specifically, I argue
that there is an essentially modal aspect of parametricity, which is intimately connected with the category-theoretic concept
of cohesion. On this basis, I describe a general categorical semantics for modal parametricity, develop a corresponding
framework of axioms (with computational interpretations) in dependent type theory that can be used to internally represent
and reason about such parametricity, and show this in practice by implementing these axioms in Agda and using them to
verify parametricity theorems therein. I then demonstrate the utility of these axioms in managing the complexity of higher-
dimensional coherence by deriving induction principles for higher inductive types, and in closing, I sketch the outlines of
a more general synthetic theory of parametricity, with applications in domains ranging from homotopy type theory to the
analysis of program modules.

Keywords: parametricity, cohesion, type theory, category theory, homotopy type theory, constructive mathematics, agda.

1 The past, present & future of parametricity in type theory

Reynolds [12] began his seminal introduction of the concept of parametricity with the declaration that “type
structure is a syntactic discipline for enforcing levels of abstraction.” In the ensuing decades, this idea
of Reynolds’ has been overwhelmingly vindicated by the success of type systems in achieving modularity
and abstraction in domains ranging from programming to interactive theorem proving. Yet the fate of
Reynolds’ particular strategy for formalizing this idea is rather more ambiguous.

Reynolds’ original analysis of parametricity targeted the polymorphic λ-calculus (aka System F). Intu-
itively, polymorphic programs in System F cannot inspect the types over which they are defined and so
must behave essentially the same for all types at which they are instantiated. To make this intuitive
idea precise, Reynolds posed an ingenious solution in terms of logical relations, whereby every System F
type is equipped with a suitable binary relation on its inhabitants, such that all terms constructible in
System F must preserve the relations defined on their component types. On this basis, Reynolds was able

1 Email: caberle@andrew.cmu.edu

Published December 15, 2024 Proceedings Available Online at © C. Aberlé

10.46298/entics.14710 https://doi.org/10.46298/entics.proceedings.mfps40 cb Creative Commons

https://entics.episciences.org
mailto:caberle@andrew.cmu.edu
https://doi.org/10.46298/entics.14710
https://doi.org/10.46298/entics.proceedings.mfps40
https://creativecommons.org/licenses/by/4.0/


1–2 Parametricity via Cohesion

to establish many significant properties of the abstraction afforded by System F’s type structure, e.g: all
closed terms of type ∀X.X → X are extensionally equivalent to the identity function.

Reynolds’ results have subsequently been extended to many type systems. However, as the complexity and
expressivity of these systems increases, so too does the difficulty of defining parametricity relations for their
types, and proving that the inhabitants of these types respect their corresponding relations. Moreover, the
abstract, mathematical patterns underlying the definitions of such relations have not always been clear.
The problem essentially is that the usual theory of parametricity relations for type systems is “analytic,”
i.e. defined in terms of the particular constructs afforded by those systems, when what would be more
desirable is a “synthetic” theory that boils the requirements for parametricity down to a few axioms.

The need for such an axiomatic specification of parametricity is made all the more apparent by recent
developments in Homotopy Type Theory (HoTT) and related fields, wherein dependent type theories
capable of proving parametricity theorems internally for their own type structures have been developed
and applied by various authors to solve some major open problems in these fields (c.f. [5], [8]). Each such
type theory has posed its own solution to the problem of internalizing parametricity, and although some
commonalities exist between these systems, there is as yet no one framework that subsumes them all. In
particular, the majority of these type theories have targeted only specific semantic models (usually some
appropriately-chosen presheaf categories) rather than an axiomatically-defined class of models, and in this
sense the analysis of parametricity offered by these type theories remains analytic, rather than synthetic.
This in particular limits any insight into whether and how these approaches to internal parametricity may
be related to one another, generalized, or simplified.

As a first step toward the unification, simplification, and generalization of these approaches to internal
parametricity, I propose an analysis of parametricity in terms of the category-theoretic concept of cohesion.
Cohesion here refers to a particular relation between categories whereby one is equipped with an adjoint
string of modalities that together make its objects behave like abstract spaces, whose points are bound
together by some sort of cohesion that serves to constrain the maps that exist between these spaces. Such
a notion of cohesion is reminiscent of the informal idea behind Reynolds’ formulation of parametricity
outlined above, particularly if one interprets the cohesion that binds types together as the structure of
relations that inhere between them. Moreover, by inspection of the categorical models of extant type
theories for internal parametricity, along with classical models of parametricity, one finds that many (if
not quite all) of these exhibit cohesion, in this sense. The main contribution of this paper is thus twofold:
1) to show that this basic setup of cohesion is essentially all that is needed to recover classical parametricity
results internally in dependent type theory, and 2) to show how this axiomatic framework can be applied in
solving problems arising from the complexity of coherence conditions in HoTT – specifically the problem of
deriving induction principles for higher inductive types from their recursors. As a further illustration and
verification of this idea, this paper is also a literate Agda document wherein the axioms for and theorems
resulting from such parametricity via cohesion have been fully formalized and checked for validity. 2

{-# OPTIONS --rewriting --cohesion --flat-split --without-K #-}
module parametricity-via-cohesion where

2 Cohesion & Parametricity

The notion of cohesion as an abstract characterization of when one category (specifically a topos) behaves
like a category of spaces defined over the objects of another, is due primarily to Lawvere [10,9]. The central

2 The full source of this file can be found at:
https://github.com/cbaberle/Parametricity-via-Cohesion/blob/main/parametricity-via-cohesion.lagda.md

https://github.com/cbaberle/Parametricity-via-Cohesion/blob/main/parametricity-via-cohesion.lagda.md


Aberle 1–3

concept of axiomatic cohesion is an arrangement of four adjoint functors as in the following diagram:

E

S

Γ ∇∆Π ⊣ ⊣ ⊣

where E ,S are both topoi, ∆, ∇ are both fully faithful, and Π preserves finite products. Given such an
arrangement, we think of the objects of E as spaces and those of S as sets (even if S is not the category
of sets), where Γ is the functor that sends a space to its set of points, ∆ sends a set to the corresponding
discrete space, ∇ sends a set to the corresponding codiscrete space, and Π sends a space to its set of
connected components. These in turn induce a string of adjoint modalities on E :

∫ ⊣ ♭ ⊣ ♯

where ∫ = ∆ ◦ Π and ♯ = ∇ ◦ Γ are idempotent monads, and ♭ = ∆ ◦ Γ is an idempotent comonad.

A concrete example of cohesion comes from the category of reflexive graphs RGph, which is cohesive
over the category of sets Set [9]. Here, Γ is the functor that sends a reflexive graph to its set of vertices,
∆ sends a set V to the “discrete” reflexive graph on V whose only edges are self-loops, ∇ sends V to
the “codiscrete” graph where there is a unique edge between any pair of vertices, and Π sends a reflexive
graph to its set of (weakly) connected components. It is worth noting, at this point, that many classical
models of parametricity (e.g. [3]) are based upon semantic interpretations of type structure in terms of
reflexive graphs. This, I wish to argue, is no accident, and the key property of reflexive graphs underlying
such interpretations is precisely their cohesive structure. More generally, for any base topos S, we may
construct its corresponding topos RGph(S) of internal reflexive graphs, which will similarly be cohesive
over S, so we can in fact use the language of such internal reflexive graphs to derive parametricity results
for any topos (or indeed, any ∞-topos, as described below).

In fact, this same setup of cohesion is interpretable, mutatis mutandis, in the case where E ,S are not
topoi, but rather ∞-topoi, i.e. models of homotopy type theory [15]. This allows us to use the language
of homotopy type theory – suitably extended with constructs for the above-described modalities (the ♭
modality in particular, which, for technical reasons, cannot be axiomatized directly in ordinary HoTT) –
to work synthetically with the structure of such a cohesive ∞-topos. For present purposes, we accomplish
this by working in Agda with the --cohesion and --flat-split flags enabled, along with --without-K,
which ensures compatibility with the treatment of propositional equality in HoTT.

I therefore begin by recalling some standard definitions from HoTT [17], which shall be essential in defining
much of the structure to follow. Essentially all of these definitions have to do with the identity type
former _≡_ and its associated constructor refl : ∀ {ℓ} {A : Set ℓ} {a : A} → a ≡ a, as defined in
the module Agda.Builtin.Equality:

module hott where

First of all, we have the induction principle for the identity type, aka the J rule:

J : ∀ {ℓ κ} {A : Set ℓ} {a : A}
→ (B : (b : A) → a ≡ b → Set κ)
→ {b : A} → (p : a ≡ b) → B a refl → B b p

J B refl b = b

We then obtain the operation of transport as the recursor for the identity type:

transp : ∀ {ℓ κ} {A : Set ℓ} {a b : A}
→ (B : A → Set κ) → (a ≡ b) → B a → B b



1–4 Parametricity via Cohesion

transp B p b = J (λ a _ → B a) p b

Additionally, both J and transp are symmetric, and so can be applied “in the opposite direction”:

J−1 : ∀ {ℓ κ} {A : Set ℓ} {a : A}
→ (B : (b : A) → a ≡ b → Set κ)
→ {b : A} → (p : a ≡ b) → B b p → B a refl

J−1 B refl b = b

transp−1 : ∀ {ℓ κ} {A : Set ℓ} {a b : A}
→ (B : A → Set κ) → (a ≡ b) → B b → B a

transp−1 B p b = J−1 (λ a _ → B a) p b

Moreover, since all functions must preserve relations of identity, we may apply a function to both sides of
an identification as follows:

ap : ∀ {ℓ κ} {A : Set ℓ} {B : Set κ} {a b : A}
→ (f : A → B) → a ≡ b → f a ≡ f b

ap f refl = refl

The notion of contractibility then expresses the idea that a type is essentially uniquely inhabited.

isContr : ∀ {ℓ} (A : Set ℓ) → Set ℓ
isContr A = Σ A (λ a → (b : A) → a ≡ b)

Similarly, the notion of equivalence expresses the idea that a function between types has an essentially
unique inverse. 3

isEquiv : ∀ {ℓ κ} {A : Set ℓ} {B : Set κ}
→ (A → B) → Set (ℓ ⊔ κ)

isEquiv {A = A} {B = B} f =
(b : B) → isContr (Σ A (λ a → f a ≡ b))

mkInv : ∀ {ℓ κ} {A : Set ℓ} {B : Set κ}
→ (f : A → B) → isEquiv f → B → A

mkInv f e b = fst (fst (e b))

open hott

The reader familiar with HoTT may note that, so far, we have not included anything relating to the
univalence axiom – arguably the characteristic axiom of HoTT. In fact, this is by design, as a goal of
the current formalization is to assume only axioms that can be given straightforward computational in-
terpretations that preserve the property that every closed term of the ambient type theory evaluates to a
canonical normal form (canonicity), so that these axioms give a constructive and computationally sound
interpretation of parametricity. While the univalence axiom can be given a computational interpretation
compatible with canonicity, as in Cubical Type Theory [6], doing so is decidedly not a straightforward
matter. Moreover, it turns out that the univalence axiom is largely unneeded in what follows, save for
demonstrating admissibility of some additional axioms which permit more straightforward computational
interpretations that are (conjecturally) compatible with canonicity. I thus shall have need for univalence
only as a metatheoretic assumption. In this setting, univalence allows us to convert equivalences between
types into identifications of those types, which may then be transported over accordingly.

Having defined some essential structures of the language of HoTT, we may now proceed to similarly define
some essential structures of the language of HoTT with cohesive modalities.

3 Those familiar with HoTT may note that I use the contractible fibres definition of equivalence, as this shall be the
most convenient to work with, for present purposes.



Aberle 1–5

module cohesion where

Of principal importance here is the ♭ modality, which (intuitively) takes a type A to its corresponding
discretization ♭A, wherein all cohesion between points has been eliminated. However, in order for this
operation to be well-behaved, A must not depend upon any variables whose types are not themselves
discrete, in this sense. To solve this problem, the --cohesion flag introduces a new form of variable
binding @♭ x : X, which metatheoretically asserts that x is an element of the discretization of X, such
that X may only depend upon variables bound with @♭. In this case, we say that x is a crisp element of
X.

With this notion in hand, we can define the ♭ modality as an operation on crisp types:

data ♭ {@♭ ℓ : Level} (@♭ A : Set ℓ) : Set ℓ where

con : (@♭ x : A) → ♭ A

As expected, the ♭ modality is a comonad with the following counit operation ǫ:

ǫ : {@♭ l : Level} {@♭ A : Set l} → ♭ A → A
ǫ (con x) = x

A crisp type is then discrete precisely when this map is an equivalence:

isDiscrete : ∀ {@♭ ℓ : Level} → (@♭ A : Set ℓ) → Set ℓ
isDiscrete {ℓ = ℓ} A = isEquiv (ǫ {ℓ} {A})

open cohesion

Beyond such notions of discreteness, etc., what more is required for the sake of parametricity is some way
of detecting when the elements of a given type are related, or somehow bound together, by the cohesive
structure of that type.

For this purpose, it is useful to take a geometric perspective upon cohesion, and correspondingly, para-
metricity. What we are after is essentially the shape of an abstract relation between points, and an object
I in our cohesive topos E (correspondingly, a type in our type theory) which classifies this shape in other
objects (types) in that maps I → A correspond to such abstract relations between points in A. In this case,
the shape of an abstract relation may be considered as a path, i.e. two distinct points which are somehow
connected. By way of concrete example, in the topos of reflexive graphs RGph, the role of a classifier for
this shape is played by the “walking edge” graph • → •, consisting of two points and a single non-identity
(directed) edge. More generally, using the language of cohesion, we can capture this notion of an abstract
line segment in the following axiomatic characterization of I:

I is an object of E that is strictly bipointed and weakly connected.

Unpacking the terms used in this characterization, we have the following:

• Strictly bipointed means that I is equipped with a choice of two elements i0, i1 : I, such that the
proposition (i0 = i1) → ⊥ (i.e. i0 6= i1) holds in the internal language of E .

• Weakly connected means that the unit map η : I → ∫ I is essentially constant, in that it factors through
a contractible object/type. Intuitively, this says that the image of I in ∫ I essentially consists of a single
connected component.

Note that the above-given example of the walking edge graph straightforwardly satisfies both of these
requirements, as it consists of two distinct vertices belonging to a single (weakly) connected component. I
also note in passing that, if the assumption of weak connectedness is strengthened to strong connectedness
– i.e. the object/type ∫ I is itself contractible – then the existence of such an object I as above is equivalent
to Lawvere’s axiom of sufficient cohesion [10]. We might therefore refer to the conjunction of the above
conditions as an axiom of weak sufficient cohesion for the ambient ∞-topos E .

We can begin to formalize such weak sufficient cohesion in Agda by postulating a type I with two given
elements i0, i1:



1–6 Parametricity via Cohesion

postulate

I : Set0

i0 i1 : I

We could also, in principle, directly postulate the strict bipointedness of I, as an axiom having the form
i0 ≡ i1 → ⊥. However, this is in fact unnecessary, as this axiom will instead follow from an equivalent
formulation introduced in a following subsection.

On the other hand, we do not yet have the capability to postulate the axiom of weak connectedness as
written above, since we have not yet formalized the ∫ modality. We could do so, but again, it is in fact
better for present purposes to rephrase this axiom in an equivalent form involving only the ♭ modality,
which can be done as follows:

A type A is connected if and only if, for every discrete type B, any function A → B is essentially
constant, in the sense of factoring through a contractible type.

To see that this equivalence holds: in one direction, assume that A is weakly connected. Then for any map
f : A → B, by the adjunction ∫ ⊣ ♭ and discreteness of B, there exist maps f♭ : A → ♭B and f ∫ : ∫ A → B,
such that following diagram commutes:

A ∫ A

♭B B

f♭ f∫

ǫ

η

f

Then since by assumption η factors through a contractible type, so does f .

In the other direction, assume that every map f : A → B is essentially constant, for every discrete type
B. Then in particular, the map η : A → ∫ A is essentially constant, since ∫ A is discrete (as it lies in the
image of the discretization functor ∆).

Hence the property of I being weakly connected can be expressed purely in terms of its relation to the
discrete types. Specifically, if we think of maps I → A as abstract relations or paths between elements of A,
then weak connectedness of I equivalently says that all paths between points of discrete types are constant.

In order to conveniently express this property in Agda, it shall therefore be prudent first to introduce
some additional constructs for ergonomically handling paths, analogous to the definition of path types in
Cubical Type Theory (as in e.g. [4], [1]).

2.1 Path Types

In principle, given a, b : A, we could define the type of paths from a to b in A as the type Σf : I →
A.(f i0 = a) × (f i1 = b). However, experience with such a naïve formalization shows that it incurs a high
number of laborious transportations along equalities that should be easy enough to infer automatically.
Hence I instead follow the approach taken by Cubical Type Theory and related systems, and give an
explicit axiomatization for path types, with corresponding rewrite rules to apply the associated equalities
automatically:

postulate

Path : ∀ {ℓ} (A : I → Set ℓ) (a0 : A i0) (a1 : A i1) → Set ℓ

The introduction rule for path types corresponds to function abstraction

pabs : ∀ {ℓ} {A : I → Set ℓ}
→ (f : (i : I) → A i) → Path A (f i0) (f i1)

and likewise, the elimination rule corresponds to function application.

papp : ∀ {ℓ} {A : I → Set ℓ} {a0 : A i0} {a1 : A i1}
→ Path A a0 a1 → (i : I) → A i



Aberle 1–7

We may then postulate the usual β-law as an identity for this type, along with special identities for
application to i0 and i1. All of these are made into rewrite rules, allowing Agda to apply them automatically,
and thus obviating the need for excessive use of transport: 4

pβ : ∀ {ℓ} {A : I → Set ℓ} (f : (i : I) → A i)
→ (i : I) → papp (pabs f) i ≡ f i

{-# REWRITE pβ #-}
papp0 : ∀ {ℓ} {A : I → Set ℓ} {a0 : A i0} {a1 : A i1}

→ (p : Path A a0 a1) → papp p i0 ≡ a0
{-# REWRITE papp0 #-}
papp1 : ∀ {ℓ} {A : I → Set ℓ} {a0 : A i0} {a1 : A i1}

→ (p : Path A a0 a1) → papp p i1 ≡ a1
{-# REWRITE papp1 #-}

With this formalization of path types in hand, we can straightforwardly formalize the equivalent formu-
lation of weak connectedness of I given above. For this purpose, we first define the map idToPath that
takes an identification a≡b to a path from a to b:

idToPath : ∀ {ℓ} {A : Set ℓ} {a b : A}
→ a ≡ b → Path (λ _ → A) a b

idToPath {a = a} refl = pabs (λ _ → a)

A type A is path-discrete if for all a, b : A the map idToPath is an equivalence:

isPathDiscrete : ∀ {ℓ} (A : Set ℓ) → Set ℓ
isPathDiscrete {ℓ = ℓ} A =

{a b : A} → isEquiv (idToPath {ℓ} {A} {a} {b})

We then postulate the following axioms:

postulate

pathConst1 : ∀ {@♭ ℓ : Level} {@♭ A : Set ℓ} {a b : A}
→ isDiscrete A → (e : Path (λ _ → A) a b)
→ Σ (a ≡ b) (λ p → idToPath p ≡ e)

pathConst2 : ∀ {@♭ ℓ : Level} {@♭ A : Set ℓ} {a b : A}
→ (dA : isDiscrete A) → (e : Path (λ _ → A) a b)
→ (q : a ≡ b) → (r : idToPath q ≡ e)
→ pathConst1 dA e ≡ (q , r)

which together imply that, if A is discrete, then it is path-discrete:

isDisc→isPDisc : ∀ {@♭ ℓ : Level} {@♭ A : Set ℓ}
→ isDiscrete A → isPathDiscrete A

isDisc→isPDisc dA e =
(pathConst1 dA e , λ (p , q) → pathConst2 dA e p q)

As it stands, we have not yet given a procedure for evaluating the axioms pathConst1 and pathConst2
when they are applied to canonical forms, which means that computation on these terms will generally get
stuck and thus violate canonicity. Toward rectifying this, I prove a key identity regarding these axioms,
add a further postulate asserting that this identity is equal to refl, and convert both of these to rewrite
rules:

rwPathConst1 : ∀ {@♭ ℓ : Level} {@♭ A : Set ℓ} {a : A} → (dA : isDiscrete A)
→ pathConst1 dA (pabs (λ _ → a)) ≡ (refl , refl)

rwPathConst1 {a = a} dA = pathConst2 dA (pabs (λ _ → a)) refl refl

4 We could additionally postulate an η-law for path types, analogous to the usual η-law for function types; however,
this is unnecessary for what follows, and so I omit this assumption.



1–8 Parametricity via Cohesion

{-# REWRITE rwPathConst1 #-}

postulate

rwPathConst2 : ∀ {@♭ ℓ : Level} {@♭ A : Set ℓ} {a : A} → (dA : isDiscrete A)
→ pathConst2 dA (pabs (λ _ → a)) refl refl ≡ refl

{-# REWRITE rwPathConst2 #-}

Although a full proof of canonicity is beyond the scope of this paper, I conjecture that adding these rules
suffices to preserve canonicity, and I verify a few concrete cases of this conjecture later in the paper.

So much for the (weak) connectedness of I; let us now turn our attention to the other property we had
previously stipulated of I, namely its strict bipointedness. As mentioned previously, we could simply pos-
tulate this stipulation directly as an axiom – however, for the purpose of proving parametricity theorems,
a more prudent strategy is to instead formalize a class of I-indexed type families, whose computational
behavior follows from this assumption (and which, in turn, implies it). Because these type families essen-
tially correspond to the graphs of predicates and relations on arbitrary types, I refer to them as graph
types.

2.2 Graph Types

For present purposes, we need only concern ourselves with the simplest class of graph types: unary graph
types, which, as the name would imply, correspond to graphs of unary predicates. Given a type A, a type
family B : A → Type, and an element i : I, the graph type Gph1 i A B is defined to be equal to A when
i is i0, and equivalent to Σx : A.Bx when i is i1. Intuitively, an element of Gph1 i A B is a dependent
pair whose second element only exists when i is equal to i1. We may formalize this in Agda as follows, by
postulating a rewrite rule that evaluates Gph1 i0 A B to A:

postulate

Gph1 : ∀ {ℓ} (i : I) (A : Set ℓ) (B : A → Set ℓ) → Set (ℓ)

g1rw0 : ∀ {ℓ} (A : Set ℓ) (B : A → Set ℓ) → Gph1 i0 A B ≡ A
{-# REWRITE g1rw0 #-}

We then have the following introduction rule for elements of Gph1 i A B, which are pairs where the second
element of the pair only exists under the assumption that i = i1. When i = i0 instead, the pair collapses
to its first element:

g1pair : ∀ {ℓ} {A : Set ℓ} {B : A → Set ℓ} (i : I)
→ (a : A) → (b : (i ≡ i1) → B a) → Gph1 i A B

g1pair0 : ∀ {ℓ} {A : Set ℓ} {B : A → Set ℓ}
→ (a : A) → (b : (i0 ≡ i1) → B a)
→ g1pair {B = B} i0 a b ≡ a

{-# REWRITE g1pair0 #-}

The first projection from such a pair may then be taken no matter what i is, and reduces to the identity
function when i is i0:

g1fst : ∀ {ℓ} {A : Set ℓ} {B : A → Set ℓ} (i : I)
→ (g : Gph1 i A B) → A

g1beta1 : ∀ {ℓ} {A : Set ℓ} {B : A → Set ℓ} (i : I)
→ (a : A) → (b : (i ≡ i1) → B a)
→ g1fst i (g1pair {B = B} i a b) ≡ a

{-# REWRITE g1beta1 #-}



Aberle 1–9

g1fst0 : ∀ {ℓ} {A : Set ℓ} {B : A → Set ℓ}
→ (g : Gph1 i0 A B) → g1fst {B = B} i0 g ≡ g

{-# REWRITE g1fst0 #-}

The second projection, meanwhile, may only be taken when i is equal to i1:

g1snd : ∀ {ℓ} {A : Set ℓ} {B : A → Set ℓ}
→ (g : Gph1 i1 A B) → B (g1fst i1 g)

g1beta2 : ∀ {ℓ} {A : Set ℓ} {B : A → Set ℓ}
→ (a : A) → (b : (i1 ≡ i1) → B a)
→ g1snd (g1pair {B = B} i1 a b) ≡ b refl

{-# REWRITE g1beta2 #-}

It is straightforward to see that the inclusion of graph types makes strict bipointedness of the interval
provable, as follows:

strBpt : (i0 ≡ i1) → ⊥
strBpt p = g1snd (transp (λ i → Gph1 i ⊤ (λ _ → ⊥)) p tt)

And in fact, the converse holds under the assumption of univalence. Specifically, in the presence of
univalence and the assumption of strict bipointedness for I, the type Gph1 i A B may be regarded as a
computationally convenient shorthand for the type Σx : A.(i = i1) → Bx, in much the same way as the
type Path A a0 a1 serves as shorthand for the type Σf : (Πi : I.Ai).(f i0 = a0) × (f i1 = a1). This fact is
due to the following equivalence

Σx : A.(i0 = i1) → Bx

≃ Σx : A.⊥ → Bx

≃ Σx : A.⊤

≃ A

which is given by the map fst : (Σx : A.(i0 = i1) → Bx) → A and which, under univalence, becomes an
identity between its domain and codomain, thereby justifying the use of this and associated identities as
rewrite rules which, conjecturally, are fully compatible with canonictiy.

A few additional theorems, concerning identities between elements of graph types, are as follows, the latter
of which I make into a rewrite rule for convenience:

apg1pair : ∀ {ℓ} {A : Set ℓ} {B : A → Set ℓ}
→ {a b : A} {aB : B a} {bB : B b}
→ (p : a ≡ b) → aB ≡ transp−1 B p bB
→ (i : I) → g1pair i a (λ _ → aB) ≡ g1pair i b (λ _ → bB)

apg1pair refl refl i = refl

apg1pair0 : ∀ {ℓ} {A : Set ℓ} {B : A → Set ℓ}
→ {a b : A} {aB : B a} {bB : B b}
→ (p : a ≡ b) → (q : aB ≡ transp−1 B p bB)
→ apg1pair p q i0 ≡ p

apg1pair0 refl refl = refl
{-# REWRITE apg1pair0 #-}

In principle, we could continue in this manner, and define graph types for relations of arities greater than 1
as well. However, unary graph types are sufficient for what follows. Having thus given appropriate axioms
(and corresponding computation rules) to capture the desiderata that I be strictly bipointed and weakly
connected, we are now in a position to prove some classical parametricity theorems using this structure.



1–10 Parametricity via Cohesion

2.3 Parametricity via Sufficient Cohesion

I begin this section with an old chestnut of parametricity theorems – a proof that any polymorphic function
of type (X : Set) → X → X must be equivalent to the polymorphic identity function λ X → λ x → x.

PolyId : (ℓ : Level) → Set (lsuc ℓ)
PolyId ℓ = (X : Set ℓ) → X → X

Before proceeding with this proof, however, it will be prudent to consider the meaning of this theorem
in the context of the cohesive type theory we have so-far developed. Specifically, I wish to ask: over
which types should the type variable X in the type (X : Set) → X → X be considered as ranging in the
statement of this theorem? Although it is tempting to think that the answer to this question should be
“all types” (or as close to this as one can get predicatively), if one considers the relation between our
cohesive setup and Reynolds’ original setup of parametricity, a subtler picture emerges. A type, in our
framework, corresponds not to a type in the object language of e.g. bare sets, but rather to an object of
the cohesive topos used to interpret the parametric structure of this object language, e.g. the category of
reflexive graphs. In this sense, we should expect the parametricity result for the type (X : Set) → X →
X to generally hold only for those types corresponding to those in the object language, i.e. the discrete
types. Indeed, the discrete types by construction are those which cannot distinguish elements of other
types belonging to the same connected component, which intuitively corresponds to the fundamental idea
of parametricity – that functions defined over these types must behave essentially the same for related
inputs.

However, we cannot state this formulation of the theorem directly, since it would require us to bind X as
@♭ X : Set, which would kill all of the cohesive structure on Set and pose no restriction on the functions
inhabiting this type. The solution, in this case, is to restrict the range of X to types which are path-discrete,
since this requirement can be stated even for X not crisp.

To prove the desired parametricity theorem for the type PolyId as above, then, we first prove a substitution
lemma as follows:

For any function α : PolyIdA and any path-discrete type A with a : A and a type family B : A →
Set, there is a function B a → B(α A a)

module paramId {ℓ} (A : Set ℓ) (pdA : isPathDiscrete A) (B : A → Set ℓ)
(a : A) (b : B a) (α : PolyId ℓ) where

The key step in the proof of this lemma is to construct a “dependent path” over the type family Gph1 i
A B : I → Set as follows:

lemma0 : (i : I) → Gph1 i A B
lemma0 i = α (Gph1 i A B) (g1pair i a (λ _ → b))

Then taking the second projection of lemma0 evaluated at i1 yields an element of B evaluated at the first
projection of lemma0 evaluated at i1:

lemma1 : B (g1fst i1 (lemma0 i1))
lemma1 = g1snd (lemma0 i1)

And we can use lemma0 to construct a path from α A a to g1fst i1 (lemma0 i1) as follows:

lemma2 : Path (λ _ → A) (α A a) (g1fst i1 (lemma0 i1))
lemma2 = pabs (λ i → g1fst i (lemma0 i))

And then since A is path-discrete, this path becomes an equality along which we can transport lemma1:

substLemma : B (α A a)
substLemma = transp−1 B (mkInv idToPath pdA lemma2) lemma1

From this substitution lemma, it straightforwardly follows that any element of PolyId must be extension-
ally equivalent to the polymorphic identity function when evaluated at a path-discrete type:



Aberle 1–11

polyId : ∀ {ℓ} (A : Set ℓ) (pdA : isPathDiscrete A) (a : A)
→ (α : PolyId ℓ) → α A a ≡ a

polyId A pdA a α = paramId.substLemma A pdA (λ b → b ≡ a) a refl α

Before we congratulate ourselves for proving this theorem, however, we ought to reflect on the significance
of what we have proved. For we have proved only that the restrictions of elements of PolyId to path-
discrete types are equivalent to that of the polymorphic identity function. The theorem would then after
all be trivial if it turned out that the only path-discrete types were (e.g.) those containing at most one
element (i.e. the mere propositions, in the terminology of HoTT). To show that this is not the case, we
make use of our assumption of connectedness for I, which we have already seen implies that every discrete
type is path-discrete. To give a concrete (non-trivial) instance of this, I now show that the type of Booleans
is discrete (hence path-discrete) and use this to test the canonicity conjecture on a simple example:

module BoolDiscrete where

Showing that Bool is discrete is a simple matter of pattern matching

boolIsDisc : isDiscrete Bool
boolIsDisc false = (con false , refl) , λ { (con false , refl) → refl}
boolIsDisc true = (con true , refl) , λ { (con true , refl) → refl}

It follows that Bool is also path-discrete and so the above parametricity theorem may be applied to it.

boolIsPDisc : isPathDiscrete Bool
boolIsPDisc = isDisc→isPDisc boolIsDisc

polyIdBool : (α : PolyId lzero) → (b : Bool) → α Bool b ≡ b
polyIdBool α b = polyId Bool boolIsPDisc b α

We can use this to check that, in at least one specific case, the proof of polyId yields a canonical form
(namely refl) when it is applied to canonical forms:

shouldBeRefl1 : true ≡ true
shouldBeRefl1 = polyIdBool (λ X → λ x → x) true

Running Agda’s normalization procedure on this term shows that it does indeed evaluate to refl.

2.4 Parametricity & (Higher) Inductive Types

The foregoing proof of parametricity for the type of the polymorphic identity function remains ultimately
a toy example. To demonstrate the true power of this approach to parametricity, I turn now to some more
intricate examples of its use, in proving universal properties for simplified presentations of inductive types
and higher inductive types.

In general, it is easy to write down what should be the recursion principle for an inductive type generated
by some set of constructors, but harder (though feasible) to write down the corresponding induction
principle. When one begins to consider more complex generalizations of inductive types, such as higher
inductive types, inductive-inductive types, etc, these difficulties begin to multiply. What would be ideal
would be a way of deriving the induction principle for an inductive type from its recursor, hence requiring
only the latter to be specified as part of the primitive data of the inductive type. However, in most systems
of ordinary dependent type theory this is generally not possible [7]. In HoTT, there is one way around
this issue, due to Awodey, Frey & Speight [2], whereby additional naturality constraints are imposed upon
the would-be inductive type, that serve to make the corresponding induction principle derivable from
the recursor. However, when one goes on to apply this technique to higher inductive types, which may
specify constructors not only for elements of a type, but also for instances of its (higher) identity types,
the complexity of these naturality conditions renders them impractical to work with. The ballooning
complexity of these conditions is an instance of the infamous coherence problem in HoTT, whereby the



1–12 Parametricity via Cohesion

complexity of coherence conditions for higher-categorical structures seemingly escapes any simple inductive
definition.

As an alternative, let us consider ways of using parametricity to derive induction principles for inductive
and higher inductive types, starting with the prototypical inductive type, the natural numbers N.

First, we define the type of the recursor for N:

RecN : Setω
RecN = ∀ {ℓ} (A : Set ℓ) → A → (A → A) → A

We may then postulate the usual constructors and identities for N
5

postulate

N : Set0

zero : N

succ : N → N

recN : N → RecN
zeroβ : ∀ {ℓ} (A : Set ℓ) (a : A) (f : A → A) → recN zero A a f ≡ a
{-# REWRITE zeroβ #-}
succβ : ∀ {ℓ} (n : N) (A : Set ℓ) (a : A) (f : A → A)

→ recN (succ n) A a f ≡ f (recN n A a f)
{-# REWRITE succβ #-}
Nη : (n : N) → recN n N zero succ ≡ n
{-# REWRITE Nη #-}

From here, we may proceed essentially as in the proof of parametricity for PolyId, by proving an analogous
substitution lemma for RecN, following essentially the same steps:

module paramN {ℓ} (α : RecN) (A : Set ℓ) (pdA : isPathDiscrete A)
(B : A → Set ℓ) (a : A) (b : B a)
(f : A → A) (ff : (x : A) → B x → B (f x)) where

lemma0 : (i : I) → Gph1 i A B
lemma0 i = α (Gph1 i A B)

(g1pair i a (λ _ → b))
(λ g → let g' j q = transp (λ k → Gph1 k A B) q g in

g1pair i (f (g1fst i g))
(λ p → J−1 (λ j q → B (f (g1fst j (g' j q)))) p

(ff (g1fst i1 (g' i1 p))
(g1snd (g' i1 p)))))

lemma1 : B (g1fst i1 (lemma0 i1))
lemma1 = g1snd (lemma0 i1)

lemma2 : Path (λ _ → A) (α A a f) (g1fst i1 (lemma0 i1))
lemma2 = pabs (λ i → g1fst i (lemma0 i))

substLemma : B (α A a f)
substLemma = transp−1 B (mkInv idToPath pdA lemma2) lemma1

In order to apply this lemma to N itself, we must further postulate that N is path-discrete (in fact, one
could show by induction that N is discrete, hence path-discrete by the assumption of connectedness for I;

5 Note that among the identities postulated as rewrite rules for N is its η-law, i.e. recN n N zero succ = n for all
n : N. This will be important for deriving the induction principle for N.



Aberle 1–13

however, since we have not yet proven induction for N, we must instead take this result as an additional
axiom, from which induction on N will follow).

postulate

pdN1 : ∀ {m n : N} (e : Path (λ _ → N) m n)
→ Σ (m ≡ n) (λ p → idToPath p ≡ e)

pdN2 : ∀ {m n : N} (e : Path (λ _ → N) m n)
→ (q : m ≡ n) (r : idToPath q ≡ e)
→ pdN1 e ≡ (q , r)

pdN : isPathDiscrete N

pdN e = (pdN1 e , λ (q , r) → pdN2 e q r)

rwPDN1 : (n : N) → pdN1 (pabs (λ _ → n)) ≡ (refl , refl)
rwPDN1 n = pdN2 (pabs (λ _ → n)) refl refl
{-# REWRITE rwPDN1 #-}

postulate

rwPDN2 : (n : N) → pdN2 (pabs (λ _ → n)) refl refl ≡ refl
{-# REWRITE rwPDN2 #-}

Induction for N then follows as a straightforward consequence of the substitution lemma: 6

indN : (P : N → Set) → P zero → ((n : N) → P n → P (succ n)) → (n : N) → P n
indN P pz ps n = paramN.substLemma (recN n) N pdN P zero pz succ ps

As in the case of the parametricity theorem for PolyId, we may test that the derived induction principle
for N evaluates canonical forms to canonical forms. The following example tests this for the usual inductive
proof that zero is an identity element for addition on the right:

module Nexample where

_plus_ : N → N → N

m plus n = recN m N n succ

zeroIdR : (n : N) → n plus zero ≡ n
zeroIdR n = indN (λ m → m plus zero ≡ m) refl (λ m p → ap succ p) n

shouldBeRefl2 : succ (succ zero) ≡ succ (succ zero)
shouldBeRefl2 = zeroIdR (succ (succ zero))

Running Agda’s normalization procedure on shouldBeRefl2 again confirms that it evaluates to refl.

Moving on, then, from inductive types to higher inductive types, we may now consider deriving the
induction principle for the circle S1, defined to be the type freely generated by a single basepoint base : S1,
with a nontrivial identification loop : base = base. The recursor for S1 thus has the following type:

RecS1 : Setω
RecS1 = ∀ {ℓ} (A : Set ℓ) → (a : A) → a ≡ a → A

Then, just as before, we may postulate the corresponding constructors and βη-laws for S1:

postulate

S1 : Set0

base : S1

loop : base ≡ base

6 Note that our use of the η-law for N as a rewrite rule is critical to the above proof, since otherwise in the last step,
we would obtain not a proof of P n, but rather P (recN n N succ zero).



1–14 Parametricity via Cohesion

recS1 : S1 → RecS1

baseβ : ∀ {ℓ} (A : Set ℓ) (a : A) (l : a ≡ a) → recS1 base A a l ≡ a
{-# REWRITE baseβ #-}
loopβ : ∀ {ℓ} (A : Set ℓ) (a : A) (l : a ≡ a)

→ ap (λ s → recS1 s A a l) loop ≡ l
{-# REWRITE loopβ #-}
S1η : (s : S1) → recS1 s S1 base loop ≡ s
{-# REWRITE S1η #-}

The proof of induction for S1 is then in essentials the same as the one given above for N. We begin by
proving a substitution lemma for RecS1, following exactly the same steps as in the proof of the corresponding
theorem for RecN:

module paramS1 {ℓ} (A : Set ℓ) (pdA : isPathDiscrete A) (B : A → Set ℓ)
(a : A) (b : B a) (l : a ≡ a)
(lB : b ≡ transp−1 B l b) (α : RecS1) where

lemma0 : (i : I) → Gph1 i A B
lemma0 i = α (Gph1 i A B) (g1pair i a (λ _ → b)) (apg1pair l lB i)

lemma1 : B (g1fst i1 (lemma0 i1))
lemma1 = g1snd (lemma0 i1)

lemma2 : Path (λ _ → A) (α A a l) (g1fst i1 (lemma0 i1))
lemma2 = pabs (λ i → g1fst i (lemma0 i))

substLemma : B (α A a l)
substLemma = transp−1 B (mkInv idToPath pdA lemma2) lemma1

We then postulate that S1 is path-discrete, as before, in order to apply this lemma to S1 itself:

postulate

pdS11 : ∀ {s t : S1} (e : Path (λ _ → S1) s t)
→ Σ (s ≡ t) (λ p → idToPath p ≡ e)

pdS12 : ∀ {s t : S1} (e : Path (λ _ → S1) s t)
→ (q : s ≡ t) (r : idToPath q ≡ e)
→ pdS11 e ≡ (q , r)

pdS1 : isPathDiscrete S1

pdS1 e = (pdS11 e , λ (q , r) → pdS12 e q r)

rwPDS11 : (s : S1) → pdS11 (pabs (λ _ → s)) ≡ (refl , refl)
rwPDS11 s = pdS12 (pabs (λ _ → s)) refl refl
{-# REWRITE rwPDS11 #-}

postulate

rwPDS12 : (s : S1) → pdS12 (pabs (λ _ → s)) refl refl ≡ refl
{-# REWRITE rwPDS12 #-}

And then the desired induction principle for S1 follows straightforwardly:

indS1 : (P : S1 → Set) (pb : P base) → pb ≡ transp−1 P loop pb → (s : S1) → P s
indS1 P pb pl s = paramS1.substLemma S1 pdS1 P base pb loop pl (recS1 s)

Although it is not in general possible to verify that this same construction is capable of deriving induction
principles for all higher inductive types – essentially because there is as yet no well-established definition



Aberle 1–15

of what higher inductive types are in general – there appears to be no difficulty in extending this method
of proof to all known classes of higher inductive types. Moreover, that the proof of induction for S1 is
essentially no more complex than that for N suggests that this method is capable of taming the complexity
of coherences for such higher inductive types, and in this sense provides a solution to this instance of the
coherence problem.

3 Toward a synthetic theory of parametricity

The theory so-far developed essentially gives a synthetic framework for working in the internal language
of a (weakly) sufficiently cohesive ∞-topos. This framework in turn proves capable of deriving significant
parametricity results internally, with immediate applications in e.g. resolving coherence problems having
to do with higher inductive types. It remains to be seen what further applications can be developed for
this theory and its particular approach to parametricity. From this perspective, it is profitable to survey
what other approaches there are to internalizing parametricity theorems in dependent type theory, and
how they might be related to the one given in this paper.

3.1 Cohesion & Gluing

In recent years, there has been some related work toward a synthetic theory of parametricity in terms of the
topos-theoretic construction of Artin Gluing. This approach, outlined initially by Sterling in his thesis [16]
and subsequently spearheaded by Sterling and his collaborators as part of the more general programme of
Synthetic Tait Computability (STC), works in the internal language of a topos equipped with two (mere)
propositions L and R, that are mutually exclusive in that L ∧ R → ⊥. The central idea of this approach
is to synthetically reconstruct the usual account of parametricity in terms of logical relations by careful
use of the open and closed modalities induced by these propositions, which play a similar role in STC to
the graph types introduced above. Using this approach, one can e.g. prove representation independence
theorems for module signatures as in recent work by Sterling & Harper [14].

Clearly, there is some affinity between the approach to parametricity in terms of gluing and that in
terms of cohesion presented above, not least of which having to do with the fact that they both offer
characteristically modal perspectives on parametricity. Yet there is a further sense in which these two
approaches are related, which is that every sufficiently cohesive topos contains a model of Sterling’s setup
of STC for parametricity, as follows: given a sufficiently cohesive topos E over some base topos S, for
any strictly bipointed object I ∈ E with distinguished points i0, i1 : I, the slice topos E/I, whose internal
language corresponds to that of E extended with an arbitrary element i : I, is thereby equipped with two
mutually exclusive propositions, namely i = i0 and i = i1. Hence all of the parametricity theorems available
in STC can be recovered in the above-given framework (in particular, instances of closed modalities can be
encoded as higher inductive types, which, as we have just seen, are easily added to the above framework).

On the other hand, there is no analogue in STC of the axiom of connectedness for the interval, and its
consequent parametricity theorems, most notably the above-mentioned derivability of induction principles
for higher inductive types. This suggests that in these latter results, the structure of cohesion and its
relation to parametricity plays an essential role. Nonetheless, it remains interesting to consider how
parametricity via cohesion and parametricity via gluing may yet prove to be related, and one may hope
for a fruitful cross-pollination between these two theories.

3.2 Cohesion & Coherence

As we have seen, there appears to be an intimate link between parametricity, cohesion, and coherence,
demonstrated (e.g.) by the above-given proof of induction for S1. The existence of such a link is further
supported by other recent developments in HoTT and related fields. E.g. Cavallo & Harper [5] have used
their system of internal parametricity for Cubical Type Theory to derive coherence theorems for the smash
product. More recently still, Kolomatskaia & Shulman [8] have introduced their system of Displayed Type



1–16 Parametricity via Cohesion

Theory, which utilizes yet another form of internal parametricity to solve the previously-open problem of
representing semi-simplicial types in HoTT.

In outlining the above framework for parametricity in terms of cohesion, I hope to have taken a first step
toward the unification of these various systems that use parametricity to tackle instances of the coherence
problem. Cavallo & Harper’s system is readily assimilated to this framework, as are other related systems
that take a cubical approach to internal parametricity, such as that of Nuyts, Devriese & Vezzossi [11],
since these all take their semantics in various topoi of bicubical sets, which all are sufficiently cohesive
over corresponding topoi of cubical sets. On the other hand, Kolomatskaia & Shulman’s system cannot
be assimilated in quite the same way, since their system takes its semantics in the ∞-topos of augmented
semisimplicial spaces, which is not cohesive over spaces. It thus remains to be seen if the above framework
can be generalized so as to be inclusive of this example as well. Alternatively, one might seek to generalize
or modify Kolomatskaia & Shulman’s system so as to be interpretable in an ∞-topos that is cohesive over
spaces, e.g. the ∞-topos of simplicial spaces. If this latter proves feasible, then this in turn would reveal
yet further connections between parametricity via cohesion and another prominent attempt at a solution
to the coherence problem, namely Riehl & Shulman’s Simplicial Type Theory, which takes its semantics
in simplicial spaces [13].

It appears, in all these cases, that parametricity is the tool for the job of taming the complexity of higher
coherences in HoTT and elsewhere. In this sense, Reynolds was right in thinking that parametricity
captures a fundamental property of abstraction, for, as any type theorist worth their salt knows, abstraction
is ultimately the best tool we have for managing complexity.

Acknowledgement

The origins of this paper trace to research I did as an undergraduate at Merton College, Oxford, in the
Summer of 2020, as part of the Merton College Summer Projects Scheme. Naturally, this work was
conducted at a time of considerable stress for myself and the world at large, and I am massively indebted
to the academic support staff at Merton, who were immensely helpful in keeping me afloat at that time. I
am particularly grateful to Katy Fifield, Jemma Underdown, and Jane Gover for the support they provided
to me in the course of my undergraduate studies. More recently, I am grateful to Frank Pfenning and
Steve Awodey for their encouragement in continuing to pursue this line of research.

References

[1] Carlo Angiuli, Guillaume Brunerie, Thierry Coquand, Robert Harper, Kuen-Bang Hou (Favonia), and Daniel R. Licata.
Syntax and models of cartesian cubical type theory. Mathematical Structures in Computer Science, 31(4):424–468, 2021.
https://doi.org/10.1017/S0960129521000347

[2] Steve Awodey, Jonas Frey, and Sam Speight. Impredicative encodings of (higher) inductive types. In Proceedings of the
33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS ’18. ACM, July 2018.
https://doi.org/10.1145/3209108.3209130

[3] Robert Atkey. Relational parametricity for higher kinds. In Patrick Cégielski and Arnaud Durand, editors, Computer
Science Logic (CSL’12) - 26th International Workshop/21st Annual Conference of the EACSL, volume 16 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 46–61, 2012.
https://doi.org/10.4230/LIPIcs.CSL.2012.46

[4] Cyril Cohen, Thierry Coquand, Simon Huber, and Anders Mörtberg. Cubical type theory: A constructive interpretation
of the univalence axiom. FLAP, 4:3127–3170, 2015.
https://doi.org/10.4230/LIPIcs.TYPES.2015.5

[5] Evan Cavallo and Robert Harper. Internal parametricity for cubical type theory. In Annual Conference for Computer
Science Logic, 2020.
https://doi.org/10.4230/LIPIcs.CSL.2020.13

[6] Thierry Coquand, Simon Huber, and Christian Sattler. Canonicity and homotopy canonicity for cubical type theory.
Logical Methods in Computer Science, Volume 18, Issue 1, February 2022.
https://doi.org/10.46298/lmcs-18%281%3A28%292022

https://doi.org/10.1017/S0960129521000347
https://doi.org/10.1145/3209108.3209130
https://doi.org/10.4230/LIPIcs.CSL.2012.46
https://doi.org/10.4230/LIPIcs.TYPES.2015.5
https://doi.org/10.4230/LIPIcs.CSL.2020.13
https://doi.org/10.46298/lmcs-18%281%3A28%292022


Aberle 1–17

[7] Herman Geuvers. Induction is not derivable in second order dependent type theory. In Samson Abramsky, editor, Typed
Lambda Calculi and Applications, pages 166–181, Berlin, Heidelberg, 2001. Springer Berlin Heidelberg.
https://doi.org/10.1007/3-540-45413-6_16

[8] Astra Kolomatskaia and Michael Shulman. Displayed type theory and semi-simplicial types, 2024.
https://doi.org/10.48550/arXiv.2311.18781

[9] F. William Lawvere. Categories of spaces may not be generalized spaces as exemplified by directed graphs. Reprints in
Theory and Applications of Categories, (9):1–7, 2005.
http://www.tac.mta.ca/tac/reprints/articles/9/tr9abs.html

[10] F. William Lawvere. Axiomatic cohesion. Theory and Applications of Categories, 19(3):41–49, 2007.
http://www.tac.mta.ca/tac/volumes/19/3/19-03abs.html

[11] Andreas Nuyts, Andrea Vezzosi, and Dominique Devriese. Parametric quantifiers for dependent type theory. Proc. ACM
Program. Lang., 1(ICFP), aug 2017.
https://doi.org/10.1145/3110276

[12] John C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP Congress Series 9. Elsevier Science
Publisher B.V., Amsterdam, The Netherlands, 1983
https://github.com/ionathanch/parapoly/blob/main/main.pdf

[13] Emily Riehl and Michael Shulman. A type theory for synthetic ∞-categories. Higher Structures, 1(1):116–193, 2017.
http://dx.doi.org/10.21136/HS.2017.06

[14] Jonathan Sterling and Robert Harper. Logical relations as types: Proof-relevant parametricity for program modules.
Journal of the ACM, 68(6):1–47, October 2021.
https://doi.org/10.1145/3474834

[15] Michael Shulman. Brouwer’s fixed-point theorem in real-cohesive homotopy type theory. Mathematical Structures in
Computer Science, 28(6):856–941, 2018.
https://doi.org/10.1017/S0960129517000147

[16] Jonathan Sterling. First Steps in Synthetic Tait Computability: The Objective Metatheory of Cubical Type Theory. PhD
thesis, Carnegie Mellon University, 2022.
Available
at:https://kilthub.cmu.edu/articles/thesis/First_Steps_in_Synthetic_Tait_Computability_The_Objective_Metatheory_of_Cubical

[17] The Univalent Foundations Program. Homotopy Type Theory: Univalent Foundations of Mathematics. Institute for
Advanced Study, 2013.
https://homotopytypetheory.org/book

https://doi.org/10.1007/3-540-45413-6_16
https://doi.org/10.48550/arXiv.2311.18781
http://www.tac.mta.ca/tac/reprints/articles/9/tr9abs.html
http://www.tac.mta.ca/tac/volumes/19/3/19-03abs.html
https://doi.org/10.1145/3110276
https://github.com/ionathanch/parapoly/blob/main/main.pdf
http://dx.doi.org/10.21136/HS.2017.06
https://doi.org/10.1145/3474834
https://doi.org/10.1017/S0960129517000147
https://kilthub.cmu.edu/articles/thesis/First_Steps_in_Synthetic_Tait_Computability_The_Objective_Metatheory_of_Cubical_Type_Theory/19632681?file=34869399
https://homotopytypetheory.org/book

	The past, present & future of parametricity in type theory
	Cohesion & Parametricity
	Path Types
	Graph Types
	Parametricity via Sufficient Cohesion
	Parametricity & (Higher) Inductive Types

	Toward a synthetic theory of parametricity
	Cohesion & Gluing
	Cohesion & Coherence

	References

