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7–2 On a fibrational construction. . .

1 Introduction

At various points in the past 40 years, people have come up with notions of ‘bidirectional morphisms’
meant to represent two-ways interactions of various sorts. In this work we will be concerned with three
specific kinds of bidirectional transformations.

The first come from [7], where de Paiva defines Dialectica categories as models of linear logic. The
bidirectional morphisms therein represent an interactive proof in which parties exchange proofs and coun-
terexamples. The second are lenses [8], which have been introduced in the database theory community as
a structure to encode view/update operations on record-type data structures. The third are optics [19,6],
which have been introduced to generalize lenses to a wider range of data structures.

Coming from an applied category theory background, the authors have been mainly interested in
bidirectional transformations to represent the compositional structure of systems as diverse as machines
and games [5,17,18].

A fairly complete recollection of the intricate history of these discoveries can be found in [9]. It’s inter-
esting to notice the remarkable variety of motivations that have brought people to use or even rediscover
lens-like structures. Nonetheless, aspects like lawfulness, which are really important for lenses and optics
as pattern for manipulating data structures, turn out to not matter in other settings, suggesting a fairly
simple structure underlies all these examples, without necessarily exhausting them.

In [21] Spivak suggested that behind all the uses of lenses there is a very elementary construction
in fibered category theory, the dual fibration construction. This is the fibered variant of the ‘opposite
category’ construction: it takes a fibered category P : E → X and yields a new fibration P∨ : E∨ → X
with the property that the fibers of the latter are the opposite of the fibers 6 of the former:

dP∨(X) ≃ dP (X)op, X ∈ X .

We write
(

E
X

)

for an object E : E such that P (E) = X. In fact, fibering a category E means also

separating its morphisms
(

E
X

)

→
(

E′

X′

)

into a cartesian part f : X → X ′, living in the base X , and a

vertical part f ♭ : E → f∗E′, living in the fiber dP (X).
Notice the cartesian part can be defined independently of the vertical part, by simply giving a morphism

in X , whereas the vertical part can’t. This induces a natural ‘arrow of time’, given by the order f and f ♭

have to be defined in:

(

f♭

f

)

:
(

E
X

)

⇒

(

E′

X′

)

, f : X → X ′ : X , f ♭ : E → f∗E′ : dP (X)

Morphisms in E∨ are still bipartite in the same fashion, but now the vertical part points in the opposite
direction than the cartesian one. Therefore morphism in E∨ seem to describe two consecutive ‘rounds of
interaction’ between two parties, with the characteristic back and forth of lens-like morphisms:

(

f♯

f

)

:
(

E
X

)

⇆

(

E′

X′

)

, f : X → X ′ : X , f ♯ : f∗E′ → E : dP (X)

This pattern captures many examples of bidirectional morphisms in literature (from wiring diagrams
to morphisms of locally ringed spaces), but fails to capture other lens-like morphisms such as optics and
Dialectica morphisms.

In this paper we reconcile these three classes of examples into one by extending the construction of
duals to towers of fibrations, i.e. sequences of fibrations:

P = En
Pn−−→ · · · −→ E2

P2−→ E1
P1−→ E0

6 See Definition 2.1 below for a precise definition.



Capucci, Gavranović, Malik, Rios & Weinberger 7–3

Towers like these display n consecutive rounds of interactions between two parties. By iteratively dualize
each fibration in the sequence, we can then produce a category En

∨n , still fibered over E0 (and over suitable
duals of the intermediate categories) whose morphisms are made of n parts alternating in direction. We
call these dialenses, as a portmanteu of ‘Dialectica’ and ‘lenses’.

Indeed, we show that both optics and Dialectica morphisms are dialenses of height 2, and obviously
lenses are dialenses of height 1.

Outline of the paper
In Section 2 we recall the necessary notions of fibred category theory, as well as introduce the main

examples of fibrations we use later. In Section 3 we recall the definitions of (generalized) lenses, Dialectica
morphisms, and optics. In Section 4 we introduce the iterated dual construction and show how they capture
the examples of interest. Finally, in Section 5 we compare our construction of Dialectica categories with
that of Hofstra, who also used fibrational tools.

Notation
We denote by f # g the composition of morphisms f and g in diagrammatic order. We make generous

use of generalized elements, written x : X, to talk about objects in categories.

2 Preliminary notions on fibrations

Definition 2.1 (Fiber of a functor) Let P : E → X be a functor. For an object X : X , we define the
fiber of P at X as the subcategory dP (X) of E consisting of those morphisms ϕ in E such that P (ϕ) = idX ,
which we call vertical.

The notation dP (X) to denote the fiber of P at X is due to Bénabou [2]. Other popular choices are
P−1(X) and EX .

Definition 2.2 (Cartesian arrow) Let P : E → X . A morphism ϕ : E → D in E is (strong) P -cartesian
if it satisfies the following universal property: let us write f := P (ϕ) and f : X → Y in X . Then we
demand that for any g : Z → X in X and any g′ : U → D in E with P (g′) = g # f , there exist a unique
morphism h : U → E in E with P (h) = g and h # ϕ = g′:

U

Z E D

X Y

∃!h

∀g f

ϕ

∀g′

(1)

Definition 2.3 (Grothendieck fibration) A Grothendieck fibration (or fibration for short) is a functor
P : E → X such that any arrow f : X → P (D) in X admits a (strong) cartesian lift:

E f∗D D

X X P (D)

fD

f

P (2)

For fD to be a cartesian lift, it has to be terminal among all morphisms into D and projecting down to f ,
see Definition 2.2. Moreover, we can show these lifts compose: cartesian lifts of f and g compose to give
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a cartesian lift for f # g. Furthermore, up to unique vertical isomorphism, the cartesian lift fD : f∗D → D
is determined uniquely.

E is called the total category and X the base category.

We are going to assume that every fibration is cloven, i.e. comes equipped with a specific choice of
cartesian lifts. A way to say this is that dP is an indexed category (i.e. a well-defined pseudofunctor

X op → Cat) and we are given an explicit isomorphism
∫

dP ∼= P . In this way we can move freely between
a fibration and its indexing of fibers.

Proposition 2.4 (Closure properties of fibrations) Let P : E → X be a fibration.

(i) If Q : F → E is a fibration, then the composite functor Q # P : F → X is a fibration.

(ii) If Q : F → X is any functor, then the pullback

Q∗E E

F X

Q∗P

Q

P
y

is a fibration.

Dualizing the notion of cartesian arrow gives rise to opcartesian arrows, and dualizing the notion of
fibration yields Grothendieck opfibrations. In an opfibration P : E → X , we can lift arrows f : X → Y
given elements U : dP (X) to opcartesian arrows U → f∗U over f . While cartesian arrows satisfy a
terminality property, opcartesian arrows satisfy an initiality property.

Like fibrations, opfibrations are closed under composition and pullback.

Example 2.5 (Examples of fibrations) For a category C, we denote by C↓ the category of morphisms
in C with arrows given by the commutative squares.

(i) Domain fibration. For any category C, the domain projection dom := domC : C↓ → C is a fibration.
For u : I → J in X , a cartesian lift of u with respect to an arrow g : J → Y is given by the square:

I J

X Y

u#g

u

g

(ii) Codomain fibration. If C has all pullbacks, then the codomain projection cod := codC : C↓ → C is
a fibration, also called the fundamental fibration of C. If C is locally cartesian closed, the codomain
fibration gives rise to a model of dependent type theory with Σ- and Π-types [20]. The idea is to
interpret a type X in context (i.e., a list of free variables) I as a morphism X → I, hence an object
of the slice C/I, which is the fiber of cod at I : C.

Given an arrow u : J → I in C together with a map p : X → I, a cod-cartesian lift of u with respect
to p is given by pullback:

u∗X X

J Iu

p
y

This corresponds to substituting the variables in context I along u.

(iii) Simple fibration. Whereas the codomain fibration models arbitrary dependent types in context I,
we might want to restrict to the case of simple types. A constant type is a dependent type over the
terminal context 1, hence a map X → 1, or equivalently, just an object X. We can then view X as a



Capucci, Gavranović, Malik, Rios & Weinberger 7–5

type over any context, by considering the pullback:

I ×X X

I 1

y

Therefore, as soon as C admits finite products, the simple fibration is given by the subfunctor of codC
spanned by product projections I × X → I. It can also be described, up to fibered equivalence, as
follows. Define the category S(C) by taking as objects pairs (I,X) of C and as morphisms (I,X) →
(J, Y ) pairs of morphisms (u : I → J, f : I ×X → Y ) in C. The simple fibration S : S(C) → C is the
functor defined by S(I,X) := I and S(u, f) := u. This is indeed a fibration, where a cartesian lift of
u : I → J with respect to (J, Y ) is given by the map (u, πY ) : (I, Y ) → (J, Y ) with πY : I × Y → Y .

(iv) Subobject fibration. Let C have all pullbacks. We can consider the full subfibration

C↓|mono C↓

C

(3)

of monomorphisms in C. Quotienting out by the relation that two monomorphisms shall be equal
if and only if they factor through each other (necessarily through a monomorphism), we obtain the
subobject fibration sub : C⊆ → C. The subobject fibration is typically used as an elementary example
of fibration of predicates on the objects of C.

(v) Family fibration. Consider a category X with pullbacks and P : E → X a fibration.
Let Fam(P ) : P ↓ X → X be the functor constructed as follows:

P ↓ X E

X ↓ X

X

dom

P

cod

Fam(P )

y

(4)

We call Fam(P ) : P ↓ X → X the family fibration of P . Indeed this is a fibration: any pullback of P
is a fibration, so is dom∗P . Since cod is a fibration, as X has all pullbacks, then so is their composite
cod #dom∗P = Fam(P ). Objects in the fiber dFam(P )(I) are given by pairs (f : X → I, α : dP (X)).
In fact, if P is an arbitrary functor, Fam(P ) is always an opfibration, the free opfibration generated
by P . Thus, Fam(P ) is both a fibration and an opfibration. One can show that opcartesian transport
serves as taking sums (or existential quantification), and that they commute with cartesian transport,
serving as reindexing, in a canonical way (via the Beck–Chevalley isomorphisms). Hence, the family
construction on a fibration P can be understood as the result of freely adding sums to P , which
are internally indexed, i.e., indexed by the base category X . Accordingly, we also write Fam(P ) for
Fam(P ).

One could replace dom in the above definition by a full subfibration of itself, corresponding to a
version of the family construction that is the sum completion only with respect to a chosen class of
morphisms of X .

Definition 2.6 (The vertical–cartesian factorization system, [16]) Let P : E → X be a fibra-
tion. The vertical–cartesian factorization system (vert, cart) induced by P on E is an orthogonal
factorization system where
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(i) the left class (vertical morphisms) is given by the maps projecting to isomorphisms and

(ii) the right class (cartesian morphisms) is given by cartesian maps.

In practice, this means every arrow of E can be factored in a unique way as a vertical map followed by
a cartesian one:

· · ·

ϕ

ϕvert ϕcart
(5)

This factorization is manifest when we present P as the Grothendieck construction of its fibers: in

that case, morphisms in the total category are literally pairs
(

fvert

fcart

)

where f cart is cartesian and fvert is

vertical.
The most important property of this factorization system is the following:

Proposition 2.7 Let P : E → X be a fibration. In E, every cospan:

·

· ·

vert

cart

(6)

admits a pullback:

· ·

· ·

vert

cart

vert

cart

y

(7)

Conversely, every commutative square like (7) is a pullback square.

Construction 1 Given a fibration P : E → X , its dual (or fiberwise opposite) is another fibration
P∨ : E∨ → X constructed as follows.

The category E∨ is the category that has the same objects as E and as morphisms equivalence classes
of vertical-cartesian spans in E, i.e. spans in E of the form

·

· ·

cartvert (8)

They compose because vertical arrows can always be pulled back against cartesian arrows:

·

· ·

X Y Z

cartvert vert cart

vert carty

(9)

Hence this defines a category, and P still works as a projection onto X .
The fibration structure comes from noticing one can still lift arrows to cartesian arrows. More easily,

since our fibrations are cloven, we can define

P∨ :=

∫

(dP # (−)op) (10)

which is a fibration by construction. This point of view will be also useful later on.
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Alternatively, one can define the arrows E → D in the dual fibration as pairs

(f : P (D) → P (E), ψ : X → f∗E),

where ψ is vertical. From this construction one can readily see that the ensuing total category E∨ is locally
small if X and E are.

The dual fibration construction extends to a functor (−)∨ : Fib(X ) → Fib(X ).
Recall that a map of fibrations F : Q→ P is a functor between the total spaces of P and Q that makes

the obvious triangle commute and that respects the cartesian-vertical factorization system:

D E

X

F

Q P
(11)

Explicitly, it means F sends cartesian arrows to cartesian arrows. This is equivalent to say F defines
functors between the fibers of P and Q: for a given X : X , dF (X) : dP (X) → dQ(X) is a well-defined
functor mapping P -vertical arrows over X to Q-vertical arrows over X, and such that for every arrow
f : X ′ → X in X , the following square commutes:

dP (X) dQ(X)

dP (X ′) dQ(X ′)

dF (X)

dF (X′)

dP (f) dQ(f) (12)

Now if we take the fiberwise opposites of P and Q, we can still define F∨ by applying F to both legs
of the spans. Since F respects the cartesian factorization systems of the fibrations, the image span is still
of the required form.

3 Lens, optics and Dialectica categories

3.1 Lenses

In their most essential form, lenses are just morphisms in a dualized fibration. Originally, the name lenses
referred to morphisms in the dual of the simple fibration, so that Lens(C) := S(C)∨ , where C is a category
with finite products. Thus a (simple) lens looks like this:

U ×X U × Y V × Y

U U V
f

πV

f×Y

y

πUπU

f♯

(13)

In [21], Spivak shows the name lenses deserves to be applied to much more general morphisms Chiefly,
dependent lenses are morphisms in the dual of the codomain fibration of a category with pullbacks:

X U ×V Y Y

U U V
f

fY

y

f♯

(14)



7–8 On a fibrational construction. . .

Definition 3.1 (P -lenses) Let P : E → X be a fibration. Its dual fibration P∨ : E∨ → X is called the
fibration of P -lenses, and morphisms in E∨ are P -lenses.

3.2 Dialectica categories

Dialectica categories [7] are made of morphisms very similar to lenses, and also have a formal essence which
is very simple to capture with very little structure. For the categories we are presenting in due course, we
are employing type-theoretic notation.

Definition 3.2 The (simple) Dialectica category Dial×(C) has

(i) as objects, triples
(U : C,X : C, α : Sub(U ×X)) (15)

meaning α is a subobject of U ×X,

(ii) as morphisms (U,X,α) → (V, Y, β), triples

f : U → V,

f ♯ : U × Y → X,

∀u : U, y : Y, α(u, f ♯(u, y)) ⊆ β(f(u), y)

(16)

Hence Dial×(C) is a category of lenses ‘augmented with predicates’.

3.3 Optics

Optics are a generalization of lenses-as-data accessors introduced by the functional programming commu-
nity to treat data structures other than record types (see [19]).

Recall from (13) that a simple lens
(

f♯

f

)

:
(

X
U

)

⇆

(

Y
V

)

is comprised of a forward map f : U → V

and a backward map f ♯ : U × Y → X. The extra argument U in this latter map is called residual, and in
optics its role becomes central: turned into a first-class object, it is explicitly ‘written’ in the forward part
and ‘read’ in the backward part.

For the sake of brevity, we will only sketch the relevant definitions, pointing out the relevant precise
references.

Optics are defined via the concept of action of a monoidal category (also known as actegories, [4]):

Definition 3.3 (Action of a monoidal category) Let (M, I,⊗) be a monoidal category. A (left)
M-action on the category C is a functor • : M× C → C together with coherent isomorphisms witnessing
I • A ∼= A and M • (N • A) ∼= (M ⊗ N) • A. The action is strict when such isomorphisms are in fact
identities.

Like for monoidal categories, we refer to actegories by synecdoche using just the name of the carrier
category. A full definition and a comprehensive account of actegories can be found in [4]. Note that all
actegories can be stricified. We work with those for simplicity.

Definition 3.4 (Preoptic) Fix a strict monoidal category M and two strict left M-actions (C, •) and

(D, ◦). Let A,S : C and B,T : D be objects. A preoptic
(

B
A

)

⇆

(

T
S

)

is a triple (M,f, f ♯) whereM : M is

called the residual, f : A→M • S is a morphism in C called the view, and f ♯ :M ◦ T → B is a morphism
in D called the update. The category of preoptics PreOptic•,◦ has objects pairs of an object of C and an
object of D, and morphisms preoptics.

Optics are the category obtained by quotienting the hom-categories of PreOptic by an equivalence
relation that allows morphisms to ‘slide’ across the residual, roughly enforcing the fact that computing
something from some inputs and then saving it in memory is equivalent to saving in memory the inputs
and then later computing from those.
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By varying the different pieces of data, optics can express a plethora of data accessing patterns. For a
survey and more detailed definitions, we direct the reader to [6].

Remark 3.5 Using preoptics instead of optics is a convenient device to avoid working with 2-optics
instead, in which the quotient hinted at above is replaced by explicit witnesses. Avoiding the quotient,
however, seems necessary for the fibrational manipulation of optics, see e.g. [1].

4 Dialenses as a common framework

4.1 Towers of fibrations and their duals

The data needed to construct a Dialectica category is easily seen to amount to a tower of fibrations:

P ‘α ⊆ β’

E f ♯ : f∗Y → X

C f : U → V

P

Q

(17)

Thus we can wonder if somehow the simple construction producing P -lenses from P extends to the extra
data of Q.

First, notice such a tower of fibrations can be seen as exhibiting Q as a morphism of fibrations over C:

P E

C

P

Q

Q#P
(18)

In fact the triangle trivially commutes and Q respects cartesian arrows since the cartesian arrows of P as
a category fibered over C are exactly the cartesian arrows of P (as a category fibered over E) which are
over cartesian arrows of E .

Remark 4.1 Something stronger is true: Q is actually a fibration of fibrations, i.e. a ‘fiberwise fibration’,
since Bénabou showed that fibrations in Fib(C) are given by maps of fibrations which are themselves
fibrations. A published account of this fact can be found in [10].

Then, since (−)∨ is a functorial construction Fib(C) → Fib(C), it can be applied to the whole triangle:

P∨ E∨

C

P∨

Q∨

(Q#P )∨
(19)

To understand how P∨ looks like now, we need to stop for a moment and understand the factorization
systems at play in this situation.

Remember P induces a factorization system on E which E∨ inherits as (P -verticalop, P -cartesian) (also
denoted as (vertopP , cartP )). On P we have a more refined factorization system since we have three kinds
of arrows:
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(i) Q-cartesian arrows, which are cartesian lifts of E-arrows, and come in two subcategories:
(a) P -cartesian arrows, which are cartesian lifts of C-arrows, hence cartesian E-arrows,
(b) P -vertical arrows, which are cartesian lifts of vertical E-arrows,

(ii) Q-vertical arrows, which are in the fibers of P .

This forms a ternary factorization system (Q-vertical, P -vertical, P -cartesian), or (vertQ, vertP , cartP ),
which means every arrow ϕ in P factors in three parts, uniquely up to unique isomorphism:

· · · ·
ϕ
vertQ ϕvertP ϕcartP

ϕ

ϕ
cartQ

(20)

When we turn around the fibers of E , we end up swapping Q-vertical and P -vertical arrows:

· · · ·
ϕ
vertQ ϕvertP ϕcartP

ϕ

(21)

Hence, on P∨ we end up with a ternary factorization system (P -verticalop , Q-verticalop, P -cartesian), i.e.
where P - and Q-vertical arrows are swapped (both as arrows and as classes in the ternary factorization
system).

We can understand this factorization system as an ambifibration 7 structure on Q∨ :

Definition 4.2 Let (L,R) be a factorization system on E . An ambifibration A : P → E is a functor
such that

(i) every arrow in L has an opcartesian lift (A restrics to an opfibration on L)

(ii) every arrow in R has a cartesian lift (A restrics to a fibration on R)

This induces the ternary factorization system (opcartesian, vertical, cartesian) on P:

P A′ ℓ∗A
′ r∗C ′ C ′

E A B B C
r∈Rℓ∈L

opcart cartvert

A (22)

Looking at the tower of fibrations P∨ Q∨

→ E∨ P∨

→ C, we see:

(i) E∨ has the factorization system (P -verticalop, P -cartesian),

(ii) Q∨ is a fibration on the cartesian class of E , given by Q, and became an opfibration on the vertical
class since it acts like Q∨ there. Hence Q∨ is an ambifibration over E∨ with respect to the factorization
system (vertop, cart).

This is very close to what we are looking for: the data of a morphism in Dialectica is indeed that of
a triple of morphisms, except the last one (first in the factorization) needs to point in the same direction
as the first one (last in the factorization). This suggests a last dualization is needed, involving only the
fibration Q.

7 The definition and name of ambifibration seems to be due to Kock and Joyal, but unpublished. See [13].
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At this point, it’s a good idea to introduce some new notation and terminology. First of all, let us
make the notation P∨ : E∨ → X more precise by specifying the base with respect to which we are taking
the dual:

P∨X : E∨X → X . (23)

Moreover, we introduce the following construction:

Definition 4.3 Let P = (En
Pn−−→ · · ·

P3−→ E2
P2−→ E1

P1−→ E0) be a sequence of n fibrations (a tower of
fibrations of height n). The iterated dual of P is defined inductively on its length 1 ≤ k < n as
follows:

• k = 1 :

(E1
P1−→ E0)

∨1

= E1
∨E0

P1
∨E0

−−−−→ E0 (24)

• 1 < k < n :

(Ek+1
Pk+1
−−−→ · · ·

P2−→ E1
P1−→ E0)

∨k+1

=

(

(Ek+1
Pk+1
−−−→ · · ·

P2−→ E1)
∨k
)∨E0 P1

∨E0
−−−−→ E0 (25)

There are many natural examples of towers of fibrations:

Example 4.4 If C is a cartesian monoidal category, then the total category of its associated simple
fibration S : S(C) → C is again cartesian, meaning we can form towers of arbitrary height by iterating the
construction of simple fibrations.

Example 4.5 Likewise, when C is finitely complete we can form towers C↓n → · · · → C↓ → C of arbitrary
height where the i-th level is the category of i-dimensional commutative cubes in C.

Example 4.6 More generally, suppose P : E → C is a full comprehension category [12], meaning it admits
a right adjoint 1 : C → E (a fibered terminal object) as well as a further right adjoint (comprehension)
{−} : E → C. By repeatedly pulling back P along {−} we can form towers of fibrations of arbitrary height.

4.2 Dialenses

Let’s see the result of an iterated dual of length 2, i.e. (E2
P2→ E1

P1→ E0)
∨2

. Below are unpacked the various

bits the morphisms in E2
∨E0

∨E1 are made of: as you can see we end up with a ternary factorization
corresponding to three changes in directions as we go up the sequence of fibrations:

E2
∨E0

∨E1 α (f ♯)∗α f∗β β

E1
∨E0 X f∗Y f∗Y Y

E0 U U U V
f

fYf♯

P1
∨E0

P2
∨E0

∨E1

fβf
♯
α f

5

(26)

To see this reproduces Definition 3.2, let’s unpack this situation when P2 = S : S(C) → C and P1 is
the fibration of monos of the domain over S(C), that is, the fiber over πU : U × X → U is given by the
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subobjects of U ×X:

P∨C
∨S(C) α (f ♯)∗α f∗β β

S(C) U ×X V ×X V ×X V × Y

C∨C X X X Y
f

fV

y

f♯

fβf
♯
α f

5

yy

P2
∨C

∨
S(C)

P1
∨C

(27)

Notice the tower of fibrations we used here is obtained quite naturally as a coproduct completion:

C⊆ ×C S(C) C⊆

S(C) C

C

sub

×

S=P1

P2

y

(28)

Thus what we called ‘P’ above is really C⊆ ×C S(C).

Definition 4.7 Let P be a tower of fibrations of length n. The morphisms in the total space of its iterated
dual P ∨n are called P -dialenses.

Clearly dialenses of height 1 are just P -lenses (Definition 3.1) and Dialectica (Definition 3.2) is a
category of dialenses of height 2.

Example 4.8 As anticipated, optics can be constructed as dialenses of height 2, if of a bizarre kind.
First, recall from [1] that every (strict, for simplicity) action • : M×C → C of a monoidal category M on
a category C can be repackaged as a 2-opfibration Para(•) → BM, where Para(•) is the bicategory of
M-parametric C-morphisms (see [5]) and the projection to BM is given by projection out the parameter
of a morphism. Here let’s ignore the 2-dimensional information and just consider this as an opfibration
(because every 2-opfibration has an underlying 1-opfibration, cf. [10, Definition 2.1]).

Recall the 1-dimensional data of Para(•): its objects are the same of C while its 1-cells are pairs
(m ∈ M, f : m •X → X), composing in the obvious way.

Opcartesian lifts for the functor Para(•) → BM are constructed as follows:

Para(•) X m •X

BM ∗ ∗

P•

m

(m,1m•X )

(29)

Further on, we’ll abbreviate (m, 1m•X ) with mX .
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Then given two leftM-actegories (C, •) and (D, ◦), one can construct the following tower of opfibrations:

Para(◦)×BM Para(•) Para(◦)

Para(•) BM

BM

P◦

P•

P•

P◦

y

(30)

Then its iterated dual produces preoptics (Def. 3.4):

PreOpticM(•, ◦) U m ◦ U V V

Para(•)∨BM X m •X m •X Y

BM ∗ ∗ ∗ ∗m

mX f

1VmU f♯

P•
∨BM

view

(31)

The idea of seeing optics as fibered by (or indexed by) their residual has appeared before in the
literature, namely in [1,14,22,3].

5 Dialenses and Hofstra’s Dial monad

In [11], Hofstra defined a monad on fibrations that builds Dialectica-like categories by simple sum-product
completion:

Dial(P ) = Sum(Prod(P )) = Sum(Sum(P∨)
∨
) (32)

where P : E → C is a fibration on C cartesian monoidal. Recall that simple sum completion Sum(P )

is constructed like Fam(P ) except P gets pulled back along S(()C)
×
→ C instead of dom (cf. (34) below

with (4)).
In Dial(P ), objects are triples (I,X,U : C, α : P(I ×X × U)) and morphisms have four parts:

f0 : I → J

f : I ×X → Y

f ♯ : I ×X × V → U

for i : I, x : X, v : V, f
5

: α(i, x, f ♯(i, x, v)) → β(f0(i), f(i, x), v)

(33)

If we ignore the duals for a moment (they can be put back later), we see this is actually given by a tower
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of three fibrations over C:

Sum(Sum(P )) Sum(P ) E

Sum(S) S(C) C

S(C) C

C

P

×

S

×

Q1=S

Q3

Q2

yy

y
(34)

One can see Dial(P ) is obtained by dualizing the top two:

Dial(P ) = (Sum(Sum(P ))
Q3
−−→ S(C)×C S(C)

Q2
−−→ S(C))

∨2 Q1
−−→ C (35)

This readily carries over to the dependent Dialetica construction

Dial(P ) := Fam(Cofam(P ))

of a fibration P : E → X . 8 Here, Fam(P ) is the (unrestricted) sum completion of P , which is the family
construction of a fibration P , and Cofam(P ) := (Fam(P∨))∨ is the (unrestricted) product completion of
a fibration P . Thus, the iterated dual is applied to the following composite of fibrations:

Fam(Fam(P )) Fam(P ) E

Fam(cod) X ↓ X

X ↓ X

X

P

dom

cod

dom

cod

yy

y (36)

The elements of the total category of Dial(P ) are the dependent generalization of the simple case of
Dial(P ):

f0 : I → J

for i : I, f : X(i) → Y (f(i))

for i : I, x : X(i), f ♯ : V (f(i), f0(i, x)) → U(i, x)

for i : I, x : X(i), y : Y (f(i), f0(i, x)), f
5

: α(i, x, f1(i, x, y)) → β(f(i), f0(i, x), y)

(37)

8 For a finitely complete category C, we recover Dial×(C) as the fiber over the terminal object of Dial(P ), where
P : E → X is taken to be Fam(!) : Fam(C) → Fam(1) ≃ Set, arising canonically from the free sum completion of
C, see [15].
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