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Abstract

Orthogonality is a notion based on the duality between programs and their environments used to determine
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Introduction

Linear logic with fixpoints

Propositional linear logic lacks datatypes with iteration or recursion principles. This is usually
remedied by extending it to the second order, thus defining a logical system in which Girard’s
System F [19] can be embedded. Even if such a system is very expressive in terms of computable
functions, its algorithmic expressiveness is poor: for instance, it is not possible to write a term

that computes the predecessor function in one (or a uniformly bounded) number of reduc-
tion steps.

Girard first considered an extension of linear logic with fixpoints of formulas in an un-
published note [17]. However, the first comprehensive proof-theoretic investigation of such
a system was given by Baelde [2] who introduced and studied µMALL, an extension of mul-
tiplicative additive linear logic with induction and coinduction principles, with motivations
coming from proof-search and system verification. Linear logic exponentials were not consid-
ered in µMALL; they could be somewhat encoded with inductive and coinductive types though
without their denotational interpretation satisfying the required Seely isomorphisms.

Ehrhard and Jafarrahmani [9] introduced a system µLL extending µMALL with exponen-
tials and studied it from the Curry-Howard-Lambek perspective. Their notion of categorical
model of µLL is an extension of the standard notion of Seely category for classical linear logic
with suitable initial algebras and final coalgebras. Specifically, they presented a totality model
of µLL that is an instance of a general categorical construction developed in this paper. In
the totality model, least and greatest fixpoints are calculated by lifting initial algebras and
final coalgebras from the relational model. Here, by viewing it as a special case of a focused
orthogonality construction, we are able to develop a general methodology for constructing
models of linear logic with fixpoints.

Orthogonality and glueing for models of linear logic

Logical relations [38,31,37] are by now a standard tool in the theory of programming languages
to certify program properties that cannot be obtained by naive induction arguments. The basic
idea is to associate to each type a predicate that is preserved by the operations on the type.
Such predicates depend on the program property that one is interested in proving (termination,
type safety, parametricity, etc.) and their use provides a powerful proof method.

Orthogonality methods originate from the semantics of linear logic and are particularly
well-suited for languages modelling classical negation [15]. The general principle is to restrict
attention to pairs of terms and contexts in a pole ‚Ď TermsˆContexts that contains correct
computations. For a set of terms T Ď Terms, one can then consider the set of all contexts
TK Ď Contexts that yield a correct computation when combined with any term in T . Dually,
for a set of contexts C Ď Contexts, one can consider the set of all terms CK Ď Terms that
yield a correct computation when combined with any context in C. These constructions yield
a duality between subsets of terms and subsets of contexts, and one associates to each type
a subset of terms T that is equal to its double dual TKK. Such dualities between terms and
environments (or player and opponent) form the basis of game semantics [22] and of Krivine’s
classical realizability [25].

Logical relations have a categorical abstraction given by Artin-Wraith glueing [43], while
orthogonality constructions are obtained via Hyland-Schalk double glueing [23]. Here, we will
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be particularly interested in a well-behaved subclass of orthogonality categories arising from
poles and referred to as focused orthogonality categories. These, we will recast as relational
fibrations and therefrom develop a general categorical theory that lifts initial algebras and
final coalgebras to focused orthogonality categories, and therefore provides models of linear
logic with least and greatest fixpoints.

Structure of the paper

‚ We start by recalling the notion of orthogonality category by Hyland and Schalk in Section 1.

‚ In Section 2, we develop a theory of fixpoint constructions for relational fibrations by lifting
initial algebras and final coalgebras to the Grothendieck category of a relational fibration.

‚ We show in Section 3 that focused orthogonality models are instances of relational fibrations.
This provides us with a general categorical construction to obtain models of linear logic with
least and greatest fixpoints. A variety of examples is considered in Section 4.

‚ Finally, in Section 5, we show how to lift bifree algebras to focused orthogonality categories
in an axiomatic domain-theoretic setting.

1 Preliminaries on orthogonality categories

From a categorical viewpoint, logical relations can be presented using glueing constructions,
also called Artin-Wraith glueing, sconing, or Freyd covering [1,43,14]. These allow the lifting
of monoidal (or cartesian) closed structure to glueing categories. Orthogonality methods
fit into the more general framework of double-glueing constructions by Hyland, Schalk, and
Tan [39,23] which is tailored to ‹-autonomous categories. The general idea is to associate two
predicates with each type: one for the type and another one for its dual.

For a ‹-autonomous category C with monoidal units 1 and K, an orthogonality relation K
is a family of subsets

Kc Ď C p1, cq ˆ C pc,Kq

indexed by objects c P C and verifying some compatibility conditions with respect to the
linear logic structure [23]. For a subset X Ď C p1, cq, its orthogonal XK Ď C pc,Kq is given
by XK :“ t y : c Ñ K | @x P X.x Kc y u with the idea that XK contains the environments
(or counter-terms) that yield a correct computation (with respect to the chosen orthogonality
relation) when combined with any term in X. Dually, for a subset Y Ď C pc,Kq, its orthogonal
Y K Ď C p1, cq is given by Y K :“ tx : 1 Ñ c | @ y P Y. x Kc y u. We restrict attention subsets
of global elements that are double orthogonally closed and define the orthogonality category
induced by tKcucPC to have objects given by pairs pc,Xq with X “ XKK Ď C p1, cq and
morphisms pc,Xq Ñ pd, Y q given by morphisms f : c Ñ d in C such that:

@x P X. fx P Y and @ y P Y K. yf P XK . (1)

Provided that some conditions on C and the orthogonality relation tKcucPC hold, if C is a
model of classical linear logic then so is the induced orthogonality category, and the forgetful
functor preserves the linear logic structure strictly [23]. In this paper, we will restrict to the
special case where the orthogonality relation arises from a distinguished subset ‚ Ď C p1,Kq,
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referred to as a pole, as follows:

‚c :“ t px, yq P C p1, cq ˆ C pc,Kq | y x P ‚ u .

Such orthogonality relations are called focused and for them the two conditions in (1) above
are equivalent [23]. This property will crucially allow us to subsume focused orthogonality
categories within a fibrational setting and, from the theory of fixpoint constructions for rela-
tional fibrations of the following section, we will obtain models of linear logic with least and
greatest fixpoints.

2 Fixpoint constructions in relational fibrations

This section develops a general method to lift initial algebras and final coalgebras form the
base category of a relational fibration to its total category.

2.1 Relational fibrations

We start by recalling some basic properties of relational fibrations.

Definition 2.1 A C -indexed poset is a contravariant functor from a category C to the cate-
gory Poset of posets and monotone functions between them.

For an indexed poset R : C op Ñ Poset, a morphism f : c Ñ d in C , and S P Rpdq, it is
customary to write f˚pSq for RpfqpSq P Rpcq. For R P Rpcq, we moreover write f : R Ą S
for R ď f˚pSq.

Definition 2.2 The Grothendieck category GC pRq of a C -indexed poset R : C op Ñ Poset has
objects given by pairs t c |R u with c P C and R P Rpcq, and morphisms f : t c |R u Ñ t d |S u
given by morphisms f : c Ñ d in C such that f : R Ą S in Rpcq. Identities and composition
are given as in C .

The forgetful functor U : GC pRq Ñ C is a Grothendieck fibration with partially-ordered
fibers. Note that, for every c P C , R ď R1 in Rpcq if and only if idc : t c |R u Ñ t c |R1 u in
GC pRq.

We refer to U as the relational fibration of the C -indexed poset R. The cartesian lifting
of f : c Ñ d in C with respect to t d |S u P GC pRq is the morphism f : t c |f˚S u Ñ t d |S u in
GC pRq.

Definition 2.3 For a C -indexed poset R, we say that an endofunctor F on GC pRq is a lifting
of an endofunctor F on C whenever the following diagram commutes

C

GC pRq

C

GC pRq

F

F

UU
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We let F be a lifting of F as above for the rest of the section.

For t c |R u P GC pRq, we write F cpRq for the element in RpFcq given by F t c |R u; in other
words, we let F t c |R u “ tFc | F cpRq u. Therefore, for all f : t c |R u Ñ t d | S u in GC pRq,
since F pfq “ F pfq, we have that F cpRq ď pFfq˚

`

F dpSq
˘

in RpFcq. This has the following
direct consequences.

Lemma 2.4 (i) For all c P C , the function F c : Rpcq Ñ RpFcq is monotone.

(ii) For all f : c Ñ d in C and S P Rpdq, F c

`

f˚pSq
˘

ď pFfq˚
`

F dpSq
˘

in RpFcq.

2.2 Initial-algebra lifting theorem

By Lemma 2.4(i), every coalgebra γ : c Ñ Fc induces the monotone operator

Rpcq
F cÝÑ RpFcq

γ˚

ÝÑ Rpcq .

A lifting of the F -coalgebra γ to an F -coalgebra amounts to providing a post fixpoint of
γ˚ ˝ F c; that is, an R P Rpcq such that R ď γ˚

`

F cpRq
˘

. On the other hand, a lifting of an

F -algebra δ : Fd Ñ d amounts to providing an S P Rpdq such that F dpSq ď δ˚pSq.
We now consider homomorphisms from a coalgebra γ : c Ñ Fc to an algebra δ : Fd Ñ d

as given by morphisms f : c Ñ d such that the following diagram commutes:

Fc
Ff //Fd

δ
��

c

γ

OO

f
// d

Lemma 2.5 For a coalgebra γ : c Ñ Fc, the least pre-fixpoint ∇γ P Rpcq of the monotone

operator γ˚ ˝ F c, whenever it exists, provides a lifting of γ such that for all liftings S P Rpdq
of an algebra δ : Fd Ñ d, every homomorphism c Ñ d from γ to δ lifts to a morphism
t c |∇γ u Ñ t d |S u.

Proof We have γ : t c |∇γ u Ñ tFc | F cp∇γq u because ∇γ is a fixpoint of γ˚ ˝ F c.

Let δ : Fd Ñ d and S P Rpdq be such that F dpSq ď δ˚pSq and let f : c Ñ d be an
homomorphism from γ to δ.

By Lemma 2.4(ii) and the assumption on S, we have

F c

`

f˚pSq
˘

ď pFfq˚
`

F dpSq
˘

ď pFfq˚
`

δ˚pSq
˘

and hence
pγ˚ ˝ F cq

`

f˚pSq
˘

ď
`

δ ˝ pFfq ˝ γ
˘˚

pSq “ f˚pSq ;

that is, f˚pSq is a pre-fixpoint of γ˚ ˝ F c. Therefore, ∇γ ď f˚pSq as required. l

Theorem 2.6 For an initial F -algebra α : Fa Ñ a, if the monotone operator pα´1q˚ ˝F a on
Rpaq has a least pre-fixpoint ∇α then α : tFa | F ap∇αq u Ñ t a |∇α u is an initial F -algebra.
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Proof For every F -algebra δ : tFd | F dpSq u Ñ t d | S u the unique homomorphism upδq :
a Ñ d from α : Fa Ñ a to δ : Fd Ñ d is a homomorphism from α´1 : a Ñ Fa to δ : Fd Ñ d
and, by Lemma 2.5, it is also the unique homomorphism from α : tFa | F ap∇αq u Ñ t a |∇α u
to δ : tFd | F dpSq u Ñ t d |S u. l

Let α : Fa Ñ a be an initial algebra and, for an algebra δ : Fd Ñ d, let upδq : a Ñ d
be the unique homomorphism from α to δ. In the situation of the theorem, initial algebras α
satisfy the following property:

for every algebra δ : Fd Ñ d and S P Rpdq, if δ : F dpSq Ą S then upδq : ∇α Ą S .

This provides an abstract general form of induction principle. Indeed, in particular, one has:

for every S P Rpaq, if F apSq ď α˚pSq then ∇α ď S .

As advocated by Hermida and Jacobs [21, Definition 3.1], the standard induction principle is
recovered when ∇α is the greatest element Ja of Rpaq, in which case one has:

for every algebra δ : Fd Ñ d and S P Rpdq, if δ : F dpSq Ą S then upδq˚pSq “ Ja

and, in particular, that:

for every S P Rpaq, if F apSq ď α˚pSq then S “ Ja .

An ipo (inductive poset) is a poset with a least element and joins of directed subsets. Such
posets are particularly relevant to us here because of Pataraia’s constructive theorem that
every monotone endofunction on an ipo has a least pre-fixpoint [30].

Definition 2.7 A C -indexed ipo is a C -indexed poset R such that Rpcq is an ipo for all c P C .

Corollary 2.8 For every C -indexed ipo R, every endofunctor F on C , and every endofunctor
F on GC pRq lifting it, initial F -algebras lift to initial F -algebras.

2.3 Final-coalgebra lifting theorem

Definition 2.9 A C -indexed poset R is said to have existential quantification whenever, for
all f : a Ñ b in C , the monotone function f˚ : Rpbq Ñ Rpaq has a left adjoint, for which we
write f! : Rpaq Ñ Rpbq.

Lemma 2.10 For a C -indexed poset R with existential quantification, let F be an endofunctor
on C and F be an endofunctor on GC pRq lifting it.

For a coalgebra δ : d Ñ Fd, the greatest post-fixpoint ∆δ P Rpdq of the monotone operator
δ˚˝F d, whenever it exists, provides a lifting of δ such that for all liftings R P Rpcq of a coalgebra
γ : c Ñ Fc, every homomorphism c Ñ d from γ to δ lifts to a morphism t c |R u Ñ t d |∆δ u.

Proof We have δ : t d |∆δ u Ñ tFd | F dp∆δq u because ∆δ is a fixpoint of δ˚ ˝ F d.

Let γ : c Ñ Fc and R P Rpcq be such that R ď γ˚
`

F cpRq
˘

and let f : c Ñ d be an
homomorphism from γ to δ.

We prove R ď f˚p∆δq by equivalently showing f!pRq ď ∆δ establishing that f!pRq is a
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post-fixpoint of δ˚ ˝ F d. Indeed,

R ď γ˚
`

F cpRq
˘

, by assumption

ď γ˚pF cpf
˚pf!pRqqqq , as f! % f˚

ď γ˚ppFfq˚pF dpf!pRqqqq , by Lemma 2.4(ii)

“ f˚pδ˚pF dpf!pRqqqq , as f : pc, γq Ñ pd, δq

and therefore f!pRq ď δ˚pF dpf!pRqqq. l

Definition 2.11 A co-ipo is a poset whose opposite is an ipo. A C -indexed co-ipo is a
C -indexed poset R such that Rpcq is a co-ipo for all c P C .

By the dual of Pataria’s theorem [30], that monotone endofunctions on co-ipos have great-
est post-fixpoints, we obtain the following.

Corollary 2.12 For every C -indexed co-ipo with existential quantification R, every endo-
functor F on C , and every endofunctor F on GC pRq lifting it, final F -coalgebras lift to final
F -coalgebras.

We note that the above may be also established under slightly weaker hypothesis than
existential quantification.

Lemma 2.13 For a C -indexed poset R, let F be an endofunctor on C and F be an endofunc-
tor on GC pRq lifting it. For a coalgebra δ : d Ñ Fd, such that Rpdq is a co-ipo let ∆δ P Rpdq
be the greatest post-fixpoint of the monotone operator δ˚ ˝ F d.

For a coalgebra γ : t c |R u Ñ tFc |F cpRq u and a homomorphism f : c Ñ d from γ to δ, if
tS P Rpdq | R ď f˚pSq u is a sub co-ipo of Rpdq then f lifts to a morphism t c |R u Ñ t d |∆δ u.

Proof It suffices to show that tS P Rpdq | R ď f˚pSq u is invariant under δ˚ ˝ F d. In-
deed, if R ď f˚pSq, then F cpRq ď F c

`

f˚pSq
˘

ď pFfq˚
`

F dpSq
˘

and R ď γ˚
`

F cpRq
˘

ď

γ˚
`

pFfq˚pF dpSqq
˘

“ f˚
`

δ˚
`

F dpSq
˘˘

. l

3 Focused orthogonality fibrationally

We study focused orthogonality categories representing them in terms of Grothendieck cat-
egories of indexed complete lattices with existential quantification. This, together with the
study of the previous section, provides an axiomatic theory of fixpoint constructions in focused
orthogonality models of linear logic.

3.1 Focused orthogonality categories

We expand upon the exposition of focused orthogonality given in Section 1. A pole in a
category C is a subset ‚ Ď C ps, tq for a pair of distinguished objects s and t. To obtain a
model of intuitionistic linear logic one takes s to be the monoidal unit 1, while in the classical
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setting one further takes t to be its dual K. The focused orthogonality induced by a pole ‚ is
the family of relations t‚c Ď C ps, cq ˆ C pc, tq ucPC given by

x ‚c u ðñ pu ˝ xq P ‚ .

The defining property of focused orthogonalities is being reciprocal [20]; in the sense that, for
all morphisms x : s Ñ c, f : c Ñ d, and u : d Ñ t in C ,

pf ˝ xq ‚d u ðñ x ‚c pu ˝ fq . (2)

This plays a crucial role in the following section.
For a subset X Ď C ps, cq, its orthogonal XK Ď C pc, tq is given as below on the left

XK :“ tu : c Ñ t | @x P X.x K u u , UK :“ tx : s Ñ c | @u P U. x K u u

while, dually, for a subset U Ď C pc, tq, its orthogonal UK Ď C ps, cq is given as above on
the right. As it is standard, these definitions induce a Galois connection between Cpcq :“
`

P
`

C ps, cq
˘

,Ď
˘

and C˝pcq :“
`

P
`

C pc, tq
˘

,Ě
˘

. The fixpoints of the associated closure operator
on Cpcq, referred to as double orthogonally closed subsets, form complete lattices:

Dpcq :“ tX Ď C ps, cq | X “ XKK u . (3)

Definition 3.1 The focused orthogonality category O‚pC q of a category C with a pole
‚ Ď C ps, tq has objects given by pairs pc,Xq with c P C and X P Dpcq, and morphisms
f : pc,Xq Ñ pd, Y q given by morphisms f : c Ñ d in C such that

@ px : s Ñ cq P X. pf ˝ xq P Y . (4)

3.2 Focused orthogonality categories are relational fibrations

We need to introduce some notation.

(i) For a morphism f : c Ñ d in a category C , we respectively write

f˝ :“ C ps, fq : C ps, cq Ñ C ps, dq and ˝f :“ C pf, tq : C pd, tq Ñ C pc, tq

for the operations of post and pre composition with f .

(ii) For a function h : A Ñ B between sets, we write h˚ : PpBq Ñ PpAq for the inverse image
function and h! : PpAq Ñ PpBq for its left adjoint. In elementary terms,

h˚pT q :“ t a P A | hpaq P T u and h!pSq :“ t b P B | D a P S. hpaq “ b u .

For the rest of the section, let f : c Ñ d be a morphism in a category C with a pole
‚ Ď C ps, tq. Since, for x : s Ñ c in C and V Ď C pd, tq,

x P pf˝q˚pV Kq ðñ @ v P V. pf ˝ xq K v and x P
`

p˝fq!pV q
˘K

ðñ @ v P V. x K pv ˝ fq

8
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we have
`

p˝fq!pV q
˘K

“ pf˝q˚pV Kq for all V Ď C pd, tq

and obtain the commutative diagram on the left below that recasts reciprocity as a lifting
property by duality:

Cpcq

C˝pcq

Cpdq

C˝pdq

pf˝q˚

p˝fq!

p´qKp´qK

C˝pcq

Cpcq

C˝pdq

Cpdq
ùñ

p˝fq!

pf˝q˚

p´qKp´qK (5)

Then, as pf˝q˚ : Cpdq Ñ Cpcq lifts along the right adjoints p´qK, it also lifts along the
forgetful functors from their induced categories of algebras; that is, in this case, it restricts to
double orthogonally closed subsets. We spell out the details.

In (5), the diagram on the left has as mate the diagram on the right; that is,
`

pf˝q˚pY q
˘K

Ď p˝fq!pY
Kq for all Y Ď C ps, dq .

Pasting these two diagrams, we obtain a distributive law:

C˝pcq

Cpcq

C˝pdq

Cpdq
ùñ

pf˝q˚

pf˝q˚

p´qKKp´qKK

that is,
`

pf˝q˚pY q
˘KK

Ď pf˝q˚pY KKq for all Y Ď C ps, cq. Thus, pf˝q˚ : Cpdq Ñ Cpcq
restricts to a meet-preserving monotone function Dpdq Ñ Dpcq between complete lattices.

The above development results in a representation theorem for focused orthogonality cate-
gories in terms of Grothendieck categories of indexed complete lattices with existential quan-
tification.

Definition 3.2 A C -indexed complete lattice is a C -indexed poset R such that Rpcq is a
complete lattice for all c P C .

Theorem 3.3 Every category C with a pole ‚ induces a C -indexed complete lattice with
existential quantification D whose Grothendieck category GC pDq is isomorphic to the focused
orthogonality category O‚pC q.

Proof Consider the indexed family tDpcq ucPC of double orthogonally closed subsets (3) with
action Dpfq :“ pf˝q˚ : Dpdq Ñ Dpcq for all f : c Ñ d in C . Note that the condition
X Ď DpfqpY q is equivalent to the statement (4). l

Corollary 3.4 Let C be a category with a pole ‚. For every endofunctor F on C and every
endofunctor F on O‚pC q lifting it, F has an initial algebra (resp. final coalgebra) if and only
if so does F .

9
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4 Models of linear logic with fixpoints

4.1 Categorical models

We provide an alternative presentation of the notion of categorical model of classical linear
logic with fixpoints given by Ehrhard and Jafarrahmani [9, Definition 7]. Our approach is
adaptable to the intuitionistic setting which we also include.

We restrict attention to the specification of linear logic types; we omit the specification of
the logical system, the categorical models of which are well known. The treatment of fixpoint
operators requires the consideration of types with variance in contexts of type variables with
variance. To this end, we introduce judgements for types of the form Γ $ τ : v where v ranges
over the set of sorts V :“ t`,´u, Γ ranges over V-sorted contexts, and τ ranges over types.
The sorts are used to indicate the intended variance, with ` (positive) standing for covariance
and ´ (negative) standing for contravariance; as such the dual sort v of a sort v is given by
` “ ´ and ´ “ `.

The core judgement rules of the types of linear logic are:

Γ $ x : v
px : v in Γq

Γ $ o : `

`

o in t1, 0,Ju
˘

Γ $ τ1 : v Γ $ τ2 : v

Γ $ τ1 o τ2 : v

`

o in tb,‘,&u
˘ Γ $ τ : v

Γ $ ! τ : v

In classical linear logic, these are extended with:

Γ $ K : `

Γ $ τ1 : v Γ $ τ2 : v

Γ $ τ1 ` τ2 : v

Γ $ τ : v

Γ $ ? τ : v

Γ $ τ : v

Γ $ τK : v

while in intuitionistic linear logic they are extended with:

Γ $ τ1 : v Γ $ τ2 : v

Γ $ τ1 ⊸ τ2 : v

A model of classical linear logic (resp. intuitionistic linear logic) is a ‹-autonomous (resp.
symmetric monoidal closed bicartesian) category with a linear exponential comonad [34,32,29].
For both classical and intuitionistic models L , every judgement x1 : v1, . . . , xn : vn $ τ : v has
a standard interpretation functor L v1 ˆ ¨ ¨ ¨ ˆ L vn Ñ L v, where L ` :“ L and L ´ :“ L op.
The class of interpretation functors induced by judgements forms a V-sorted concrete clone L

on L .

We recall the notion of parameterised fixpoint (see, for instance, Fiore [11, Chapter 6]). A
functor F : D ˆ C Ñ C is said to have parameterised initial algebras (resp. final coalgebras)
whenever, for all d P D , the endofunctor F pd,´q on C has an initial algebra (resp. final
coalgebra), say µF pdq

`

resp. νF pdq
˘

, in which case the structure canonically extends to a
functor µF : D Ñ C (resp. νF : D Ñ C ).

A V-sorted concrete clone of functors F “ tFσ,v Ď rC σ,C vs uσPV‹ ,vPV, where C ps1,...,snq :“
C s1 ˆ ¨ ¨ ¨ ˆ C sn , is said to have parameterised fixpoints whenever every F P Fps1,...,sn,vq,v has
parameterised initial algebras and final coalgebras, and their induced functors µF and νF are
in Fps1,...,snq,v.
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A model of linear logic with fixpoints is a model of linear logic L on which there is a
V-sorted concrete clone of functors with parameterised fixpoints containing the V-sorted clone
L on L . This notion of model is in line with the general notion of model for second-order
equational presentations [12] and allows for a canonical interpretation of the extension of the
linear logic typing judgements with rules for least and greatest fixpoints as follows:

Γ, x : v $ τ : v

Γ $ ϕx. τ : v
pϕ in tµ, νuq

4.2 Focused orthogonality models

Theorem 4.1 (Hyland and Schalk [23]) For a model of classical linear logic L with a
distributive law L p1,´q Ñ L p1, !´q and a pole ‚ Ď L p1,Kq between the monoidal units,
the induced focused orthogonality category O‚pL q is a model of classical linear logic and the
forgetful functor to L preserves the structure strictly.

There is an analogous theorem for models of intuitionistic linear logic for which the reader
is referred to Hyland and Schalk [23].

The following result is a consequence of the theorem above and Corollary 3.4.

Theorem 4.2 Under the hypothesis of Theorem 4.1, if L is a model of linear logic with
fixpoints then so is O‚pL q and the forgetful functor to L preserves the structure strictly.

4.3 Examples

A variety of models of linear logic are instances of focused orthogonality constructions. We
examine examples to which Theorem 4.2 applies and thereby yield models with fixpoints. As
not all orthogonality models of linear logic are instances of focused orthogonality constructions,
we also discuss the cases of coherence and finiteness spaces to which our results may be applied,
even though these models do not arise from focused orthogonalities in the relational model.

Example 4.3
`

Phase spaces [18]
˘

Consider a commutative monoid pM,e, ¨q and a subset

‚Ď M . For a subset X Ď M , its orthogonal is defined as XK :“ t y P M | @x P M,x ¨y P‚ u.
Subsets satisfying X “ XKK are called facts and provide a complete provability semantics for
linear logic. The commutative monoid M can be considered as a compact closed category M

with a single object ‚ (being both 1 and K). The pole ‚ Ď M p‚, ‚q corresponds to a subset
of M and one can reformulate the phase model within the setting of focused orthogonality
(except for the exponential structure which is defined differently). Therefore, one can interpret
least and greatest fixpoints of multiplicative and additive linear logic types in phase semantics
to provide a Tarskian sound model of µMALL [5].

The category Rel of sets and relations between them is one of the most basic models of
linear logic, with many other models arising as refinements of it. Being compact closed, it
is a degenerate model. The monoidal units are singletons and there are only two non-trivial
focused orthogonalities on Rel given by the poles t∅ u and t tidu u.

11
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Example 4.4 The model of non-uniform totality spaces studied by Ehrhard and Jafarrah-
mani [9] corresponds to the focused orthogonality category Rel‚ induced by the pole ‚“
t tidu u. Explicitly, for a set A and a subset X Ď Relp1, Aq – PpAq, one has:

XK “ t y P PpAq | @x P X, y ˝ x “ id u “ t y P PpAq | @x P X,x X y ‰ ∅ u .

The induced category is a model of µLL that provides a normalization theorem for proofs.

One can generalize the relational model by considering the category of weighted relations
(or matrices) RelS over a continuous semiring S [27,26]. Standard examples are the Boolean
semiring ptt, fu,_,^, f , tq, the completed natural numbers N “ pN Y t8u,`, ¨, 0, 1q, and the
completed non-negative reals R` “ pR` Y t8u,`, ¨, 0, 1q. Objects of RelS are sets and
a morphism from A to B is a function f : A ˆ B Ñ S (also called an S-matrix). The
composite of f : A ˆ B Ñ S and g : B ˆ C Ñ S is the function A ˆ C Ñ S given by
pg ˝ fqpa, cq :“

ř

bPB fpa, bq ¨ gpb, cq. Since RelSp1,Kq – S, a pole consists of a subset of S.

Example 4.5 The model of probabilistic coherence spaces PCoh by Danos and Ehrhard [4]
can be obtained as a focused orthogonality category on Rel

R`
with pole r0, 1s Ď R`. The

associated coKleisli category provides a fully abstract model of probabilistic PCF [10] with
a fixpoint operator for terms that may be obtained as an application of our results in Sec-
tion 5 (see Example 5.9).

Hamano [20] considered a continuous extension of PCoh based on the category of measur-
able spaces and s-finite transition kernels. Even if not providing monoidal closed structure, his
construction involves a focused orthogonality. Indeed, taking the same pole ‚ :“ r0, 1s Ď R`,
for a measurable space pA,Σq, a measure µ viewed as a morphism p1,P1q Ñ pA,Σq, and
a measurable function f viewed as a morphism pA,Σq Ñ p1,P1q, one has µ ‚pA,Σq f iff
ş

A
f dµ ď 1.

Example 4.6 Orthogonality can be also used to relate models. For instance, by considering
the qualitative linear logic model ScottL, whose objects are preorders and morphisms are
ideal binary relations, the category of preorders and projections introduced by Ehrhard [8]
can be obtained as a subcategory of the focused orthogonality model pScottL ˆ Relq‚ with
pole ‚:“ t pid, idq u. A reflexive object in this setting, obtained by lifting reflexive objects
from ScottL and Rel, allows the translation of normalization theorems between idempotent
and non-idempotent typing systems [7].

Example 4.7 Coherence spaces, first introduced by Girard [16] to give a denotational se-
mantics for System F, led to the discovery of linear logic through the linear decomposition of
stable functions. The category of coherence spaces Coh can be obtained as an orthogonal-
ity construction on Rel: two subsets of a set are orthogonal whenever their intersection has
cardinality at most one.

The orthogonality for coherence spaces in Rel is not focused; however, in Coh one can
consider the refinement of coherence spaces with totality that corresponds to the focused or-
thogonality category Coh‚ with pole ‚ :“ t tidu u Ď Cohp1,Kq.

Example 4.8 The model of (differential) linear logic of finiteness spaces by Ehrhard [6] is
based on an orthogonality in Rel that captures finite computations: two subsets of a set
are orthogonal whenever their intersection is finite. This is however not focused and thus

12
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one cannot directly apply the results developed in the paper. Tasson and Vaux [40] studied
conditions for lifting endofunctors on Rel to Fin and showed how to calculate least fixpoints
for a subclass of linear logic formulas. It remains to be seen whether finiteness spaces provide
a model for µLL. Instead, one can extend the model by considering a weighted version of
finiteness spaces over Rel

N
with pole ‚ :“ N Ď N, obtaining a focused model of linear logic

with fixpoints.

5 Domain-theoretic models

After Freyd [13], the category-theoretic solution of recursive type equations, where one is
interested in fixpoints of recursive types with mixed variance, is based on the notion of algebraic
compactness asserting the coincidence of initial algebras and final coalgebras. In domain-
theoretic models, this in turn arises from the limit/colimit coincidence in the order-enriched
setting [33,42,36].

We write Cpo for the category of cpos (ω-chain complete partial orders) and continuous
functions between them.

Theorem 5.1 (Fiore [11, Chapter 7]) Let a kind be a Cpo-category with ep-zero (viz. a
zero object such that every morphism with it as source is an embedding) and colimits of
ω-chains of embeddings.

Every kind is Cpo-algebraically compact; that is, every Cpo-endofunctor on it has a bifree
algebra (viz. an initial algebra whose inverse is a final coalgebra).

In domain-theoretic models of linear logic, fixpoint operators arise naturally and are typi-
cally charaterized by the axiom of uniformity.

Definition 5.2 (i) A fixpoint operator on a category D with a terminal object J is a family
of functions p´q: : Dpd, dq Ñ DpJ, dq indexed by the objects d of D such that f : “ f ˝f :

for all endomorphisms f on d.

(ii) Let C and D be categories with terminal object, and let J : C Ñ D be a bijective-on-
objects functor preserving terminal objects. A fixpoint operator p´q: on D is said to be
J-uniform if for every h : c Ñ d in C and f : c Ñ c, g : d Ñ d in D ,

Jphq ˝ f “ g ˝ Jphq implies Jphq ˝ f : “ g: .

The following is a consequence of the study of fixpoint operators by Simpson and Plotkin [35].

Corollary 5.3 For a kind D equipped with a Cpo-comonad S on it, the coKleisli category
DS has a unique J-uniform fixpoint operator for J : D Ñ DS the cofree functor of the adjoint
resolution of S.

The above results apply, for instance, to the relational model and the coherence space
model (for the quantitative and qualitative comonads) of linear logic. We now proceed to
show that further examples arise from Grothendieck categories in general and from focused
orthogonality in particular.

The following definition and theorem are instances of Section 5 of Cattani, Fiore, and
Winskel [3] where the categorified scenario is considered. We will write Cppo for the full
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subcategory of Cpo consisting of the pointed cpos (that is, those with bottom element) and
let CppoK be the subcategory of Cppo consisting of the strict (that is, bottom-element
preserving) functions.

Definition 5.4 An admissible D-indexed poset for a CppoK-category D is a Poset-functor
R : Dop Ñ Poset such that the poset Rpdqop is a cppo for all d P D and the monotone
function Dpc, dq Ñ PosetpRpdqop,Rpcqopq : f ÞÑ pf˚qop is strict continuous for all c, d P D .

Theorem 5.5 For a kind D and an admissible D-indexed poset R, the Grothendieck category
GDpRq is a kind and the forgetful functor to D preserves the structure strictly.

Proof (outline) Since p
Ž

n fnq˚ “
Ź

n pfnq˚ : Rpdq Ñ Rpcq for every ω-chain f in Dpc, dq,
the Grothendieck category GDpRq Cpo-enriches. Since, the reindexing pKc,dq˚ : Rpdq Ñ Rpcq
along the bottom element Kc,d P Dpc, dq is constantly the top element of Rpcq, the ep-zero of
GDpRq consists of the ep-zero K of D paired with the top element of RpKq. The colimiting
cone x en : pdn, Rnq Ñ pd,Rq yn of an ω-chain of embeddings x pdn, Rnq Ñ pdn`1, Rn`1q yn
in GDpRq consists of the colimiting cone of embeddings x en : dn Ñ d yn of the ω-chain of
embeddings x dn Ñ dn`1 yn in D with R :“

Ź

n ppnq˚pRnq P Rpdq for pn the projection of
en. l

Finally, we investigate focused orthogonality in this domain-theoretic setting.

Definition 5.6 An admissible pole for a CppoK-category D is a pole that is a sub-cppo of
Dps, tq.

Lemma 5.7 For a CppoK-category with an admissible pole, the indexed poset of double or-
thogonally closed sets is admissible.

Corollary 5.8 For a kind D with an admissible pole ‚, the focused orthogonality category
O‚pDq is a kind and the forgetful functor to D preserves the structure strictly.

Example 5.9 The weighted relational model Rel
R`

(see Example 4.5) is a kind and the

pole ‚ :“ r0, 1s Ď R` is admissible. Corollaries 5.8 and 5.3 provide then a uniform fixpoint
operator on the coKleisli category of probabilistic coherence spaces which allows us to recover
the fixpoint operator for terms of [4].

On the other hand, totality models are tools to provide a denotational account of normal-
ization and therefore do not have fixpoint operators. In particular, note that for the totality
models presented in Section 4.3 the underlying orthogonality construction is done with the
singleton pole

 

tidu
(

which does not contain the empty relation and is therefore not admis-
sible.

Conclusion

Recasting focused orthogonality constructions within a relational fibration framework, we have
developed a categorical theory to construct new models of linear logic with fixpoints by means
of lifting initial algebras and final coalgebras from the base model to the focused orthogonality
one. Our method is widely applicable: it allows to re-explain the totality model of µLL studied
by Ehrhard and Jafarrahmani [9] and opens the way for refining a variety of other models
besides the relational one. In connection to this, Tsukada and Asada [41] provided a unified
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framework based on module theory to make the linear algebraic aspect of models of linear logic
explicit. In particular, they considered models of intuitionistic linear logic based on categories
of R-modules and linear maps for R a Σ-semiring. It would be interesting to investigate
fixpoint constructions in these models and thereafter consider refinements of them using our
theory for focused orthogonalities. The same applies to their discussion of models of classical
linear logic.

Our lifting theorems further extend from relational fibrations to categorical fibrations. In
future work, we aim to use these results to obtain a theory of fixpoint constructions for general
glueing and double-glueing models. Since double glueing constructions have been extensively
used to study full completeness by refining models to contain only morphisms that are the
interpretation of proof terms [28], we aim to also use our results to construct fully complete
models of linear logic with fixpoints.

While we have considered fixpoint operators in the induced cartesian closed category of
domain-theoretic models of linear logic, we also aim to explore lifting theorems for traces [24]
in the linear base model. Many orthogonality and (double) glueing constructions are indeed
done on a compact closed category (which has a canonical trace) and the refinement induced
by the orthogonality usually eliminates this degeneracy. Understanding whether one can lift
this canonical trace to orthogonality or double-glued categories would provide a new method
for constructing traced categories for intuitionistic models.
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