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Abstract

Orthogonality is a notion based on the duality between programs and their environments used to determine when they can
be safely combined. For instance, it is a powerful tool to establish termination properties in classical formal systems. It was
given a general treatment with the concept of orthogonality category, of which numerous models of linear logic are instances,
by Hyland and Schalk. This paper considers the subclass of focused orthogonalities.
We develop a theory of fixpoint constructions in focused orthogonality categories. Central results are lifting theorems for
initial algebras and final coalgebras. These crucially hinge on the insight that focused orthogonality categories are relational
fibrations. The theory provides an axiomatic categorical framework for models of linear logic with least and greatest fixpoints
of types.
We further investigate domain-theoretic settings, showing how to lift bifree algebras, used to solve mixed-variance recursive
type equations, to focused orthogonality categories.

Keywords: Orthogonality; linear logic; categorical models; fixpoint constructions; inductive, coinductive, and recursive
types.

Introduction

Linear logic with fixpoints

Propositional linear logic lacks datatypes with iteration or recursion principles. This is usually remedied
by extending it to the second order, thus defining a logical system in which Girard’s System F [19] can
be embedded. Even if such a system is very expressive in terms of computable functions, its algorithmic
expressiveness is poor: for instance, it is not possible to write a term

that computes the predecessor function in one (or a uniformly bounded) number of reduction steps.
Girard first considered an extension of linear logic with fixpoints of formulas in an unpublished note [17].

However, the first comprehensive proof-theoretic investigation of such a system was given by Baelde [2]
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who introduced and studied µMALL, an extension of multiplicative additive linear logic with induction and
coinduction principles, with motivations coming from proof-search and system verification. Linear logic ex-
ponentials were not considered in µMALL; they could be somewhat encoded with inductive and coinductive
types though without their denotational interpretation satisfying the required Seely isomorphisms.

Ehrhard and Jafarrahmani [9] introduced a system µLL extending µMALL with exponentials and studied
it from the Curry-Howard-Lambek perspective. Their notion of categorical model of µLL is an extension
of the standard notion of Seely category for classical linear logic with suitable initial algebras and final
coalgebras. Specifically, they presented a totality model of µLL that is an instance of a general categorical
construction developed in this paper. In the totality model, least and greatest fixpoints are calculated
by lifting initial algebras and final coalgebras from the relational model. Here, by viewing it as a special
case of a focused orthogonality construction, we are able to develop a general methodology for constructing
models of linear logic with fixpoints.

Orthogonality and glueing for models of linear logic

Logical relations [38,31,37] are by now a standard tool in the theory of programming languages to certify
program properties that cannot be obtained by naive induction arguments. The basic idea is to associate
to each type a predicate that is preserved by the operations on the type. Such predicates depend on the
program property that one is interested in proving (termination, type safety, parametricity, etc.) and their
use provides a powerful proof method.

Orthogonality methods originate from the semantics of linear logic and are particularly well-suited for
languages modelling classical negation [15]. The general principle is to restrict attention to pairs of terms
and contexts in a pole ‚ Ď Terms ˆ Contexts that contains correct computations. For a set of terms
T Ď Terms, one can then consider the set of all contexts TK Ď Contexts that yield a correct computation
when combined with any term in T . Dually, for a set of contexts C Ď Contexts, one can consider the
set of all terms CK Ď Terms that yield a correct computation when combined with any context in C.
These constructions yield a duality between subsets of terms and subsets of contexts, and one associates
to each type a subset of terms T that is equal to its double dual TKK. Such dualities between terms and
environments (or player and opponent) form the basis of game semantics [22] and of Krivine’s classical
realizability [25].

Logical relations have a categorical abstraction given by Artin-Wraith glueing [43], while orthogonality
constructions are obtained via Hyland-Schalk double glueing [23]. Here, we will be particularly interested
in a well-behaved subclass of orthogonality categories arising from poles and referred to as focused orthogo-
nality categories. These, we will recast as relational fibrations and therefrom develop a general categorical
theory that lifts initial algebras and final coalgebras to focused orthogonality categories, and therefore
provides models of linear logic with least and greatest fixpoints.

Structure of the paper
‚ We start by recalling the notion of orthogonality category by Hyland and Schalk in Section 1.
‚ In Section 2, we develop a theory of fixpoint constructions for relational fibrations by lifting initial

algebras and final coalgebras to the Grothendieck category of a relational fibration.
‚ We show in Section 3 that focused orthogonality models are instances of relational fibrations. This

provides us with a general categorical construction to obtain models of linear logic with least and greatest
fixpoints. A variety of examples is considered in Section 4.

‚ Finally, in Section 5, we show how to lift bifree algebras to focused orthogonality categories in an
axiomatic domain-theoretic setting.

1 Preliminaries on orthogonality categories

From a categorical viewpoint, logical relations can be presented using glueing constructions, also called
Artin-Wraith glueing, sconing, or Freyd covering [1,43,14]. These allow the lifting of monoidal (or cartesian)
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closed structure to glueing categories. Orthogonality methods fit into the more general framework of double-
glueing constructions by Hyland, Schalk, and Tan [39,23] which is tailored to ‹-autonomous categories. The
general idea is to associate two predicates with each type: one for the type and another one for its dual.

For a ‹-autonomous category C with monoidal units 1 and K, an orthogonality relation K is a family
of subsets

Kc Ď C p1, cq ˆ C pc,Kq

indexed by objects c P C and verifying some compatibility conditions with respect to the linear logic
structure [23]. For a subset X Ď C p1, cq, its orthogonal XK Ď C pc,Kq is given by XK :“ t y : c Ñ K |

@x P X.x Kc y u with the idea that XK contains the environments (or counter-terms) that yield a correct
computation (with respect to the chosen orthogonality relation) when combined with any term in X. Dually,
for a subset Y Ď C pc,Kq, its orthogonal Y K Ď C p1, cq is given by Y K :“ tx : 1 Ñ c | @ y P Y. x Kc y u. We
restrict attention subsets of global elements that are double orthogonally closed and define the orthogonality
category induced by tKcucPC to have objects given by pairs pc,Xq with X “ XKK Ď C p1, cq and morphisms
pc,Xq Ñ pd, Y q given by morphisms f : c Ñ d in C such that:

@x P X. fx P Y and @ y P Y K. yf P XK . (1)

Provided that some conditions on C and the orthogonality relation tKcucPC hold, if C is a model of
classical linear logic then so is the induced orthogonality category, and the forgetful functor preserves the
linear logic structure strictly [23]. In this paper, we will restrict to the special case where the orthogonality
relation arises from a distinguished subset ‚ Ď C p1,Kq, referred to as a pole, as follows:

‚c :“ t px, yq P C p1, cq ˆ C pc,Kq | y x P ‚ u .

Such orthogonality relations are called focused and for them the two conditions in (1) above are equiv-
alent [23]. This property will crucially allow us to subsume focused orthogonality categories within a
fibrational setting and, from the theory of fixpoint constructions for relational fibrations of the following
section, we will obtain models of linear logic with least and greatest fixpoints.

2 Fixpoint constructions in relational fibrations

This section develops a general method to lift initial algebras and final coalgebras form the base category
of a relational fibration to its total category.

2.1 Relational fibrations

We start by recalling some basic properties of relational fibrations.

Definition 2.1 A C -indexed poset is a contravariant functor from a category C to the category Poset of
posets and monotone functions between them.

For an indexed poset R : C op Ñ Poset, a morphism f : c Ñ d in C , and S P Rpdq, it is customary to
write f˚pSq for RpfqpSq P Rpcq. For R P Rpcq, we moreover write f : R Ą S for R ď f˚pSq.

Definition 2.2 The Grothendieck category GC pRq of a C -indexed poset R : C op Ñ Poset has objects
given by pairs t c |R u with c P C and R P Rpcq, and morphisms f : t c |R u Ñ t d |S u given by morphisms
f : c Ñ d in C such that f : R Ą S in Rpcq. Identities and composition are given as in C .

The forgetful functor U : GC pRq Ñ C is a Grothendieck fibration with partially-ordered fibers. Note
that, for every c P C , R ď R1 in Rpcq if and only if idc : t c |R u Ñ t c |R1 u in GC pRq.

We refer to U as the relational fibration of the C -indexed poset R. The cartesian lifting of f : c Ñ d in
C with respect to t d |S u P GC pRq is the morphism f : t c |f˚S u Ñ t d |S u in GC pRq.
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Definition 2.3 For a C -indexed poset R, we say that an endofunctor F on GC pRq is a lifting of an
endofunctor F on C whenever the following diagram commutes

C

GC pRq

C

GC pRq

F

F

UU

We let F be a lifting of F as above for the rest of the section.
For t c |R u P GC pRq, we write F cpRq for the element in RpFcq given by F t c |R u; in other words, we

let F t c |R u “ tFc | F cpRq u. Therefore, for all f : t c |R u Ñ t d |S u in GC pRq, since F pfq “ F pfq, we
have that F cpRq ď pFfq˚

`

F dpSq
˘

in RpFcq. This has the following direct consequences.

Lemma 2.4 (i) For all c P C , the function F c : Rpcq Ñ RpFcq is monotone.
(ii) For all f : c Ñ d in C and S P Rpdq, F c

`

f˚pSq
˘

ď pFfq˚
`

F dpSq
˘

in RpFcq.

2.2 Initial-algebra lifting theorem

By Lemma 2.4(i), every coalgebra γ : c Ñ Fc induces the monotone operator

Rpcq
F c
ÝÑ RpFcq

γ˚

ÝÑ Rpcq .

A lifting of the F -coalgebra γ to an F -coalgebra amounts to providing a post fixpoint of γ˚ ˝ F c; that is,
an R P Rpcq such that R ď γ˚

`

F cpRq
˘

. On the other hand, a lifting of an F -algebra δ : Fd Ñ d amounts
to providing an S P Rpdq such that F dpSq ď δ˚pSq.

We now consider homomorphisms from a coalgebra γ : c Ñ Fc to an algebra δ : Fd Ñ d as given by
morphisms f : c Ñ d such that the following diagram commutes:

Fc
Ff //Fd

δ
��

c

γ

OO

f
// d

Lemma 2.5 For a coalgebra γ : c Ñ Fc, the least pre-fixpoint ∇γ P Rpcq of the monotone operator γ˚ ˝F c,
whenever it exists, provides a lifting of γ such that for all liftings S P Rpdq of an algebra δ : Fd Ñ d, every
homomorphism c Ñ d from γ to δ lifts to a morphism t c |∇γ u Ñ t d |S u.

Proof We have γ : t c |∇γ u Ñ tFc | F cp∇γq u because ∇γ is a fixpoint of γ˚ ˝ F c.
Let δ : Fd Ñ d and S P Rpdq be such that F dpSq ď δ˚pSq and let f : c Ñ d be an homomorphism from

γ to δ.
By Lemma 2.4(ii) and the assumption on S, we have

F c

`

f˚pSq
˘

ď pFfq˚
`

F dpSq
˘

ď pFfq˚
`

δ˚pSq
˘

and hence
pγ˚ ˝ F cq

`

f˚pSq
˘

ď
`

δ ˝ pFfq ˝ γ
˘˚

pSq “ f˚pSq ;

that is, f˚pSq is a pre-fixpoint of γ˚ ˝ F c. Therefore, ∇γ ď f˚pSq as required. l

Theorem 2.6 For an initial F -algebra α : Fa Ñ a, if the monotone operator pα´1q˚ ˝ F a on Rpaq has a
least pre-fixpoint ∇α then α : tFa | F ap∇αq u Ñ t a |∇α u is an initial F -algebra.
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Proof For every F -algebra δ : tFd | F dpSq u Ñ t d | S u the unique homomorphism upδq : a Ñ d from
α : Fa Ñ a to δ : Fd Ñ d is a homomorphism from α´1 : a Ñ Fa to δ : Fd Ñ d and, by Lemma 2.5, it is
also the unique homomorphism from α : tFa | F ap∇αq u Ñ t a |∇α u to δ : tFd | F dpSq u Ñ t d |S u. l

Let α : Fa Ñ a be an initial algebra and, for an algebra δ : Fd Ñ d, let upδq : a Ñ d be the
unique homomorphism from α to δ. In the situation of the theorem, initial algebras α satisfy the following
property:

for every algebra δ : Fd Ñ d and S P Rpdq, if δ : F dpSq Ą S then upδq : ∇α Ą S .

This provides an abstract general form of induction principle. Indeed, in particular, one has:

for every S P Rpaq, if F apSq ď α˚pSq then ∇α ď S .

As advocated by Hermida and Jacobs [21, Definition 3.1], the standard induction principle is recovered
when ∇α is the greatest element Ja of Rpaq, in which case one has:

for every algebra δ : Fd Ñ d and S P Rpdq, if δ : F dpSq Ą S then upδq˚pSq “ Ja

and, in particular, that:

for every S P Rpaq, if F apSq ď α˚pSq then S “ Ja .

An ipo (inductive poset) is a poset with a least element and joins of directed subsets. Such posets are
particularly relevant to us here because of Pataraia’s constructive theorem that every monotone endofunc-
tion on an ipo has a least pre-fixpoint [30].

Definition 2.7 A C -indexed ipo is a C -indexed poset R such that Rpcq is an ipo for all c P C .

Corollary 2.8 For every C -indexed ipo R, every endofunctor F on C , and every endofunctor F on GC pRq

lifting it, initial F -algebras lift to initial F -algebras.

2.3 Final-coalgebra lifting theorem

Definition 2.9 A C -indexed poset R is said to have existential quantification whenever, for all f : a Ñ b
in C , the monotone function f˚ : Rpbq Ñ Rpaq has a left adjoint, for which we write f! : Rpaq Ñ Rpbq.

Lemma 2.10 For a C -indexed poset R with existential quantification, let F be an endofunctor on C and
F be an endofunctor on GC pRq lifting it.

For a coalgebra δ : d Ñ Fd, the greatest post-fixpoint ∆δ P Rpdq of the monotone operator δ˚ ˝ F d,
whenever it exists, provides a lifting of δ such that for all liftings R P Rpcq of a coalgebra γ : c Ñ Fc, every
homomorphism c Ñ d from γ to δ lifts to a morphism t c |R u Ñ t d |∆δ u.

Proof We have δ : t d |∆δ u Ñ tFd | F dp∆δq u because ∆δ is a fixpoint of δ˚ ˝ F d.
Let γ : c Ñ Fc and R P Rpcq be such that R ď γ˚

`

F cpRq
˘

and let f : c Ñ d be an homomorphism
from γ to δ.

We prove R ď f˚p∆δq by equivalently showing f!pRq ď ∆δ establishing that f!pRq is a post-fixpoint of
δ˚ ˝ F d. Indeed,

R ď γ˚
`

F cpRq
˘

, by assumption

ď γ˚pF cpf
˚pf!pRqqqq , as f! % f˚

ď γ˚ppFfq˚pF dpf!pRqqqq , by Lemma 2.4(ii)

“ f˚pδ˚pF dpf!pRqqqq , as f : pc, γq Ñ pd, δq

and therefore f!pRq ď δ˚pF dpf!pRqqq. l

Definition 2.11 A co-ipo is a poset whose opposite is an ipo. A C -indexed co-ipo is a C -indexed poset
R such that Rpcq is a co-ipo for all c P C .
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By the dual of Pataria’s theorem [30], that monotone endofunctions on co-ipos have greatest post-
fixpoints, we obtain the following.

Corollary 2.12 For every C -indexed co-ipo with existential quantification R, every endofunctor F on C ,
and every endofunctor F on GC pRq lifting it, final F -coalgebras lift to final F -coalgebras.

We note that the above may be also established under slightly weaker hypothesis than existential
quantification.

Lemma 2.13 For a C -indexed poset R, let F be an endofunctor on C and F be an endofunctor on GC pRq

lifting it. For a coalgebra δ : d Ñ Fd, such that Rpdq is a co-ipo let ∆δ P Rpdq be the greatest post-fixpoint
of the monotone operator δ˚ ˝ F d.

For a coalgebra γ : t c |R u Ñ tFc |F cpRq u and a homomorphism f : c Ñ d from γ to δ, if tS P Rpdq |

R ď f˚pSq u is a sub co-ipo of Rpdq then f lifts to a morphism t c |R u Ñ t d |∆δ u.

Proof It suffices to show that tS P Rpdq | R ď f˚pSq u is invariant under δ˚ ˝ F d. Indeed, if R ď f˚pSq,
then F cpRq ď F c

`

f˚pSq
˘

ď pFfq˚
`

F dpSq
˘

and R ď γ˚
`

F cpRq
˘

ď γ˚
`

pFfq˚pF dpSqq
˘

“ f˚
`

δ˚
`

F dpSq
˘˘

.l

3 Focused orthogonality fibrationally

We study focused orthogonality categories representing them in terms of Grothendieck categories of indexed
complete lattices with existential quantification. This, together with the study of the previous section,
provides an axiomatic theory of fixpoint constructions in focused orthogonality models of linear logic.

3.1 Focused orthogonality categories

We expand upon the exposition of focused orthogonality given in Section 1. A pole in a category C is a
subset ‚ Ď C ps, tq for a pair of distinguished objects s and t. To obtain a model of intuitionistic linear
logic one takes s to be the monoidal unit 1, while in the classical setting one further takes t to be its dual
K. The focused orthogonality induced by a pole ‚ is the family of relations t‚c Ď C ps, cq ˆ C pc, tq ucPC
given by

x ‚c u ðñ pu ˝ xq P ‚ .

The defining property of focused orthogonalities is being reciprocal [20]; in the sense that, for all morphisms
x : s Ñ c, f : c Ñ d, and u : d Ñ t in C ,

pf ˝ xq ‚d u ðñ x ‚c pu ˝ fq . (2)

This plays a crucial role in the following section.
For a subset X Ď C ps, cq, its orthogonal XK Ď C pc, tq is given as below on the left

XK :“ tu : c Ñ t | @x P X.x K u u , UK :“ tx : s Ñ c | @u P U. x K u u

while, dually, for a subset U Ď C pc, tq, its orthogonal UK Ď C ps, cq is given as above on the right.
As it is standard, these definitions induce a Galois connection between Cpcq :“

`

P
`

C ps, cq
˘

,Ď
˘

and
C˝pcq :“

`

P
`

C pc, tq
˘

,Ě
˘

. The fixpoints of the associated closure operator on Cpcq, referred to as double
orthogonally closed subsets, form complete lattices:

Dpcq :“ tX Ď C ps, cq | X “ XKK u . (3)

Definition 3.1 The focused orthogonality category O‚pC q of a category C with a pole ‚ Ď C ps, tq has
objects given by pairs pc,Xq with c P C and X P Dpcq, and morphisms f : pc,Xq Ñ pd, Y q given by
morphisms f : c Ñ d in C such that

@ px : s Ñ cq P X. pf ˝ xq P Y . (4)
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3.2 Focused orthogonality categories are relational fibrations

We need to introduce some notation.

(i) For a morphism f : c Ñ d in a category C , we respectively write

f˝ :“ C ps, fq : C ps, cq Ñ C ps, dq and ˝f :“ C pf, tq : C pd, tq Ñ C pc, tq

for the operations of post and pre composition with f .
(ii) For a function h : A Ñ B between sets, we write h˚ : PpBq Ñ PpAq for the inverse image function

and h! : PpAq Ñ PpBq for its left adjoint. In elementary terms,

h˚pT q :“ t a P A | hpaq P T u and h!pSq :“ t b P B | D a P S. hpaq “ b u .

For the rest of the section, let f : c Ñ d be a morphism in a category C with a pole ‚ Ď C ps, tq. Since,
for x : s Ñ c in C and V Ď C pd, tq,

x P pf˝q˚pV Kq ðñ @ v P V. pf ˝ xq K v and x P
`

p˝fq!pV q
˘K

ðñ @ v P V. x K pv ˝ fq

we have
`

p˝fq!pV q
˘K

“ pf˝q˚pV Kq for all V Ď C pd, tq

and obtain the commutative diagram on the left below that recasts reciprocity as a lifting property by
duality:

Cpcq

C˝pcq

Cpdq

C˝pdq

pf˝q˚

p˝fq!

p´qKp´qK

C˝pcq

Cpcq

C˝pdq

Cpdq
ù

ñ

p˝fq!

pf˝q˚

p´qKp´qK (5)

Then, as pf˝q˚ : Cpdq Ñ Cpcq lifts along the right adjoints p´qK, it also lifts along the forgetful functors
from their induced categories of algebras; that is, in this case, it restricts to double orthogonally closed
subsets. We spell out the details.

In (5), the diagram on the left has as mate the diagram on the right; that is,
`

pf˝q˚pY q
˘K

Ď p˝fq!pY
Kq for all Y Ď C ps, dq .

Pasting these two diagrams, we obtain a distributive law:

C˝pcq

Cpcq

C˝pdq

Cpdq
ù

ñ

pf˝q˚

pf˝q˚

p´qKKp´qKK

that is,
`

pf˝q˚pY q
˘KK

Ď pf˝q˚pY KKq for all Y Ď C ps, cq. Thus, pf˝q˚ : Cpdq Ñ Cpcq restricts to a
meet-preserving monotone function Dpdq Ñ Dpcq between complete lattices.

The above development results in a representation theorem for focused orthogonality categories in terms
of Grothendieck categories of indexed complete lattices with existential quantification.

Definition 3.2 A C -indexed complete lattice is a C -indexed poset R such that Rpcq is a complete lattice
for all c P C .
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Theorem 3.3 Every category C with a pole ‚ induces a C -indexed complete lattice with existential quan-
tification D whose Grothendieck category GC pDq is isomorphic to the focused orthogonality category O‚pC q.

Proof Consider the indexed family tDpcq ucPC of double orthogonally closed subsets (3) with action
Dpfq :“ pf˝q˚ : Dpdq Ñ Dpcq for all f : c Ñ d in C . Note that the condition X Ď DpfqpY q is equivalent
to the statement (4). l

Corollary 3.4 Let C be a category with a pole ‚. For every endofunctor F on C and every endofunctor
F on O‚pC q lifting it, F has an initial algebra (resp. final coalgebra) if and only if so does F .

4 Models of linear logic with fixpoints

4.1 Categorical models

We provide an alternative presentation of the notion of categorical model of classical linear logic with fix-
points given by Ehrhard and Jafarrahmani [9, Definition 7]. Our approach is adaptable to the intuitionistic
setting which we also include.

We restrict attention to the specification of linear logic types; we omit the specification of the logical
system, the categorical models of which are well known. The treatment of fixpoint operators requires the
consideration of types with variance in contexts of type variables with variance. To this end, we introduce
judgements for types of the form Γ $ τ : v where v ranges over the set of sorts V :“ t`,´u, Γ ranges
over V-sorted contexts, and τ ranges over types. The sorts are used to indicate the intended variance, with
` (positive) standing for covariance and ´ (negative) standing for contravariance; as such the dual sort v
of a sort v is given by ` “ ´ and ´ “ `.

The core judgement rules of the types of linear logic are:

Γ $ x : v
px : v in Γq

Γ $ o : `

`

o in t1, 0,Ju
˘

Γ $ τ1 : v Γ $ τ2 : v

Γ $ τ1 o τ2 : v

`

o in tb,‘,&u
˘ Γ $ τ : v

Γ $ ! τ : v

In classical linear logic, these are extended with:

Γ $ K : `

Γ $ τ1 : v Γ $ τ2 : v

Γ $ τ1 ` τ2 : v

Γ $ τ : v

Γ $ ? τ : v

Γ $ τ : v

Γ $ τK : v

while in intuitionistic linear logic they are extended with:

Γ $ τ1 : v Γ $ τ2 : v

Γ $ τ1 ⊸ τ2 : v

A model of classical linear logic (resp. intuitionistic linear logic) is a ‹-autonomous (resp. symmetric
monoidal closed bicartesian) category with a linear exponential comonad [34,32,29]. For both classical and
intuitionistic models L , every judgement x1 : v1, . . . , xn : vn $ τ : v has a standard interpretation functor
L v1 ˆ ¨ ¨ ¨ ˆ L vn Ñ L v, where L ` :“ L and L ´ :“ L op. The class of interpretation functors induced
by judgements forms a V-sorted concrete clone L on L .

We recall the notion of parameterised fixpoint (see, for instance, Fiore [11, Chapter 6]). A functor
F : D ˆ C Ñ C is said to have parameterised initial algebras (resp. final coalgebras) whenever, for all
d P D , the endofunctor F pd,´q on C has an initial algebra (resp. final coalgebra), say µF pdq

`

resp. νF pdq
˘

,
in which case the structure canonically extends to a functor µF : D Ñ C (resp. νF : D Ñ C ).

A V-sorted concrete clone of functors F “ tFσ,v Ď rC σ,C vs uσPV‹,vPV, where C ps1,...,snq :“ C s1 ˆ ¨ ¨ ¨ ˆ

C sn , is said to have parameterised fixpoints whenever every F P Fps1,...,sn,vq,v has parameterised initial
algebras and final coalgebras, and their induced functors µF and νF are in Fps1,...,snq,v.
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A model of linear logic with fixpoints is a model of linear logic L on which there is a V-sorted concrete
clone of functors with parameterised fixpoints containing the V-sorted clone L on L . This notion of model
is in line with the general notion of model for second-order equational presentations [12] and allows for
a canonical interpretation of the extension of the linear logic typing judgements with rules for least and
greatest fixpoints as follows:

Γ, x : v $ τ : v

Γ $ φx. τ : v
pφ in tµ, νuq

4.2 Focused orthogonality models

Theorem 4.1 (Hyland and Schalk [23]) For a model of classical linear logic L with a distributive law
L p1,´q Ñ L p1, !´q and a pole ‚Ď L p1,Kq between the monoidal units, the induced focused orthogonality
category O‚pL q is a model of classical linear logic and the forgetful functor to L preserves the structure
strictly.

There is an analogous theorem for models of intuitionistic linear logic for which the reader is referred
to Hyland and Schalk [23].

The following result is a consequence of the theorem above and Corollary 3.4.

Theorem 4.2 Under the hypothesis of Theorem 4.1, if L is a model of linear logic with fixpoints then so
is O‚pL q and the forgetful functor to L preserves the structure strictly.

4.3 Examples

A variety of models of linear logic are instances of focused orthogonality constructions. We examine
examples to which Theorem 4.2 applies and thereby yield models with fixpoints. As not all orthogonality
models of linear logic are instances of focused orthogonality constructions, we also discuss the cases of
coherence and finiteness spaces to which our results may be applied, even though these models do not arise
from focused orthogonalities in the relational model.

Example 4.3
`

Phase spaces [18]
˘

Consider a commutative monoid pM, e, ¨q and a subset ‚ Ď M . For
a subset X Ď M , its orthogonal is defined as XK :“ t y P M | @x P M,x ¨ y P‚ u. Subsets satisfying
X “ XKK are called facts and provide a complete provability semantics for linear logic. The commutative
monoid M can be considered as a compact closed category M with a single object ‚ (being both 1 and
K). The pole ‚ Ď M p‚, ‚q corresponds to a subset of M and one can reformulate the phase model within
the setting of focused orthogonality (except for the exponential structure which is defined differently).
Therefore, one can interpret least and greatest fixpoints of multiplicative and additive linear logic types in
phase semantics to provide a Tarskian sound model of µMALL [5].

The category Rel of sets and relations between them is one of the most basic models of linear logic,
with many other models arising as refinements of it. Being compact closed, it is a degenerate model. The
monoidal units are singletons and there are only two non-trivial focused orthogonalities on Rel given by
the poles t∅ u and t tidu u.

Example 4.4 The model of non-uniform totality spaces studied by Ehrhard and Jafarrahmani [9] corre-
sponds to the focused orthogonality category Rel‚ induced by the pole ‚“ t tidu u. Explicitly, for a set
A and a subset X Ď Relp1, Aq – PpAq, one has:

XK “ t y P PpAq | @x P X, y ˝ x “ id u “ t y P PpAq | @x P X,x X y ‰ ∅ u .

The induced category is a model of µLL that provides a normalization theorem for proofs.

One can generalize the relational model by considering the category of weighted relations (or matrices)
RelS over a continuous semiring S [27,26]. Standard examples are the Boolean semiring ptt, fu,_,^, f , tq,
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the completed natural numbers N “ pN Y t8u,`, ¨, 0, 1q, and the completed non-negative reals R` “

pR` Y t8u,`, ¨, 0, 1q. Objects of RelS are sets and a morphism from A to B is a function f : A ˆ B Ñ S
(also called an S-matrix). The composite of f : A ˆ B Ñ S and g : B ˆ C Ñ S is the function A ˆ C Ñ S
given by pg ˝ fqpa, cq :“

ř

bPB fpa, bq ¨ gpb, cq. Since RelSp1,Kq – S, a pole consists of a subset of S.

Example 4.5 The model of probabilistic coherence spaces PCoh by Danos and Ehrhard [4] can be ob-
tained as a focused orthogonality category on RelR`

with pole r0, 1s Ď R`. The associated coKleisli
category provides a fully abstract model of probabilistic PCF [10] with a fixpoint operator for terms that
may be obtained as an application of our results in Section 5 (see Example 5.9).

Hamano [20] considered a continuous extension of PCoh based on the category of measurable spaces
and s-finite transition kernels. Even if not providing monoidal closed structure, his construction involves
a focused orthogonality. Indeed, taking the same pole ‚ :“ r0, 1s Ď R`, for a measurable space pA,Σq, a
measure µ viewed as a morphism p1,P1q Ñ pA,Σq, and a measurable function f viewed as a morphism
pA,Σq Ñ p1,P1q, one has µ ‚pA,Σq f iff

ş

A f dµ ď 1.

Example 4.6 Orthogonality can be also used to relate models. For instance, by considering the qualitative
linear logic model ScottL, whose objects are preorders and morphisms are ideal binary relations, the
category of preorders and projections introduced by Ehrhard [8] can be obtained as a subcategory of the
focused orthogonality model pScottLˆRelq‚ with pole ‚:“ t pid, idq u. A reflexive object in this setting,
obtained by lifting reflexive objects from ScottL and Rel, allows the translation of normalization theorems
between idempotent and non-idempotent typing systems [7].

Example 4.7 Coherence spaces, first introduced by Girard [16] to give a denotational semantics for Sys-
tem F, led to the discovery of linear logic through the linear decomposition of stable functions. The category
of coherence spaces Coh can be obtained as an orthogonality construction on Rel: two subsets of a set
are orthogonal whenever their intersection has cardinality at most one.

The orthogonality for coherence spaces in Rel is not focused; however, in Coh one can consider the
refinement of coherence spaces with totality that corresponds to the focused orthogonality category Coh‚
with pole ‚ :“ t tidu u Ď Cohp1,Kq.

Example 4.8 The model of (differential) linear logic of finiteness spaces by Ehrhard [6] is based on an
orthogonality in Rel that captures finite computations: two subsets of a set are orthogonal whenever their
intersection is finite. This is however not focused and thus one cannot directly apply the results developed
in the paper. Tasson and Vaux [40] studied conditions for lifting endofunctors on Rel to Fin and showed
how to calculate least fixpoints for a subclass of linear logic formulas. It remains to be seen whether
finiteness spaces provide a model for µLL. Instead, one can extend the model by considering a weighted
version of finiteness spaces over RelN with pole ‚ :“ N Ď N, obtaining a focused model of linear logic with
fixpoints.

5 Domain-theoretic models

After Freyd [13], the category-theoretic solution of recursive type equations, where one is interested in
fixpoints of recursive types with mixed variance, is based on the notion of algebraic compactness asserting
the coincidence of initial algebras and final coalgebras. In domain-theoretic models, this in turn arises from
the limit/colimit coincidence in the order-enriched setting [33,42,36].

We write Cpo for the category of cpos (ω-chain complete partial orders) and continuous functions
between them.

Theorem 5.1 (Fiore [11, Chapter 7]) Let a kind be a Cpo-category with ep-zero (viz. a zero object
such that every morphism with it as source is an embedding) and colimits of ω-chains of embeddings.

Every kind is Cpo-algebraically compact; that is, every Cpo-endofunctor on it has a bifree algebra
(viz. an initial algebra whose inverse is a final coalgebra).

In domain-theoretic models of linear logic, fixpoint operators arise naturally and are typically charater-
ized by the axiom of uniformity.
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Definition 5.2 (i) A fixpoint operator on a category D with a terminal object J is a family of functions
p´q: : Dpd, dq Ñ DpJ, dq indexed by the objects d of D such that f : “ f ˝ f : for all endomorphisms
f on d.

(ii) Let C and D be categories with terminal object, and let J : C Ñ D be a bijective-on-objects functor
preserving terminal objects. A fixpoint operator p´q: on D is said to be J-uniform if for every
h : c Ñ d in C and f : c Ñ c, g : d Ñ d in D ,

Jphq ˝ f “ g ˝ Jphq implies Jphq ˝ f : “ g: .

The following is a consequence of the study of fixpoint operators by Simpson and Plotkin [35].

Corollary 5.3 For a kind D equipped with a Cpo-comonad S on it, the coKleisli category DS has a unique
J-uniform fixpoint operator for J : D Ñ DS the cofree functor of the adjoint resolution of S.

The above results apply, for instance, to the relational model and the coherence space model (for the
quantitative and qualitative comonads) of linear logic. We now proceed to show that further examples
arise from Grothendieck categories in general and from focused orthogonality in particular.

The following definition and theorem are instances of Section 5 of Cattani, Fiore, and Winskel [3] where
the categorified scenario is considered. We will write Cppo for the full subcategory of Cpo consisting
of the pointed cpos (that is, those with bottom element) and let CppoK be the subcategory of Cppo
consisting of the strict (that is, bottom-element preserving) functions.

Definition 5.4 An admissible D-indexed poset for a CppoK-category D is a Poset-functor R : Dop Ñ

Poset such that the poset Rpdqop is a cppo for all d P D and the monotone function Dpc, dq Ñ PosetpRpdqop,Rpcqopq :
f ÞÑ pf˚qop is strict continuous for all c, d P D .

Theorem 5.5 For a kind D and an admissible D-indexed poset R, the Grothendieck category GDpRq is a
kind and the forgetful functor to D preserves the structure strictly.

Proof (outline) Since p
Ž

n fnq˚ “
Ź

n pfnq˚ : Rpdq Ñ Rpcq for every ω-chain f in Dpc, dq, the Grothendieck
category GDpRq Cpo-enriches. Since, the reindexing pKc,dq˚ : Rpdq Ñ Rpcq along the bottom element
Kc,d P Dpc, dq is constantly the top element of Rpcq, the ep-zero of GDpRq consists of the ep-zero K of D
paired with the top element of RpKq. The colimiting cone x en : pdn, Rnq Ñ pd,Rq yn of an ω-chain of embed-
dings x pdn, Rnq Ñ pdn`1, Rn`1q yn in GDpRq consists of the colimiting cone of embeddings x en : dn Ñ d yn
of the ω-chain of embeddings x dn Ñ dn`1 yn in D with R :“

Ź

n ppnq˚pRnq P Rpdq for pn the projection of
en. l

Finally, we investigate focused orthogonality in this domain-theoretic setting.

Definition 5.6 An admissible pole for a CppoK-category D is a pole that is a sub-cppo of Dps, tq.

Lemma 5.7 For a CppoK-category with an admissible pole, the indexed poset of double orthogonally closed
sets is admissible.

Corollary 5.8 For a kind D with an admissible pole ‚, the focused orthogonality category O‚pDq is a
kind and the forgetful functor to D preserves the structure strictly.

Example 5.9 The weighted relational model RelR`
(see Example 4.5) is a kind and the pole ‚ :“ r0, 1s Ď

R` is admissible. Corollaries 5.8 and 5.3 provide then a uniform fixpoint operator on the coKleisli category
of probabilistic coherence spaces which allows us to recover the fixpoint operator for terms of [4].

On the other hand, totality models are tools to provide a denotational account of normalization and
therefore do not have fixpoint operators. In particular, note that for the totality models presented in
Section 4.3 the underlying orthogonality construction is done with the singleton pole

␣

tidu
(

which does
not contain the empty relation and is therefore not admissible.
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Conclusion

Recasting focused orthogonality constructions within a relational fibration framework, we have developed a
categorical theory to construct new models of linear logic with fixpoints by means of lifting initial algebras
and final coalgebras from the base model to the focused orthogonality one. Our method is widely applicable:
it allows to re-explain the totality model of µLL studied by Ehrhard and Jafarrahmani [9] and opens the
way for refining a variety of other models besides the relational one. In connection to this, Tsukada and
Asada [41] provided a unified framework based on module theory to make the linear algebraic aspect of
models of linear logic explicit. In particular, they considered models of intuitionistic linear logic based on
categories of R-modules and linear maps for R a Σ-semiring. It would be interesting to investigate fixpoint
constructions in these models and thereafter consider refinements of them using our theory for focused
orthogonalities. The same applies to their discussion of models of classical linear logic.

Our lifting theorems further extend from relational fibrations to categorical fibrations. In future work,
we aim to use these results to obtain a theory of fixpoint constructions for general glueing and double-
glueing models. Since double glueing constructions have been extensively used to study full completeness
by refining models to contain only morphisms that are the interpretation of proof terms [28], we aim to
also use our results to construct fully complete models of linear logic with fixpoints.

While we have considered fixpoint operators in the induced cartesian closed category of domain-theoretic
models of linear logic, we also aim to explore lifting theorems for traces [24] in the linear base model. Many
orthogonality and (double) glueing constructions are indeed done on a compact closed category (which
has a canonical trace) and the refinement induced by the orthogonality usually eliminates this degeneracy.
Understanding whether one can lift this canonical trace to orthogonality or double-glued categories would
provide a new method for constructing traced categories for intuitionistic models.
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