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b CNRS, Université Paris Cité, Inria
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Abstract

Combining ideas coming from Stone duality and Reynolds parametricity, we formulate in a clean and principled way a notion
of profinite λ-term which, we show, generalizes at every type the traditional notion of profinite word coming from automata
theory. We start by defining the Stone space of profinite λ-terms as a projective limit of finite sets of usual λ-terms, considered
modulo a notion of equivalence based on the finite standard model. One main contribution of the paper is to establish that,
somewhat surprisingly, the resulting notion of profinite λ-term coming from Stone duality lives in perfect harmony with the
principles of Reynolds parametricity. In addition, we show that the notion of profinite λ-term is compositional by constructing
a cartesian closed category of profinite λ-terms, and we establish that the embedding from λ-terms modulo βη-conversion
to profinite λ-terms is faithful using Statman’s finite completeness theorem. Finally, we prove that the traditional Church
encoding of finite words into λ-terms can be extended to profinite words, and leads to a homeomorphism between the space
of profinite words and the space of profinite λ-terms of the corresponding Church type.

Keywords: higher-order automata, semantics of lambda-calculus, profinite monoids, Stone duality, regular languages

1 Introduction

In this paper, we formulate a notion of profinite λ-term which, as we will show, extends in a principled way,
related to Reynolds parametricity, the important notion of profinite word found at the heart of automata
theory.

Our starting point is provided by the Church encoding of finite words on a given finite alphabet Σ =
{a1, . . . , an} into simply typed λ-terms. The idea of the encoding is to view every letter ai ∈ Σ as a
variable ai of type o ⇒ o where o is an arbitrary base type. Once a variable ai : o ⇒ o has been declared
in the context for each letter of Σ, a finite word w = aw1

· · · awk
∈ Σ∗ can be naturally viewed as the

composite awk
◦ · · · ◦ aw1

of type o ⇒ o. This composite is represented by the λ-term λc.awk
(· · · (aw1

c)),
which we note W , where c is a variable of type o. The finite word w is thus encoded as the λ-term defined
as λa1 . . . λan.λc.awk

(· · · (aw1
c)) which is of type ChurchΣ, defined as

(o ⇒ o)︸ ︷︷ ︸
type of a1

⇒ · · · ⇒ (o ⇒ o)︸ ︷︷ ︸
type of an

⇒ o︸︷︷︸
type of c

⇒ o ,

where we have n occurrences of o ⇒ o, one for each letter ai ∈ Σ, and one occurrence of o for the variable c,
on the left of the base type o. Given a simple type A generated by the base type o, we write Λβη〈A〉 for
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the set of closed λ-terms of simple type A, considered modulo β- and η-conversion. The Church encoding
induces a one-to-one correspondence

Σ∗ ∼= Λβη〈ChurchΣ〉

between finite words on the alphabet Σ and simply typed λ-terms of type ChurchΣ up to βη-equivalence.
The correspondence allows us to think of finite words on the finite alphabet Σ as simply typed λ-terms of
that specific type.

The finite set interpretation and deterministic automata

The connection between the Church encoding of finite words and automata theory has been considered in
syntactic [16, 22, 27] and semantic [13, 14, 20, 27] contexts.

Here, we follow the semantic track and focus on the finitary interpretation of the simply typed λ-
calculus in the cartesian closed category FinSet of finite sets and functions between them, which, we
claim, corresponds to deterministic finite state automata. In order to define this interpretation, we start
by choosing a finite set Q which lets us define, for any simple type A, a finite set JAKQ in which we will

interpret λ-terms of type A. This set JAKQ is inductively defined by

JoKQ := Q and JA ⇒ BKQ := JAKQ ⇒ JBKQ

where we interpret the functional type A ⇒ B as the finite set of set-theoretic functions from the set JAKQ
to the set JBKQ. The interpretation then transports every simple type A to a finite set JAKQ and every
simply typed λ-term M of type

a1 : A1 , . . . , an : An ⊢ M : B

to a function between finite sets

JMKQ : JA1KQ × . . . × JAnKQ −→ JBKQ .

This interpretation in FinSet induces, on closed terms, a function J−KQ : Λβη〈A〉 −→ JAKQ which is called

the semantic bracket and transports every closed λ-term M of type A to its interpretation JMKQ ∈ JAKQ. In
order to understand the connection with finite automata, it is instructive to examine how the interpretation
acts on the open λ-term W encoding the finite word w = aw1

. . . awk
∈ Σ∗. By construction, the λ-term

W is of type
a1 : o ⇒ o , . . . , an : o ⇒ o ⊢ W : o ⇒ o

where each letter a1, . . . , an ∈ Σ appears as a variable of type o ⇒ o in the context. The λ-term W is then
interpreted as the functional

JW KQ : (Q ⇒ Q)× · · · × (Q ⇒ Q) −→ (Q ⇒ Q)

which transports an n-tuple f1, . . . , fn of endofunctions on the finite set Q, i.e. elements of the set Q ⇒ Q,
to the composite endofunction fwk

◦ · · · ◦ fw1
on the same finite set, that is,

JW KQ = f1, . . . , fn 7→ fwk
◦ · · · ◦ fw1

. (1)

A deterministic finite state automaton on the alphabet Σ = {a1, . . . , an} is defined as a tuple A =
(Q, δ, q0,Acc) consisting of a finite set Q of states, a transition function δ : Σ × Q → Q, an initial
state q0 ∈ Q and a set of accepting states Acc ⊆ Q. The transition function δ gives rise to a family of
transition functions

δa1 = δ(a1,−) , . . . , δan = δ(an,−) : Q −→ Q

where δa(q) = q′ means that the automaton A in state q transitions to the state q′ when it encounters the
letter a ∈ Σ.
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Now observe that, if we apply the interpretation (1) of the simply typed λ-term W in FinSet to these
transition functions δa1 , . . . , δan , then we obtain the endofunction

δw = JW KQ(δa1 , . . . , δan) : Q −→ Q

which transforms each input state q0 ∈ Q into the output state qf = δw(q0) ∈ Q obtained by running the
deterministic automaton A on the finite word w encoded by the simply typed λ-term W . This simple
observation establishes the connection between deterministic automata and the interpretation of simply
typed λ-terms of type ChurchΣ in FinSet.

In this way, if A = (Q, δ, q0,Acc) is a deterministic finite state automaton, then the tuple (Q, δ, q0)
induces an evaluation function

eval(δ,q0) : JChurchΣKQ −→ Q

which transports every functional F ∈ JChurchΣKQ to the state F (δa1 , . . . , δak )(q0) in Q. Precomposing

the evaluation function eval(δ,q0) with the semantic bracket J−KQ induces a composite function

Σ∗ ∼= Λβη〈ChurchΣ〉 −→ JChurchΣKQ −→ Q (2)

which associates a finite word w ∈ Σ∗ with the final state qf = δw(q0) returned by the automaton. The
inverse image of the set Acc ⊆ Q under this composite function is, by definition, the regular language LA

of finite words recognized by the deterministic automaton A.

The Boolean algebra Reg〈A〉 of regular languages

The regular language LA described above is an element of the Boolean algebra RegQ〈ChurchΣ〉 of regular
languages of λ-terms of type ChurchΣ recognized by the finite set Q. This algebra may be defined as the
image of the Boolean algebra homomorphism J−K−1

Q from ℘(JChurchΣKQ) to ℘(Σ∗), obtained by applying

the contravariant power set functor ℘ : FinSetop −→ BA to the semantic bracket J−KQ. In the theory of
regular languages of simply typed λ-terms developed by Salvati [27, 28], this point of view is extended to any
type. The Boolean algebra RegQ〈A〉 of regular languages of λ-terms of higher-order type A recognizable
by a finite set Q of states is defined as the image of the Boolean algebra homomorphism

J−K−1
Q : ℘(JAKQ) −→ ℘(Λβη〈A〉) .

In other words, a set L of λ-terms of type A is recognizable by the finite set Q precisely when it is of
the form J−K−1

Q (Acc) = {M ∈ Λβη〈A〉 | JMKQ ∈ Acc} for some choice Acc ⊆ JAKQ of a set of accepting

elements. Now, letting Q range over all finite sets, the collection Reg〈A〉 ⊆ ℘(Λβη〈A〉) of regular languages
of λ-terms of type A is defined in [27, Def. 1] as

Reg〈A〉 =
⋃

{RegQ〈A〉 | Q a finite set}.

Salvati [27, Thm. 8] then establishes that Reg〈A〉 is a Boolean algebra, which boils down to the fact
that Reg〈A〉 is closed under intersection. The proof relies on a presentation of higher-order automata
based on intersection types, and on the construction of a product higher-order automaton.

Profinite words in automata theory

The monoid Σ̂∗ of profinite words on a finite alphabet Σ plays an important role in automata theory,
where profinite words encode the limiting behaviour of finite words with respect to deterministic finite
automata [23]. For example, one can define an idempotent power operator over profinite words, using the
fact that the automata are finite, appearing in Equation 14 within §7 where we explain its construction.

The monoid Σ̂∗ is the free profinite monoid generated by Σ and can be constructed as the limit, computed
in the category Mon of monoids, of the codirected (also known as projective) system of finite monoid
homomorphisms (

Σ∗/φ Σ∗/φ′
)
φ⊆φ′

(3)
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where φ and φ′ range over the finite index congruences on Σ∗, subject to the condition that φ ⊆ φ′.
Note that every such finite index congruence φ can be seen equivalently as a surjective homomorphism
h : Σ∗ → M to the finite monoid M = Σ∗/φ whose elements are the equivalence classes of the congruence φ.

The surjectivity condition on h can be relaxed in order to show that the monoid Σ̂∗ of profinite words is
in fact the codirected limit of the composite functor

Σ∗/FinMon FinMon Mon
π (4)

where FinMon denotes the category of finite monoids. Here, we use the notation Σ∗/FinMon for the
slice category whose objects (M,h) are the pairs consisting of a finite monoid M and of a (not necessarily
surjective) homomorphism of the form h : Σ∗ → M , and whose morphisms (M,h) → (M ′, h′) are the
homomorphisms f : M → M ′ making the triangle

Σ∗

M M ′

h h′

f

commute. The projection functor π in (4) transports (M,h) to the underlying finite monoid M . One

obtains in this way Σ̂∗ as the limit of a codirected diagram of finite monoid homomorphisms

(
M M ′

)
(M,h)→(M ′,h′)

(5)

which extends the diagram (3) from finite index congruences φ on Σ∗ to all homomorphisms h : Σ∗ → M
to a finite monoid M .

To explain the relationship with automata, recall that every homomorphism h : Σ∗ → M to a finite
monoid (M, ·M , eM ) induces a deterministic finite automaton, by letting Q := M be the set of states, and
defining δ(a, q) := q ·M h(a) for every letter a ∈ Σ and state q ∈ M . This establishes that every monoid
homomorphism h : Σ∗ → M to a finite monoid M = {q1, . . . , qm} induces a decomposition of Σ∗ into
m components Lqi = h−1(qi) for 1 ≤ i ≤ m where each Lqi is a regular language. We will denote by
Reg(M,h)〈Σ〉 the Boolean algebra of languages generated by the regular languages of the form Lq = h−1(q),
as q ranges over the elements of M . One obtains in this way a functor

Reg(−)〈Σ〉 : (Σ∗/FinMon)op −→ BA (6)

to the category BA of Boolean algebras, which maps every pair (M,h) to the Boolean algebra Reg(M,h)〈Σ〉.
Note that this Boolean algebra Reg(M,h)〈Σ〉 coincides with the image of the Boolean algebra homomorphism

h−1 : ℘(M) −→ ℘(Σ∗) obtained by applying the contravariant powerset functor ℘ to the map h : Σ∗ → M .
An important insight of [10, Sec. 4.2] is that the following directed diagram in BA, associated to the
functor (6),

(
Reg(M ′,h′)〈Σ〉 Reg(M,h)〈Σ〉

)
(M,h)→(M ′,h′)

may be obtained more directly by applying ℘ to the codirected diagram of finite sets underlying (4) and (5).
Since the colimit in BA of this diagram coincides with Reg(Σ), one establishes in this way that the monoid
of profinite words is in fact the Stone dual of the Boolean algebra Reg(Σ) of regular sets, see [10] as well
as §2 below for details.

From profinite words to profinite λ-terms

In order to define the notion of profinite λ-term at an arbitrary simple type A, we combine this general
scheme with ideas coming from Reynolds parametricity. We have seen that, given a finite set Q, we
can interpret any simple type A as a finite set JAKQ. To relate elements belonging to two different
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interpretations JAKQ and JAKQ′ one can construct, given a relation R ⊆ Q × Q′ between the finite sets

used for the interpretation, a relation JAKR ⊆ JAKQ× JAKQ′ between the two interpretations of the simple
type A. Such inductively-defined relations are called logical relations. A fundamental fact is that λ-terms
are parametric, that is, for any λ-term M of type A and any relation R ⊆ Q×Q′,

(JMKQ, JMKQ′) ∈ JAKR .

In particular, we will recall in Proposition 2.3 the well-known fact that every partial surjec-
tion f : Q ։ Q′, seen as a relation, induces a partial surjection JAKf : JAKQ ։ JAKQ′ such that

for every λ-term M of type A, its interpretation JMKQ is in the domain of JAKf and the partial surjection
JAKf sends the interpretation of M in the finite set JAKQ to its interpretation in JAKQ′ , that is,

JAKf (JMKQ) = JMKQ′ . (7)

An easy argument, given in Lemma 2.4 below, shows that, as a consequence, every partial surjection
f : Q ։ Q′ induces an inclusion of Boolean algebras RegQ′〈A〉 ⊆ RegQ〈A〉. We note FinPSurj the
category whose objects are finite sets and whose morphisms are partial surjections. For every simple
type A, we then have a functor

Reg(−)〈A〉 : FinPSurjop −→ BA

which sends each partial surjection on the associated inclusion of Boolean algebras. This leads us to the
first main result of the paper, established in §2.

Theorem A. The diagram of Boolean algebras Reg(−)〈A〉 : FinPSurjop → BA, i.e.

(
RegQ′〈A〉 RegQ〈A〉

)
f :Q։Q′∈FinPSurj

,

is directed, and its colimit in BA coincides with the Boolean algebra Reg〈A〉 of regular languages of higher-
order type A.

At this stage, a key observation coming from Stone duality is that, for each finite set Q, the finite Boolean
algebra RegQ〈A〉 is join-generated by its finite set of atoms, which, as we will show in Proposition 3.1
below, is in bijection with the set

JAK•Q =
{

JMKQ | M ∈ Λβη〈A〉
}

⊆ JAKQ

of definable elements in JAKQ. Moreover, using (7), we see that, for every partial surjection f : Q ։ Q′,

there exists a unique (total) surjection JAK•f : JAK•Q ։ JAK•Q′ making the following diagram commute

JAK•Q JAK•Q′

JAKQ JAKQ′

JAK•
f

JAKf

in the category FinPSet of finite sets and partial functions. We are now ready to define the set Λ̂βη〈A〉
of profinite λ-terms of type A as the limit in the category Set of the codirected diagram of finite sets

(
JAK•f : JAK•Q JAK•Q′

)
f :Q։Q′∈FinPSurj

indexed by partial surjections between finite sets. This diagram is dual to the directed diagram in BA

defining the Boolean algebra Reg〈A〉 in Theorem A. Moreover, by Stone duality, the set Λ̂βη〈A〉 of profinite
λ-terms of type A is not just a set, but a Stone space, dual to the Boolean algebra Reg〈A〉.

5
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The conceptual definition of profinite λ-term which we have just given is nice but probably a little
bit abstract to a reader with expertise in the λ-calculus but not necessarily in Stone duality. A more

pedestrian way to understand it is to think of a profinite λ-term θ ∈ Λ̂βη〈A〉 of type A as a family of
definable elements θQ ∈ JAK•Q indexed by finite sets Q, such that the family θ is moreover natural with

respect to finite partial surjections, in the expected sense that the equality JAK•f (θQ) = θQ′ holds for

every partial surjection f : Q ։ Q′ between finite sets.

Profinite λ-terms and Reynolds parametricity

The pedestrian definition of profinite λ-terms just given requires that the family of definable elements
θQ ∈ JAK•Q is natural with respect to finite partial surjections, instead of asking the stronger property that
the family θ is parametric in the traditional sense of Reynolds. We establish in §4 the important property
that every profinite λ-term may be equivalently defined using parametricity instead of partial surjections,
as follows:

Theorem B. A profinite λ-term θ ∈ Λ̂βη〈A〉 of type A may be equivalently defined as a family of definable

elements θQ ∈ JAK•Q indexed by finite sets Q, such that the family θ is moreover parametric with respect

to any logical relation, in the sense that (θQ, θQ′) ∈ JAKR for every relation R ⊆ Q×Q′.

As we will see in §4, the fact that the notion based on parametricity is stronger than the notion based on
naturality is easy to show. What is more difficult to establish that the two notions are in fact equivalent.

The cartesian closed category ProLam of profinite lambda-terms

We establish that the resulting notion of profinite λ-term is compositional by constructing a cartesian
closed category ProLam of profinite λ-terms. There is a functor

idonobj : Lam −→ ProLam

which is faithful by Statman’s theorem and which embeds the simply typed λ-terms into profinite λ-terms.
It associates to a simply typed λ-term M the profinite λ-term whose component at the finite set Q is the
interpretation JMKQ.

Another interesting fact is that there exists, for every simple type A, a profinite λ-term defining a
fixpoint operator

ΩA ∈ Λ̂βη〈(A ⇒ A) ⇒ (A ⇒ A)〉

which thus defines a morphism

ΩA : (A ⇒ A) (A ⇒ A)

in the category ProLam of profinite λ-terms. The fixpoint operator ΩA is similar in spirit but different
in practice from the usual fixpoint operators YA : (A ⇒ A) ⇒ A of Scott domain semantics, and one
interesting direction for future work will be to understand how the two fixpoint operators ΩA and YA are
related.

We also establish at the end of the paper (see §7) that profinite λ-terms of type ChurchΣ are the same
thing as profinite words over the alphabet Σ in the traditional sense.

Theorem C. For every finite set Σ, there is a homeomorphism between the space of profinite λ-terms of
type ChurchΣ and the space of profinite words over Σ, that is,

Λ̂βη〈ChurchΣ〉 ∼= Σ̂∗ .

Related works

As explained in the introduction, our present definition of profinite λ-term relies on the notion of regular
language of simply typed λ-terms introduced by Salvati [27]. Interestingly, the notion of regular language is
formulated by Salvati in two different but equivalent ways. The first definition of regular language is based
on the interpretation of λ-terms in the finite standard model FinSet of the simply typed λ-calculus. This

6
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is the definition which we recall and develop in the introduction and in the paper. The second equivalent
definition given by Salvati relies on the construction of an intersection type system in direct correspondence
with the finite monotone model of the simply typed λ-calculus constructed in the category FinScott of
finite lattices and monotone maps between them, see [28] for a discussion. Aware of this correspondence
with Scott semantics, Salvati and Walukiewicz actively promoted a semantic approach to higher-order
model checking [29] which would complement the intersection type approach developed by Kobayashi
and Ong [18, 19]. However, besides the fascinating connections to Krivine environment machines and
collapsible pushdown automata [6, 15, 30], it took several years to develop a precise connection between
Scott semantics and intersection type systems for higher-order model checking, with the emergence of a
notion of higher-order parity automaton [20] founded on the discovery of an unexpected relationship with
linear logic [7, 8, 13, 14] combined with a comonadic translation designed by Melliès of the simply typed
λY -calculus into a λYµν-calculus with inductive and coinductive fixpoints [20], or into a λY -calculus with
priorities [32].

One fundamental idea which emerged from these works, also apparent in the work by Colcombet and
Petrişan [9], is that there exists a correspondence between the specific category used for the semantic
interpretation and a specific class of automata of interest. Typically, the interpretation of the simply
typed λ-calculus in FinSet corresponds to the class of deterministic automata, while the interpretation
in FinScott corresponds to the class of non-deterministic automata. In the present paper, we focus on
the finite standard model in FinSet, and leave the investigation of the finite monotone lattice model in
Scott for future works.

Another important line of work at the interface of automata theory and λ-calculus was initiated by
Hillebrand and Kanellakis [16] with a purely syntactic description of regular languages of finite words using
the Church encoding in the simply typed λ-calculus. This alternative approach is extremely promising and
has seen a recent revival with the works by Nguyên and Pradic on implicit automata theory [21, 22]. Our
definition of profinite λ-term is formulated using the finite standard model, but it is largely independent
of it, and it would thus be interesting to recast our definition of profinite λ-term in this purely syntactic
framework.

In the study of regular languages and profinite monoids, the potential role of Stone duality was identified
early on by Pippenger [24], and can also already be recognized in the “implicit operations” which were
introduced by Reiterman [25] and play a role in Almeida’s important work on profinite semigroups [3]. It is
also interesting to note in this context that monoidal relations, under the name of “relational morphisms”,
have long played an important role in (pro)finite semigroup theory, as exemplified for example by Rhodes
and Steinberg [26], and our crucial use of logical relations in this paper opens up potential new connections
with that theory.

The specific methodology of understanding profinite algebraic structure by applying Stone duality to
a lattice of regular languages that we closely follow in Sections 2 and 3 of this paper emerged from an
influential series of works by Gehrke, Grigorieff and Pin [11, 12], culminating in Gehrke’s [10], which
contains the most general account to date of that line of research. In a direction that is related to, but
different from, the one pursued in this paper, Bojańczyk [5] generalized these profinite ideas to the category
of algebras given by an arbitrary monad, also see the more recent work by Adámek et al. [1] pursuing a
similar direction. While these works were always based in an algebraic setting, a novel contribution of this
paper is to show how these ideas extend to the setting of the simply typed λ-calculus and cartesian closed
categories.

Overview of the paper

We start by recalling in §2 the notion of regular language of λ-terms induced by the finite standard model
of the simply typed λ-calculus. Then, as explained in the introduction, we establish in §2 that the Boolean
algebra Reg〈A〉 of regular languages of simply typed λ-terms of type A formulated by Salvati can be
equivalently expressed (Theorem A) as a colimit in BA of a specific directed diagram of finite Boolean

algebras RegQ〈A〉. This leads us to introduce in §3 the set Λ̂βη〈A〉 of profinite λ-terms of type A, which we
define as the limit in Set of a specific codirected diagram of finite sets JAK•Q ⊆ JAKQ. We also show that, by

construction, the set of profinite λ-terms can be equipped with a natural topology which turns Λ̂βη〈A〉 into
the Stone space dual to the Boolean algebra RegQ〈A〉. We establish in the next section §4 that profinite

7
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λ-terms can be defined in an alternative and more direct way as families of definable elements θQ ∈ JAK•Q
satisfying a parametricity property with respect to any binary relation R ⊆ Q×Q′. This is the essence of
Theorem B mentioned in the introduction. We then show in §5 that the resulting notion of profinite λ-term
is compositional in the technical sense that it defines a cartesian closed category ProLam whose objects
are the simply types and whose morphisms are profinite λ-terms. Using Statman’s theorem, we establish
in §6 that the canonical functor from the category Lam of simply typed λ-terms to the category ProLam
of profinite λ-terms is a faithful embedding. Finally, we establish in §7 our theorem (Theorem C) that
given a finite alphabet Σ of letters, the notion of profinite λ-terms of type ChurchΣ coincides with the
usual notion of profinite words over Σ. We conclude and give a number of perspectives for future work
in §8.

2 Regular languages of λ-terms

In this section, we define the collection Reg〈A〉 of regular languages at an arbitrary type A, and establish
Theorem A of the introduction, showing how Reg〈A〉 can be built as the colimit of a directed diagram in
the category of Boolean algebras.

Definition 2.1 Let Q be a finite set and A a type. We say that a subset L ⊆ Λβη〈A〉 is a regular language

of type A recognized by Q if there exists a subset Acc of JAKQ such that L = J−K−1
Q (Acc), that is,

for any M ∈ Λβη〈A〉, M ∈ L ⇐⇒ JMKQ ∈ Acc .

We denote the Boolean algebra of regular languages of type A recognized by Q by RegQ〈A〉 ⊆ ℘(Λβη〈A〉)
and we write

Reg〈A〉 =
⋃

{RegQ〈A〉 | Q a finite set}

for the collection of regular languages of type A.

While it is clear that, for each individual finite set Q, the set RegQ〈A〉 is closed under the Boolean

operations, since it is defined as the image of the Boolean homomorphism J−K−1
Q , it is not immediately

apparent that the union Reg〈A〉 is also closed under the Boolean operations.
To this end, we will use logical relations. If S ⊆ P ×P ′ and R ⊆ Q×Q′ are two set-theoretic relations

between finite sets, then one can define their exponential, which is S ⇒ R ⊆ (P ⇒ Q)× (P ′ ⇒ Q′), as

S ⇒ R := {(g, h) | for all x R y, we have g(x) R′ h(y)} .

Therefore, for any relation R ⊆ Q × Q′ between two finite sets Q and Q′, we construct the relation
JAKR ⊆ JAKQ × JAKQ′ by induction on the simple type A as

JoKR := R and JA ⇒ BKR := JAKR ⇒ JBKR .

The fundamental lemma of logical relations then states that for all M ∈ Λβη〈A〉 and any R ⊆ Q×Q′, the
interpretations of M at Q and Q′ are related in the sense that

JMKQ JAKR JMKQ′ .

In particular, we will make extensive use of partial surjections, i.e. relations wich are graphs of surjective
partial functions. We note f : Q ։ Q′ such a partial surjection. We first prove the following lemma, which
states that partial surjections are stable by exponential.

Lemma 2.2 If e : P ։ P ′ and f : Q ։ Q′ are partial surjections, then so is the relation e ⇒ f .

Proof. We first remark that a partial surjection f : Q ։ Q′ may equivalently be described as a span

Q f Q′π2π1

8
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where π1 is injective and π2 is surjective. We adopt this viewpoint during this proof.
Let e : P ։ P ′ and f : Q ։ Q′ be two partial surjections. Note that two functions g : P → Q

and h : P ′ → Q′ are related by e ⇒ f if and only if there exists a function c : e → f such that the following
diagram commutes:

P e P ′

Q f Q′

π1 π2

c

π′

2
π′

1

hg . (8)

First, we show that the relation e ⇒ f is a partial function. Let g : P → Q and h1, h2 : P ′ → Q′ such
that (g, hi) ∈ e ⇒ f for i = 1, 2. We thus have two maps ci : e → f for i = 1, 2 such that

g ◦ π1 = π′
1 ◦ ci and hi ◦ π2 = π′

2 ◦ ci for i = 1, 2 .

The maps all fit in the diagram

P e P ′

Q f Q′

π1 π2

c2

π′

2
π′

1

h2
g c1 h1

.

By injectivity of π′
1, we get that c1 = c2. Therefore,

h1 ◦ π2 = π′
2 ◦ c1 = π′

2 ◦ c2 = h2 ◦ π2 .

By surjectivity of π2, we get that h1 = h2. This proves that the relation e ⇒ f is a partial function.
We now show that the relation e ⇒ f is surjective. Let h : P ′ → Q′ be any function. As π′

2 is surjective,
it has a section s : Q′ → f , that is, π′

2 ◦ s = idQ′ . We then define the function c : e → f as s ◦ h ◦ π2. Note
that π′

2 ◦ c = h ◦ π2, so we obtain the commuting diagram

P e P ′

Q f Q′

π1 π2

c

π′

2
π′

1

h

s

.

As π1 is injective, it has a retraction r : P → e, that is, r ◦ π1 = ide. We define the function g : Q → Q′ as
π′
1 ◦ c ◦ r and note that

g ◦ π1 = π′
1 ◦ c .

Thus, the diagram (8) commutes for this choice of g, c, and h, which means that (g, h) is in the relation
e ⇒ f , as required. This shows that e ⇒ f is surjective. ✷

Using Proposition 2.2, we get a proof of the following proposition by induction on simple types.

Proposition 2.3 If f : Q ։ Q′ is a partial surjection, then the relation JAKf ⊆ JAKQ × JAKQ′ is a partial

surjection for any simple type A.

The following lemma contains the crucial argument needed to prove the fact that Reg〈A〉 is a Boolean
algebra.

Lemma 2.4 Let f : Q ։ Q′ be a partial surjection. Then, for any simple type A, we have an inclusion
of Boolean algebras RegQ′〈A〉 ⊆ RegQ〈A〉.

Proof. Let A be any simple type and let Acc
′ ⊆ JAKQ′ , recognizing the language L = J−K−1

Q′ (Acc
′) in

RegQ′〈A〉. We define the subset Acc of JAKQ as JAK−1
f (Acc′), that is {x ∈ JAKQ | x JAKf y for some y ∈

Acc
′}. By the fundamental lemma of logical relations, for any term M of simple type A, we have JMKQ ∈

9
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Acc if and only if JMKQ′ ∈ Acc
′ as JAKf is a partial function. We conclude that L is equal to J−K−1

Q (Acc),
so that L is also recognized by Q. ✷

In order to prove that the union Reg〈A〉 of the Boolean algebras RegQ〈A〉 is again a Boolean algebra,
we will apply the following general principle from universal algebra in the case where V is the variety of
Boolean algebras, see for example [2, Rem. 3.4.4(iii) on p. 136].

Proposition 2.5 For any finitary variety of algebras V, the forgetful functor V → Set creates directed
colimits.

We are now ready to prove our first main result, Theorem A of the introduction.

Theorem A. The diagram of Boolean algebras Reg(−)〈A〉 : FinPSurjop → BA, i.e.

(
RegQ′〈A〉 RegQ〈A〉

)
f :Q։Q′∈FinPSurj

,

is directed, and its colimit in BA coincides with the Boolean algebra Reg〈A〉 of regular languages of higher-
order type A.

Proof. We first show that the diagram of inclusions of Boolean algebras is directed. Indeed, for any finite
sets Q1 and Q2, we have, for i = 1, 2, the partial surjection fi : Q1 +Q2 ։ Qi defined by q fi q

′ if and only
if q ∈ Qi and q = q′. Thus, Lemma 2.4 gives that RegQi

〈A〉 ⊆ RegQ1+Q2
〈A〉. Now, by Proposition 2.5,

applied in the case V = BA, the union Reg〈A〉 of the sets in the diagram is again a Boolean algebra, and
it is the colimit of the diagram in BA. ✷

We end this section by showing explicitly how we recover in this context the result of [27, Thm. 8] that
Reg〈A〉 is closed under binary intersection.

Proposition 2.6 For any simple type A, the set of regular languages Reg〈A〉 ⊆ ℘(Λβη〈A〉) is closed under
binary intersection.

Proof. Suppose that L1 ∈ RegQ1
〈A〉 and L2 ∈ RegQ2

〈A〉. By the argument given in the proof of
Theorem A, both L1 and L2 are in RegQ1+Q2

〈A〉 which is a Boolean algebra, so their intersection L1 ∩L2

is also in RegQ1+Q2
〈A〉. ✷

3 The space of profinite λ-terms

The aim of this section is to define profinite λ-terms of an arbitrary simple type A as special parametric fam-
ilies of semantic elements, and to show that they form a Stone space dual to the Boolean algebra Reg〈A〉.

Throughout this section, we fix a simple type A. We saw in the previous section that Reg〈A〉 is
a Boolean algebra which is the colimit of a directed diagram of inclusions between the Boolean alge-
bras RegQ〈A〉. As RegQ〈A〉 is finite for every Q, it is isomorphic to ℘(XQ(A)), where XQ(A) is the
set of atoms of RegQ〈A〉. Applying discrete Stone duality to the directed diagram of inclusions of finite
Boolean algebras, we thus obtain a codirected diagram of maps XQ(A) ։ XQ′(A), still indexed by partial
surjections Q ։ Q′. We now first give a more concrete description of that diagram.

Proposition 3.1 For every finite set Q, the set of atoms XQ(A) of RegQ〈A〉 is in a bijection with the set
JAK•Q of definable elements of simple type A, given by the function

JAK•Q −→ XQ(A)

q 7−→ J−K−1
Q ({q}) .

Proof. The Boolean algebra RegQ〈A〉 is, by definition, the image of the Boolean algebra homomorphism

J−K−1
Q : ℘(JAKQ) → ℘(Λβη〈A〉) Thus, RegQ〈A〉 arises as the following epi-mono factorization of Boolean

algebras

10
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℘(JAKQ) ℘(Λβη〈A〉)

RegQ〈A〉

J−K−1

Q

J−K−1

Q
p

Applying the discrete duality functor At : CABA → Set to this diagram, we get the dual epi-mono
factorization of sets

JAKQ Λβη〈A〉

XQ(A)

J−KQ

Since JAK•Q is by definition the image of J−KQ in JAKQ, the result follows by the uniqueness up to isomor-
phism of epi-mono factorizations in CABA. ✷

We now show that logical relations induced by partial surjections, when restricted to definable elements,
all yield the same total function.

Proposition 3.2 For any partial surjection f : Q ։ Q′ and for any simple type A, the set JAK•Q ⊆ JAKQ
of definable elements is contained in the domain of JAKf , and the restriction of JAKf to JAK•Q is the unique

function pQ,Q′ that makes the following diagram commute:

Λβη〈A〉

JAK•Q JAK•Q′

J−K•
Q′J−K•Q

pQ,Q′

Proof. By the fundamental lemma of logical relations, for any term M of simple type A, we have
JMKQ JAKf JMKQ′ , so that any definable element is in the domain of JAKf . By Proposition 2.3, JAKf is
in particular a partial function, so that it makes the diagram commute. For the uniqueness, simply note
that any q ∈ JAK•Q can by definition be written as JMKQ for some term M of simple type A, and must

therefore be sent to JMKQ′ by any function making the diagram commute. ✷

Note that Proposition 3.2 in particular implies that, if f, g : Q ⇒ Q′ are two partial surjections, then,
while their semantic interpretations JAKf , JAKg : JAKQ ⇒ JAKQ′ are in general distinct, their restrictions to

the set JAK•Q of definable elements must both be equal to the function pQ,Q′.

We are now ready to define profinite λ-terms of a given simple type A.

Definition 3.3 Let A be any simple type. We define the set of profinite λ-terms as the limit Λ̂βη〈A〉
in Set of the diagram (

JAK•f : JAK•Q JAK•Q′

)
f :Q։Q′∈FinPSurj

.

It follows from the way that one calculates limits in Set that, concretely, a profinite λ-term in Λ̂βη〈A〉
is a family θ of definable elements θQ ∈ JAK•Q where Q ranges over all finite sets such that

for every partial surjection f : Q ։ Q′ , we have JAK•f (θQ) = θQ′ . (9)

By Proposition 3.2, the condition (9) on the family θ is equivalent to the condition that, for any term M
of simple type A and any finite sets Q and Q′,

if θQ = JMKQ and |Q| ≥ |Q′| then θQ′ = JMKQ′ . (10)

We conclude this section by equipping the set Λ̂βη〈A〉 with a natural topology, and showing that this

topology turns Λ̂βη〈A〉 into the Stone dual space of the Boolean algebra Reg〈A〉. The easiest way to define

the topology of Λ̂βη〈A〉 is to say that it is the subspace topology inherited from the inclusion

11
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Λ̂βη〈A〉
∏

Q JAK•Q

into the product space
∏

Q JAK•Q computed in the category Top of topological spaces, where each compo-

nent JAK•Q is considered as a topological space equipped with the discrete topology. More concretely, for

any finite set Q and q ∈ JAK•Q, let us write UQ,q for the set of profinite λ-terms that take value q at Q,
that is,

UQ,q :=
{

θ ∈ Λ̂βη〈A〉 | θQ = q
}

.

The topology on Λ̂βη〈A〉 is now defined by taking the collection of sets UQ,q as a basis, where Q ranges
over all finite sets and q ranges over all the elements of Q. The following result is proved via an argument
similar to the one given in [10, Sec. 4.2] for profinite algebras.

Proposition 3.4 The space Λ̂βη〈A〉 is the Stone dual space of the Boolean algebra Reg〈A〉. In particular,

Reg〈A〉 is isomorphic to the Boolean algebra of clopen sets of Λ̂βη〈A〉.

Proof. Stone duality arises from the dual equivalence between FinSet and FinBA by taking the pro-

jective and inductive completions, respectively. Therefore, we have in particular that Λ̂βη〈A〉, which is
defined as the codirected limit of the diagram of finite discrete spaces JAK•Q in Top, is the dual space

of the directed colimit of the diagram of finite Boolean algebras RegQ〈A〉, which is the Boolean algebra
Reg〈A〉 by Theorem A. The second statement now follows because any Boolean algebra is isomorphic to
the collection of clopen sets of its dual space. ✷

4 Profinite λ-terms and parametricity

Let A be any simple type. A parametric family is a family of points θQ ∈ JAKQ, where Q ranges over all

finite sets, such that for any relation R ⊆ Q×Q′, we have θQ JAKR θQ′ .
Every parametric family θ is in particular parametric with respect to partial surjections. Therefore, a

parametric family whose components are definable elements is a profinite λ-term. We now show that the
converse holds.

Theorem B. A profinite λ-term θ ∈ Λ̂βη〈A〉 of simple type A may be equivalently defined as a parametric

family of definable elements θQ ∈ JAK•Q.

Proof. Let θ be a profinite λ-term, viewed as a family of definable elemens which is parametric with
respect to every partial surjection, or equivalently, satisfying condition (10). Let Q1 and Q2 be any two
finite sets and let R ⊆ Q1 ×Q2 be any relation. Pick any finite set Q of cardinality max(|Q1|, |Q2|). Since
θQ is in particular definable, pick a λ-term M in Λβη〈A〉 such that θQ is JMKQ. Since |Q| ≥ |Qi| for
i = 1, 2, by (10) we now also have θQi

is equal to JMKQi
. By the fundamental lemma of logical relations,

we obtain that JMKQ1
JAKR JMKQ2

which proves that θ is a parametric family. ✷

5 The cartesian closed category of profinite λ-terms

We now show that profinite λ-terms assemble into a cartesian closed category ProLam which thus provides
an interpretation of the simply typed λ-calculus. In order to construct the category ProLam, we find it
convenient to use a general construction introduced by Jacq and Melliès [17] in a more general monoidal
and 2-categorical setting. Suppose given a cartesian closed category C and a functor

P : C −→ Set

which is cartesian product preserving in the sense that the canonical functions

〈P(π1),P(π2)〉 : P(A×B) −→ P(A)× P(B)

!P(1) : P(1) −→ 1

12
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are bijections for all objects A and B of the category C. We denote by

mA,B : P(A)× P(B) −→ P(A×B)

m1 : 1 −→ P(1)

the inverse functions. In that situation, one defines the category C[P] whose objects are the objects of C
and whose hom-sets are defined as follows:

C[P](A,B) := P(A ⇒ B)

using the internal hom-object A ⇒ B of the cartesian closed category C. Equivalently, C[P] is the result
of seeing the cartesian closed category C as enriched in itself, and then changing the base along P. One
establishes that

Proposition 5.1 The category C[P] is cartesian closed and comes equipped with a cartesian closed
identity-on-object functor

idonobjC,P : C C[P]

which strictly preserves the cartesian product as well as the internal hom.

Now, in order to obtain the category ProLam of profinite λ-terms using this categorical construction,
we start by recalling the definition of the cartesian closed category Lam freely generated by the terminal
category.

Definition 5.2 The category Lam has as objects the simple types of the λ-calculus and its hom-sets are
defined as

Lam(A,B) := Λβη〈A ⇒ B〉

for all pairs A and B of simple types.

At this stage, we are ready to consider the functor P : Lam −→ Set which transports every simple
type A to the set of profinite λ-terms

P(A) = Λ̂βη〈A〉 (11)

and every λ-term M of simple type A ⇒ B to the set-theoretic function sending a profinite λ-term θ of
simple type A on the family (JMKQ(θQ)) which can be shown to be a profinite λ-term of simple type B
using the fundamental lemma of logical relations. It is interesting to observe that the functor P is cartesian
product preserving and that we have canonical bijections

P(A×B) ∼= P(A) × P(B) P(1) ∼= 1

for every pair of simple types A and B. By applying the construction, we obtain a cartesian closed category

ProLam := Lam[P]

whose objects are the simple types of the λ-calculus and whose hom-sets are defined as follows:

ProLam(A,B) := Λ̂βη〈A ⇒ B〉 .

Remark 5.3 Note that the functors P are chosen to be valued in Set, but we could choose any cartesian
category S as long as P still is cartesian product preserving relatively to the cartesian structure of S. The
construction will then yield a cartesian closed category C[P] enriched over S. As a matter of fact, the
functor P : Lam → Set used in (11) to construct ProLam = Lam[P] happens to factor through the
category Stone of Stone spaces, in the following way:

Lam Stone Set
Λ̂βη〈−〉 forget

This shows that the cartesian closed category ProLam of profinite λ-terms may be also considered as
enriched over the category Stone of Stone spaces.

13
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6 A faithful embedding from λ-terms to profinite λ-terms

By construction, the category ProLam comes equipped with a cartesian closed identity-on-object functor

idonobj : Lam ProLam (12)

which may also be derived from the fact that Lam is the free cartesian closed category. We now establish
that

Proposition 6.1 The functor idonobj is faithful.

Towards proving Proposition 6.1, we first claim that the category ProLam can be obtained as the
limit of a codirected diagram of cartesian closed categories, described in the following way. Given a finite
set Q and a simple type A, consider the equivalence relation

∼A
Q ⊆ Λβη〈A〉 × Λβη〈A〉

on the set of simply typed λ-terms of type A modulo βη-conversion, defined as:

M ∼A
Q N

def
⇐⇒ JMKQ = JNKQ .

When we fix the finite set Q, the family ∼Q of equivalence relations ∼A
Q parametrized by simple types A

defines a congruence relation on the category Lam, in the expected sense that

if f ∼A⇒B
Q f ′ and g ∼B⇒C

Q g′, then g ◦ f ∼A⇒C
Q g′ ◦ f ′

for any tuple of morphisms f, f ′, g, g′ of the form:

A B C
f

f ′

g

g′
.

From this, it follows that we can define the category

LamQ := Lam / ∼Q

obtained by considering the morphisms of the free cartesian closed category Lam modulo the congruence
relation ∼Q in the expected sense that

LamQ(A,B) = Λβη〈A ⇒ B〉 / ∼A⇒B
Q . (13)

We then establish that

Proposition 6.2 For every finite set Q, the category LamQ is cartesian closed and comes equipped with
a cartesian closed identity-on-object functor

πQ : Lam LamQ .

Moreover, every partial surjection f : Q ։ Q′ in the category FinPSurj induces a cartesian closed
identity-on-object functor

Lamf : LamQ LamQ′

making the diagram of cartesian closed functors commute:

LamQ

Lam

LamQ′

Lamf

πQ

πQ′

14



van Gool, Melliès, Moreau

From this observation, it is not too difficult to show that

Proposition 6.3 The category ProLam is the codirected limit of the diagram of cartesian closed categories
LamQ indexed by finite sets and partial surjections. The projection functor

πQ : ProLam LamQ

is defined by transporting every morphism θ : A → B defined as a family θ of definable elements in

ProLam(A,B) = Λ̂βη〈A ⇒ B〉

to the instance θQ in

LamQ(A,B) = Λβη〈A ⇒ B〉 / ∼A⇒B
Q

∼= JA ⇒ BK•Q .

One also establishes that the canonical functor (12) is also characterized by the fact that it is the unique
cartesian closed functor making the diagram below commute:

LamQ

Lam ProLam

LamQ′

Lamf
idonobj

πQ

πQ′

πQ

πQ′

This observation provides us with a clean proof that the functor idonobj is faithful. Indeed, by Statman’s
finite completeness theorem [31], for every pair of morphisms f, g : A ⇒ B in the category Lam which is
(by definition) a pair of λ-terms M and N modulo βη-conversion, either M and N are equal modulo βη-
conversion or there exists a finite set Q such that the interpretations JMKQ = πQ(M) and JNKQ = πQ(N)
are different. In particular, idonobj(f) and idonobj(g) differ in the second case. This establishes that the
canonical functor idonobj : Lam → ProLam is faithful, as claimed in Proposition 6.1.

7 Profinite λ-terms and profinite words

The higher-order language theory on simply typed λ-terms is designed to extend the traditional language
theory on words on a given finite alphabet Σ. The idea is that a finite word on the alphabet Σ is the same
thing as a λ-term of simple type ChurchΣ modulo βη-conversion. In particular, we recall below a folklore
result which states that the Boolean algebra Reg〈ChurchΣ〉 of regular higher-order languages on ChurchΣ
coincides with the Boolean algebra Reg〈Σ〉 of regular languages on the finite alphabet Σ.

Proposition 7.1 For every finite alphabet Σ, one has an isomorphism of Boolean algebra

Reg〈ChurchΣ〉 ∼= Reg〈Σ〉

given by the Church encoding.

Proof. The Church encoding provides a one-to-one correspondence between subsets L ⊆ Σ∗ of words
over the alphabet Σ and subsets L ⊆ Λβη〈ChurchΣ〉 of λ-terms of simple type ChurchΣ closed modulo βη-
conversion. We show that a subset L ⊆ Σ∗ is regular if and only if the associated subset L ⊆ Λβη〈ChurchΣ〉
is an element of Reg〈ChurchΣ〉.

In one direction, suppose that L ⊆ Σ∗ is a language of words recognized by a DFA A = (Q, δ, q0,Acc).
We recall from the introduction that the associated set L ⊆ Λβη〈ChurchΣ〉 of λ-terms is the inverse image
by the semantic bracket

J−KQ : Λβη〈ChurchΣ〉 JChurchΣKQ
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of the set of functionals in JChurchΣKQ defined as follows

eval
−1
(δ,q0)

(Acc) = {F ∈ JChurchΣKQ | F (δa1 , . . . , δan)(q0) ∈ Acc} .

By definition, L ⊆ Λβη〈ChurchΣ〉 is thus an element of RegQ〈ChurchΣ〉 and thus an element of
Reg〈ChurchΣ〉.

Conversely, by definition of Reg〈ChurchΣ〉, it is sufficient to establish, for every finite set Q, that every
subset L ∈ RegQ〈ChurchΣ〉 has its corresponding subset L ⊆ Σ∗ a regular language. By definition of
RegQ〈ChurchΣ〉, we may suppose without loss of generality that L ∈ RegQ〈ChurchΣ〉 is of the form

L = J−K−1
Q ({F}) = {M ∈ Λβη〈ChurchΣ〉 | JMKQ = F}

where F is a functional in JChurchΣKQ. The corresponding set L ⊆ Σ∗ is the finite intersection of all the

regular languages recognized by the DFAs of the form A = (Q, δ, q0, {qf}) where the unique final state qf
is equal to qf = F (δa1 , . . . , δan)(q0). As a finite intersection of regular languages, the set L ⊆ Σ∗ is itself
regular. ✷

We use this result in order to establish our Theorem C.

Theorem C. For every finite alphabet Σ, there is a homeomorphism

Λ̂βη〈ChurchΣ〉 ∼= Σ̂∗

between the space Λ̂βη〈ChurchΣ〉 of profinite λ-terms of type ChurchΣ and the space Σ̂∗ of profinite words.

Proof. By Proposition 3.4, the space Λ̂βη〈ChurchΣ〉 is the Stone dual of the Boolean algebra Reg〈ChurchΣ〉
which is isomorphic to the Boolean algebra Reg〈Σ〉 by Proposition 7.1. From this follows that the space

Λ̂βη〈ChurchΣ〉 is homeomorphic to the Stone dual of Reg〈Σ〉 which coincides with the space Σ̂∗ of profinite
words by an important result of Stone duality, see [23]. ✷

One main benefit of extending finite words into profinite words is that a new class of implicit operations
become available [4]. In particular, there exists an idempotent power operator u 7→ uω which turns every
profinite word u into another profinite word noted uω, and defines a continuous function

u 7−→ uω : Σ̂∗ −→ Σ̂∗ (14)

see for example [23, Prop. 2.5]. The construction is based on the observation that for any element x of
a finite monoid M , there exists a unique power xn of x, for n ≥ 1, which is idempotent. This unique
power is obtained when n is the factorial of the cardinality of M , and is also usually written xω. The
continuous function (14) is obtained by taking the profinite limit of this operation on monoids. We show
the construction generalizes from profinite words to profinite λ-terms at every type A.

Proposition 7.2 For every simple type A, there exists a profinite λ-term

ΩA : (A ⇒ A) ⇒ A ⇒ A (15)

which, given any M ∈ Λ̂βη〈A ⇒ A〉, satisfies the idempotency equation

(ΩAM) ◦ (ΩA M) = ΩAM

between profinite λ-terms, where g ◦ f is notation for λx.f (g x) where f and g are profinite λ-terms.

We have seen in Theorem C that one recovers the traditional notion of profinite words on a finite alpha-
bet Σ by considering the profinite λ-terms of type ChurchΣ. Accordingly, the continuous operation (14)
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can be recovered as the profinite λ-term

λu.λf1 . . . fn.Ωo (u f1 . . . fn) : ChurchΣ ⇒ ChurchΣ

where Ωo : (o ⇒ o) ⇒ (o ⇒ o) denotes the idempotent power operator ΩA at type A = o. Note that
we use the compositional calculus provided by the cartesian closed category ProLam in order to see the
expression λu.λf1 . . . fn.Ωo (u f1 . . . fn) as a profinite λ-term.

8 Conclusion

In this paper, we introduce the notion of profinite λ-term of a given simple type which we define in a clean
and principled way by establishing in Theorem A and Theorem B that the definitions based on duality
theory and on parametricity coincide. We also establish in Theorem C that the Church encoding of finite
words as λ-terms extends to profinite words, in the sense that the usual notion of profinite word on a finite
alphabet Σ coincides with the notion of profinite λ-term on the type ChurchΣ encoding the alphabet Σ.
We also construct a cartesian closed category ProLam of profinite λ-terms, and construct a cartesian
closed functor

idonobj : Lam ProLam

from the cartesian closed category of usual simply typed λ-terms. We also show that this embedding functor
from simply typed λ-terms to profinite λ-terms is faithful, using Statman’s theorem. The construction
shows that simply typed λ-terms can be considered as particular profinite λ-terms, and that profinite
λ-terms can be manipulated in the same compositional way as usual simply typed λ-terms.
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