
ar
X

iv
:2

30
7.

12
30

2v
1

 [
cs

.P
L

]
 2

3
Ju

l 2
02

3
Submitted to MFPS 2023

Saturating Automata for Game Semantics

Alex Dixona Andrzej S. Murawskib,1

a Department of Computer Science
University of Warwick

Coventry, UK
b Department of Computer Science

University of Oxford
Oxford, UK

Abstract

Saturation is a fundamental game-semantic property satisfied by strategies that interpret higher-order concurrent programs.
It states that the strategy must be closed under certain rearrangements of moves, and corresponds to the intuition that
program moves (P-moves) may depend only on moves made by the environment (O-moves).
We propose an automata model over an infinite alphabet, called saturating automata, for which all accepted languages are
guaranteed to satisfy a closure property mimicking saturation.
We show how to translate the finitary fragment of Idealized Concurrent Algol (FICA) into saturating automata, confirming
their suitability for modelling higher-order concurrency. Moreover, we find that, for terms in normal form, the resultant
automaton has linearly many transitions and states with respect to term size, and can be constructed in polynomial time.
This is in contrast to earlier attempts at finding automata-theoretic models of FICA, which did not guarantee saturation and
involved an exponential blow-up during translation, even for normal forms.

Keywords: automata over infinite alphabets, Finitary Idealized Concurrent Algol, game semantics, higher-order concurrency

1 Introduction

Game semantics is a versatile modelling theory that interprets computation as interaction between two
players, called O (Opponent) and P (Proponent). The two players represent the environment and the
program respectively, so programs can be interpreted as strategies for P. Although initially game models
concerned functional sequential computation, notably the language PCF [2,13], it did not take long for the
methodology to be extended to other programming constructs such as state [3,1], control operators [16],
and, soon afterwards, concurrency. Some of the game models were presented in the interleaving tradition
of models of concurrency [17,18,12], while others were built in the spirit of partial-order methods (true
concurrency) [7].

In the interleaving approach, the aim is to construct strategies in such a way that they will contain all
possible sequential observations of parallel interactions. Within game semantics, this led to the realisation
that strategies must be closed under certain rearrangements of moves, to reflect the limited power of
programs to observe and control the actual ordering of concurrent actions. Critically, a program can wait

1 This research was funded in whole or in part by EPSRC EP/T006579. For the purpose of Open Access, the author
has applied a CC BY public copyright licence to any Author Accepted Manuscript (AAM) version arising from this
submission.

MFPS 2023 Proceedings will appear in Electronic Notes in Theoretical Informatics and Computer Science

http://arxiv.org/abs/2307.12302v1

Dixon, Murawski

until an environment action occurs before proceeding, but it does not have any influence over environment
actions or its own concurrent actions beyond those stipulated by the game. To express this constraint, one
requires that strategies should be closed under certain move swaps. More specifically, consecutive m1m2

can be swapped as long as the swap still leads to a valid play and it is not the case that m1 is an O-move
and m2 is a P-move.

In game semantics, this condition first appeared in a model of Idealized CSP [17], and was named
saturation in [12]. In game models based on event structures [7], an analogous condition can be expressed
more directly using event structures with polarity. Variants of saturation also occur in other contexts in
the theory of concurrency. For example, they have been used to describe propagation of signals across wires
in delay-insensitive circuits [25] or to specify the relationship between input and output in asynchronous
systems with channels [14].

More recently, there have been attempts at defining automata-theoretic formalisms that provide support
for representing plays in concurrent game semantics [10,11]. At the technical level, plays are sequences
of moves connected by pointers, which poses a challenge for standard automata theory based on finite
alphabets. However, an infinite alphabet is ideal for this purpose, especially if it has tree structure, so
that the parent relation (link from child to parent) can provide a means of representing game-semantic
pointers. Although the proposed formalisms were shown to accommodate the game semantics of higher-
order concurrent programs, notably, that of a finitary version of Idealized Concurrent Algol (FICA) [12],
they do not capture natively the saturation condition: in addition to interpretations of FICA terms (which
are guaranteed to satisfy saturation), they are also capable of accepting many other languages, which need
not be closed under any kind of swaps.

In contrast, in this paper, we define an automata model over infinite alphabets, called saturating
automata, for which any accepted language is guaranteed to satisfy (a language variant of) the saturation
condition. It is achieved through carefully tailored transitions, which in particular restrict the way that
siblings may communicate with each other through parents, and minimise direct communication between
other generations.

The new design turns out to bring another technical advantage over existing translations. Saturating
automata corresponding to FICA terms in normal form have linearly many states and transitions (with
respect to term size), and can be generated in at most quadratic time. This is an improvement over the
exponential complexity inherent in earlier translations, which was due to either the fact that memory was
modelled through control states [10] or the use of product constructions to handle parallel composition [11].
In view of the ubiquity of the saturation condition, we believe that this makes saturating automata into a
point of interest in the design space of automata models, which deserves further study in connection with
game semantics or other areas mentioned above.

Related work

In addition to the papers already mentioned, the combination of game semantics and automata theory
over infinite alphabets appeared in research into sequential computation, e.g. to handle call-by-value
computation with state [8,9], ground references [21] and objects [20]. On the concurrent front, Petri-net-
like devices have recently been proposed to interpret higher-order concurrency along with a correspondence
to game semantics [6].

More broadly, our results are related to encodings of higher-order computation in process cal-
culi [24,23,4] (where the role of infinite alphabets would be played by a set of names) and to abstract
machines [15]. It would also be interesting to find connections between our work and trace theory over
partially commutative alphabets [5,19], though there the commutation relation is typically symmetric,
unlike in our case.

2 Finitary Idealised Concurrent Algol (FICA)

Idealised Concurrent Algol [12] is a paradigmatic call-by-name language combining higher-order compu-
tation with imperative constructs in the style of Reynolds [22], extended to concurrency with parallel
composition (||) and binary semaphores. We consider its finitary variant, FICA, defined over a finite
datatype t0, . . . ,maxu (max ě 0), with no recursion, but with iteration. Its types θ are generated by the

2

Dixon, Murawski

Γ $ skip : com Γ $ divθ : θ
0 ď i ď max
Γ $ i : exp

Γ $ M : exp

Γ $ oppMq : exp

Γ $ M : com Γ $ N : β

Γ $ M ;N : β

Γ $ M : com Γ $ N : com
Γ $ M ||N : com

Γ $ M : exp Γ $ N1, N2 : β

Γ $ if M thenN1 elseN2 : β

Γ $ M : exp Γ $ N : com

Γ $ whileM doN : com

Γ, x : θ $ x : θ

Γ, x : θ $ M : θ1

Γ $ λx.M : θ Ñ θ1

Γ $ M : θ Ñ θ1 Γ $ N : θ

Γ $ MN : θ1

Γ $ M : var Γ $ N : exp

Γ $ M :“N : com
Γ $ M : var
Γ $!M : exp

Γ, x : var $ M : com, exp

Γ $ newvarx inM : com, exp

Γ $ M : sem
Γ $ releasepMq : com

Γ $ M : sem
Γ $ grabpMq : com

Γ, s : sem $ M : com, exp

Γ $ newsem s inM : com, exp

Fig. 1. FICA typing rules

grammar
θ ::“ β | θ Ñ θ β ::“ com | exp | var | sem

where com is the type of commands; exp that of t0, . . . ,max u-valued expressions; var that of assignable
variables; and sem that of semaphores. The typing judgments are displayed in Figure 1. Here, skip
and divθ are constants representing termination and divergence respectively, i ranges over t0, . . . ,max u,
and op represents unary arithmetic operations, such as successor or predecessor (since we work over a
finite datatype, operations of bigger arity can be defined using conditionals). Variables and semaphores
can be declared locally via newvar and newsem. Variables are dereferenced using !M , and semaphores
are manipulated using two (blocking) primitives, grabpsq and releasepsq, which grab and release the
semaphore respectively. We assume that variables are initialised to 0 and semaphores are initially released.

In reduction rules, it will be convenient to use the syntax newvarx :“ i inM and newsemx :“ i inM ,
which allows us to specify initial values more flexibly, i.e. newvarx inM and newsemx inM should be
viewed as newvarx :“ 0 inM and newsemx :“ 0 inM respectively.

The operational semantics is defined using a (small-step) transition relation V $ M, s ÝÑ M 1, s1,
where V is a set of variable names denoting active memory cells and semaphore locks. s, s1 are states, i.e.
functions s, s1 : V Ñ t0, ¨ ¨ ¨ ,maxu, and M,M 1 are terms. We write s b pv ÞÑ iq for the state obtained by
augmenting s with pv ÞÑ iq, assuming v R dompsq. The basic reduction rules are given in Figure 2, where
c stands for any language constant (i or skip) and xop : t0, ¨ ¨ ¨ ,maxu Ñ t0, ¨ ¨ ¨ ,maxu is the function
corresponding to op. In-context reduction is given by the schemata:

V, v $ M rv{xs, s b pv ÞÑ iq ÝÑ M 1, s1 b pv ÞÑ i1q M ‰ c

V $ newvarx :“ i inM,s ÝÑ newvarx :“ i1 inM 1rx{vs, s1

V, v $ M rv{xs, s b pv ÞÑ iq ÝÑ M 1, s1 b pv ÞÑ i1q M ‰ c

V $ newsemx :“ i inM,s ÝÑ newsemx :“ i1 inM 1rx{vs, s1

V $ M, s ÝÑ M 1, s1

V $ ErM s, s ÝÑ ErM 1s, s1

where reduction contexts Er´s are produced by the grammar:

Er´s ::“ r´s | E ;N | pE ||Nq | pM || Eq | EN | oppEq | if E thenN1 elseN2

| !E | E :“m | M :“ E | grabpEq | releasepEq.

We say that a term $ M : com may terminate, written M ó, if H $ H, M ÝÑ˚ H, skip.
FICA terms can be compared using a notion of contextual (may-)equivalence, denoted Γ $ M1 – M2.

3

Dixon, Murawski

V $ skip||skip, s ÝÑ skip, s V $ if i thenN1 elseN2, s ÝÑ N1, s, i ‰ 0

V $ skip; c, s ÝÑ c, s V $ if 0 thenN1 elseN2, s ÝÑ N2, s

V $ oppiq, s ÝÑ xoppiq, s V $ pλx.MqN, s ÝÑ M rN{xs, s

V $ newvarx :“ i in c, s ÝÑ c, s V $!v, s b pv ÞÑ iq ÝÑ i, s b pv ÞÑ iq

V $ newsemx :“ i in c, s ÝÑ c, s V $ v :“ i1, s b pv ÞÑ iq ÝÑ skip, s b pv ÞÑ i1q

V $ grabpvq, s b pv ÞÑ 0q ÝÑ skip, s b pv ÞÑ 1q

V $ releasepvq, s b pv ÞÑ iq ÝÑ skip, s b pv ÞÑ 0q, i ‰ 0

V $ whileM doN, s ÝÑ if M then pN ;whileM doNq else skip, s

Fig. 2. Reduction rules for FICA

Two terms of the same type and with the same free variables are equivalent if they cannot be distinguished
with respect to termination by any context: for all contexts C such that $ CrM1s : com, we have CrM1só
if and only if CrM2s ó. Using game semantics, one can reduce – to equality of the associated sets of
complete plays (Theorem 3.5).

Example 2.1 Consider the term

f : com Ñ com, c : com $ newvarx in pf px :“ 1q || if !x then c else divcomq; !x : exp

The free variable f can be viewed as representing an unknown function, to be bound to concrete code by
a context. Since we work in a call-by-name setting, that function may evaluate its argument arbitrarily
many times, including none. If the function does not use its argument, the value of x will always be 0 (we
assume that local variables are initialised to 0) and the term will never terminate, because the right term
inside || will always diverge, preventing the whole term from terminating. On the other hand, as long as
f evaluates its argument at least once and terminates, and the right-hand side of || is scheduled after the
assignment x :“ 1 (and code bound to c terminates) then the whole term will terminate too, returning 1.

In the next section we sketch the game semantics of FICA.

3 Game semantics

In this section, we briefly present the fully abstract game model for FICA from [12], which we rely on in the
paper. Game semantics for FICA involves two players, called Opponent (O) and Proponent (P), and the
sequences of moves made by them can be viewed as interactions between a program (P) and a surrounding
context (O). The games are defined using an auxiliary concept of an arena.

Definition 3.1 An arena A is a tuple xMA, λA,$A, IAy, where:

‚ MA is a set of moves;

‚ λA : MA Ñ tO,P u ˆ tQ,Au is a function determining for each m P MA whether it is an Opponent

or a Proponent move, and a question or an answer ; we write λOP
A , λ

QA
A for the composite of λA with

respectively the first and second projections;

‚ $A is a binary relation on MA, called enabling, satisfying: if m $A n then λOP
A pmq ‰ λOP

A pnq and

λ
QA
A pmq “ Q;

‚ IA Ď MA is a set of initial moves such that λApIAq Ď tpO,Qqu and $A XpMA ˆ IAq “ H (no enablers).

Note that an initial move must be an O-question (OQ). In arenas used to interpret base types all

4

Dixon, Murawski

MAˆB “ MA ` MB MAñB “ MA ` MB

λAˆB “ rλA, λBs λAñB “ rxλPO
A , λ

QA
A y, λBs pλPO

A pmq “ O iff λOP
A pmq “ P q

$AˆB “ $A ` $B $AñB “ $A ` $B `t pb, aq | b P IB and a P IAu
IAˆB “ IA ` IB IAñB “ IB

Fig. 3. Arena constructions (` and r¨ ¨ ¨ s stand for the disjoint union of sets and functions respectively; x¨ ¨ ¨y denotes pairing).

A “ Jcom Ñ comK ˆ JcomK ñ JexpK

O q
✇
✇
✇

✐✐
✐✐
✐✐
✐✐
✐✐

P runf

♦♦
♦
♦

runc i

O runf1 donef donec

P donef1

(a) The arena A for the term from Example 2.1.

s1 “ q runf donef

O P O

(b) s1, a short justified sequence over A.

s2 “ q runf runf1 donef1 runc donec donef 1

O P O P P O O P

(c) s2, a longer justified sequence over A.

Fig. 4. Arenas and justified sequences

questions are initial - the possible P-answers (PA) are listed below (0 ď i ď max).

Arena OQ PA
JcomK run done
JvarK read i

writepiq ok

Arena OQ PA
JexpK q i
JsemK grb ok

rls ok

More complicated types are interpreted inductively using the product (A ˆ B) and arrow (A ñ B)
constructions, given in Figure 3.

We write JθK for the arena corresponding to type θ. In Figure 4a, we give (the enabling relation of)
the arena A “ pJcom Ñ comK ˆ JcomKq ñ JexpK, which needs to be constructed to interpret the term
from Example 2.1. We use superscripts to distinguish copies of the same move (the use of superscripts is
consistent with our future convention, which will be introduced in Definition 6.1).

Given an arena A, we specify next what it means to be a legal play in A. For a start, the moves that
players exchange will have to form a justified sequence, which is a finite sequence of moves of A equipped
with pointers. Its first move is always initial and has no pointer, but each subsequent move n must have
a unique pointer to an earlier occurrence of a move m such that m $A n. We say that n is (explicitly)
justified by m or, when n is an answer, that n answers m. If a question does not have an answer in
a justified sequence, we say that it is pending in that sequence. In Figures 4b, 4c we give two justified
sequences s1 and s2 over A.

Not all justified sequences are valid. In order to constitute a legal play, a justified sequence must satisfy
a well-formedness condition that reflects the “static” style of concurrency of our programming language:
any started sub-processes must end before the parent process terminates. This is formalised as follows,
where the letters q and a to refer to question- and answer-moves respectively, while m denotes arbitrary
moves.

5

Dixon, Murawski

Definition 3.2 The set PA of plays over A consists of the justified sequences s over A that satisfy the
two conditions below.

FORK : In any prefix s1 “ ¨ ¨ ¨ q ¨ ¨ ¨m of s, the question q must be pending when m is played.

WAIT : In any prefix s1 “ ¨ ¨ ¨ q ¨ ¨ ¨ a of s, all questions justified by q must be answered.

It is easy to check that the justified sequences s1, s2 from Figures 4b and 4c are plays.

Remark 3.3 It is worth noting that the notion of play is stable with respect to swaps of adjacent moves
except when the swaps involve occurrences of moves m1m2 related by the pointer structure: m1m2 or
m1,m2 are answers to questions q1, q2 such that q2 justifies q1.

A subset σ of PA is O-complete if s P σ and so P PA imply so P σ, when o is an O-move.

Definition 3.4 A strategy on A, written σ : A, is a prefix-closed O-complete subset of PA.

Suppose Γ “ tx1 : θ1, ¨ ¨ ¨ , xl : θlu and Γ $ M : θ is a FICA-term. Let us write JΓ $ θK for the
arena Jθ1K ˆ ¨ ¨ ¨ ˆ JθlK ñ JθK. In [12] it is shown how to assign a strategy on JΓ $ θK to any FICA-
term Γ $ M : θ. We write JΓ $ MK to refer to that strategy. For example, JΓ $ divK “ tǫ, runu and
JΓ $ skipK “ tǫ, run, run doneu. The plays s1, s2 turn out to belong to the strategy that interprets the
term from Example 2.1. Given a strategy σ, we denote by comppσq the set of non-empty complete plays
of σ, i.e. those in which all questions have been answered. For example, s1 (Figure 4b) is not complete,
but s2 (Figure 4c) is.

The game-semantic interpretation J¨ ¨ ¨K can be viewed as a faithful record of all possible interactions be-
tween the term and its contexts. It provides a fully abstract model in the sense that contextual equivalence
is characterized by the sets of non-empty complete plays.

Theorem 3.5 ([12]) We have Γ $ M1 – M2 if and only if comppJΓ $ M1Kq “ comppJΓ $ M2Kq.

The strategies corresponding to FICA terms turn out to be closed under swaps of adjacent moves as long
as the earlier move is a P-move or the later one is an O-move, and the swap produces a play. Formally,
for any arena A, let us define ľĎ PA ˆ PA to be the least preorder satisfying smo s1 ľ s oms1 and
s pms1 ľ smp s1, where m, o, p range over moves, O-moves and P-moves respectively. In the pairs of
plays above, we assume that, during a swap, the justification pointers from the two moves also move with
them.

Example 3.6 Consider the following play.

s3 “ q runf runf1 runc donec donef1 donef 1

O P O P P OO P

Observe that s2 ľ s3, where s2 is the play from Figure 4c, because the P-move donef1 moved to the right
past a P-move (runc) and an O-move (donec). In contrast, we do not have s3 ľ s2, as this would involve

moving a P-move (donef1) left past an O-move (donec).

Example 3.7 Consider the plays s4, s5 given below (in the arena Jcom Ñ com Ñ comK), which corre-
spond to parallel and sequential composition respectively. Observe that s4 ľ s5. Note that the witnessing
swap involves swapping run2 (P-move) with done1 (O-move), which is permitted by the definition of ľ.

s4 “ run run1 run2 done1 done2 done
O P P O O P

s5 “ run run1 done1 run2 done2 done
O P O P O P

Definition 3.8 A strategy σ : A is saturated if, for all s, s1 P PA, if s P σ and s ľ s1 then s1 P σ.

6

Dixon, Murawski

Remark 3.9 Definition 3.8 states that saturated strategies are stable under ľ. Note that s o p s1 ń s p o s1,
while other o{p combinations are allowed in ľ. Thus, saturated strategies allow one to express causal
dependencies of P-moves on O-moves. This aspect of strategies is captured explicitly in concurrent games
based on event structures [7].

Theorem 3.10 ([12]) For any FICA-term Γ $ M , the strategy JΓ $ MK is saturated.

In the next section we will introduce an automata-theoretic model for representing plays. In contrast
to earlier attempts, languages accepted by the automata will satisfy a language-theoretic equivalent of the
saturation condition.

4 Saturating automata (SATA)

The automata to be introduced will accept the so-called data languages, i.e. languages over an alphabet
of the form Σ ˆ D, where Σ is a finite alphabet and D is a infinite alphabet of data values. In our case,
the dataset D will have the structure of a countably infinite forest. This structure will be helpful when
representing game semantics. In particular, it will be used to encode justification pointers and enforce the
WAIT condition.

Definition 4.1 D is a countably infinite set equipped with a function pred : D Ñ D Y tKu (the parent
function) such that the following conditions hold.

‚ Infinite branching: pred´1ptdKuq is infinite for any dK P D Y tKu.

‚ Well-foundedness: for any d P D, there exists i P N, called the level of d, such that pred i`1pdq “ K.
Level-0 data values are called roots.

We say that T Ď D is a subtree of D if and only if T is closed (@x P T : predpxq P T Y tKu) and rooted
(D!x P T : predpxq “ K).

Example 4.2 Suppose Σ consists of moves used in Figure 4a, predpd0q “ K, pred pd1q “ predpd1
1
q “

d0 and predpd2q “ d1. The play s2 (Figure 4c) can be represented by the following word over Σ ˆ
D: pq, d0qprunf , d1qprunf1, d2qpdonef1, d2qprunc, d1

1
qpdonec, d1

1
qpdonef , d1qp1, d0q. Note that the predecessor

relation is used to represent justification pointers. Full details of the representation scheme will be given
in Section 6.

We use subtrees of D to represent configurations. Their nodes will be annotated with additional
information. We distinguish between odd and even levels to reflect the distinction between the behaviours
of the environment (O) and the program (P).

‚ Each even-level node will be annotated with a multiset of control states, and zero or more memory cells.
This information will be allowed to evolve during runs. Intuitively, it represents the multiset of states
of a group of processes.

‚ Nodes at odd levels will be labelled with single control states, which will not change.

In a single transition, the automaton will be able to add or remove leaves from its configuration using very
limited information. When adding a leaf as a child of node n, only the state at n will be available. When
removing a leaf, in addition to the state at the leaf, only the parent state will be accessed, if at all. The
automaton will also feature ǫ-transitions, which do not modify the shape of the configuration, but can be
used to update annotations at even levels, while possibly accessing memory cells at ancestor nodes.

The automata will be parameterized by k and N . The parameter k is the maximal depth of the data
used by the automaton, while N is the maximal number of memory cells at any node. A memory cell will
store an element from V “ t0, . . . ,maxu. The set of control states will be partitioned into sets Cpiq, for
0 ď i ď k, dedicated to representing run-time information at the corresponding level i.

Definition 4.3 A saturating automaton (SATA) is a tuple A “ xΣ, k,N,C, δy, where:

‚ Σ “ ΣOQ ` ΣPQ ` ΣOA ` ΣPA is a finite alphabet, partitioned into O/P-questions and O/P-answers
(we use qO, qP , aO, aP respectively to range over the elements of the four components);

7

Dixon, Murawski

‚ k ě 0 is the depth parameter and N ě 0 is the local memory capacity;

‚ C “ Σk
i“0

Cpiq is a finite set of control states, partitioned into sets Cpiq of level-i control states;

‚ transitions in δ are partitioned according to their type (ADD, DEL or EPS) and level on which they

operate; their shapes are listed below, where cpiq, dpiq, epiq P Cpiq and Dp2iq, Ep2iq P MpCp2iqq, whereMpXq
denotes the set of multisets over X.
¨ ADDp2iq transitions have the form cp2i´1q qOÝÝÑDp2iq or :

qOÝÝÑDp0q for the special case of i “ 0;

¨ ADDp2i ` 1q transitions have the form cp2iq qPÝÝÑdp2i`1q;

¨ DELp2iq transitions have the form Dp2iq aPÝÝÑ:;

¨ DELp2i ` 1q transitions have the form cp2i`1q aOÝÝÑdp2iq;

¨ EPSp2iq transitions have the form Dp2iq ǫ
ÝÝÑEp2iq;

¨ EPSp2j, 2iq transitions read v P V from memory cell h P t1, . . . , Nu at level 2j ď 2i and update it to

v1 P V , but do not read the input: p2j, h, v, cp2iqq
ǫ

ÝÝÑpv1, dp2iqq.

Remark 4.4 Observe that O and P can “act” only at odd and even levels respectively. The ADDp2iq
transitions map exactly onto O-questions from the game semantics. We may view them as spawning a finite
number of jobs (hence the use of multisets to represent those jobs’ states). Dually, the DELp2iq transition
maps onto P-answers which answer those O-questions; correspondingly with WAIT, the DELp2iq transition
is only firable when all jobs have reached their “terminal conditions”. Each job created via ADDp2iq can
evolve separately via ADDp2i ` 1q or DELp2i ` 1q, by EPSp2j, 2iq (internal state change plus memory
operation), or as part of a group via EPSp2iq.

Definition 4.5 A SATA configuration is a tuple pD,E, f,mq, where D is a finite subset of D (consisting of
data values that have been encountered so far), E is a finite subtree of D (the shape of the configuration),

f : E Ñ
ř

0ă2i´1ďk

Cp2i´1q `
ř

0ď2iďk

MpCp2iqq is such that

‚ if d is a level-2i data value then fpdq P MpCp2iqq,

‚ if d is a level-p2i ´ 1q data value then fpdq P Cp2i´1q,

and m : E á V N is a partial function whose domain is the set of even-level nodes of E.

A SATA A starts from the empty configuration κ0 “ pH,H,H,Hq and proceeds according to its
transitions δ, as detailed below. We write κ “ pD,E, f,mq and κ1 “ pD1, E1, f 1,m1q for the current and
the successor configurations respectively.

ADD

We shall have κ
pt,dq

ÝÝÝÑκ1 provided t P ΣOQ ` ΣPQ, d R D, predpdq P E, D1 “ D Y tdu, E1 “ E Y tdu,
and if the transition-specific constraints from the table below are satisfied 2 . We write f r¨ ¨ ¨ s to extend or
update f .

t transition pre-condition f 1 m1

qO :
qOÝÝÑDp0q D “ H td ÞÑ Dp0qu td ÞÑ 0Nu

qO cp2i´1q qOÝÝÑDp2iq fppredpdqq “ cp2i´1q f rd ÞÑ Dp2iqs mrd ÞÑ 0N s

qP cp2iq qPÝÝÑdp2i`1q cp2iq Pm fppredpdqq f

«
predpdq ÞÑ fppredpdqqzmtcp2iqu

d ÞÑ dp2i`1q

ff
m

2 Given a multiset pX,µ : X Ñ Nq, we write x Pm pX,µq to mean µpxq ą 0. Given two multisets pX,µiq
(i “ 1, 2), we write pX,µ1qzmpX,µ2q, pX,µ1q Ym pX,µ2q to stand for pX,µ´q and pX,µ`q respectively, where
µ´pxq “ maxpµ1pxq ´ µ2pxq, 0q and µ`pxq “ µ1pxq ` µ2pxq. Similarly, pX,µ1q Ď pX,µ2q denotes µ1pxq ď µ2pxq for
all x P X .

8

Dixon, Murawski

Note that, in the first two cases, memory is initialised at the new node. In the last case, cp2iq is removed
from fppredpdqq, i.e. if a job starts evolving via ADDp2i ` 1q, it is removed from the list of current jobs.

DEL

We shall have κ
pt,dq

ÝÝÝÑκ1 provided t P ΣOA ` ΣPA, d is a leaf in E, D1 “ D, E1 “ Eztdu, m1 “ m, and
the transition-specific constraints listed below are satisfied.

t transition pre-condition f 1

aO cp2i`1q aOÝÝÑdp2iq fpdq “ cp2i`1q f rpredpdq ÞÑ fppredpdqq Ym tdp2iqus

aP Dp2iq aPÝÝÑ: fpdq “ Dp2iq f

Note that, in the first case, the leaf will contribute a new state to the parent node. For simplicity, we do
not “garbage-collect” f 1, since the leaf removal is already recorded via E1.

EPS
We shall have κ

ε
ÝÝÑκ1 provided D1 “ D, E1 “ E and there exists an even-level datum d satisfying the

transition-specific constraints discussed below.

‚ For Dp2iq ǫ
ÝÝÑEp2iq, we require Dp2iq Ďm fpdq, f 1 “ f rd ÞÑ pfpdqzmDp2iqq Ym Ep2iqs and m1 “ m.

‚ For p2j, h, v, cp2iqq
e

ÝÝÑpv1, dp2iqq, we require cp2iq Pm fpdq and mppred2i´2jpdqqphq “ v, f 1 “ f rd ÞÑ
pfpdqzmtcp2iquq Ym tdp2iqus and m1 “ mrpred2i´2jpdqphq ÞÑ v1s.

Note that, in the second case, mppred2i´2jpdqqphq refers to the hth memory cell of d’s ancestor at level 2j
and only the content of this cell may be modified by the transition.

Definition 4.6 A trace of a SATA A is a word w P pΣ ˆ Dq˚ such that κ0
l1ÝÝÑκ1 . . . κh´1

lhÝÝÑκh, where
κ0 “ pH,H,H,Hq, li P tǫu Y pΣ ˆ Dq (1 ď i ď h) and w “ l1 ¨ ¨ ¨ lh. A configuration κ “ pD,E, f,mq
is accepting if E is empty. A trace w is accepted by A if there is a non-empty sequence of transitions as
above with κh accepting. The set of traces (resp. accepted traces) of A is denoted by Tr pAq (resp. LpAq).

It follows that each data value can occur in a trace at most twice. The first occurrence (if any) must
be related to a question, whereas the second one will necessarily be an answer. The fact that answers can
be read only if the corresponding node becomes a leaf is analogous to the game-semantic WAIT condition.
Note that E is empty in accepting configurations. This means that in every word that is accepted, each
question qO{qP (corresponding to leaf creation) will have a corresponding answer aP {aO (corresponding to
leaf removal), and they will be paired up with the same data value. Such words resemble complete plays
(Theorem 3.5) under the convention that a justification pointer from an answer to a question is represented
by using the data value introduced by the question. Indeed, we will rely on this when representing plays
in Section 6.

Example 4.7 The SATA A “ xΣ, 2, 1, C, δy specified below recognises complete plays generated by the
FICA term from Example 2.1 according to the interpretation from [12]. It is trace- and language-equivalent
to the one that would be derived by the translation given in the proof of Theorem 6.4, though the
representation here is made more concise. We use l and r to denote control states corresponding to the
left and right subterms of the parallel composition in Example 2.1. The memory value maintained at level
0 corresponds to the value of the variable x.

We have ΣOQ “ tq, runf1u, ΣPQ “ trunf , runcu, ΣOA “ tdonef , donecu, ΣPA “ tdonef1, 0, ¨ ¨ ¨ ,max u,

Cp0q “ tl
p0q
1

, l
p0q
2

, r
p0q
1

, r
p0q
2

, r
p0q
3

, r
p0q
4

u, Cp1q “ tl
p1q
1

, r
p1q
1

u, and Cp2q “ tl
p2q
1

, l
p2q
2

u. δ is given below.

9

Dixon, Murawski

:
pq,d0q

ÝÝÝÝÑ d0 ptl
p0q
1

, r
p0q
1

u, 0q
prunf ,d1q

ÝÝÝÝÝÝÑ
d0 ptr

p0q
1

u, 0q

d1 pl
p1q
1

q

prunf1,d2q
ÝÝÝÝÝÝÑ

d0 ptr
p0q
1

u, 0q

d1 pl
p1q
1

q

d2 ptl
p2q
1

uq

ǫ
ÝÝÑ

d0 ptr
p0q
1

u, 1q

d1 pl
p1q
1

q

d2 ptl
p2q
2

uq

pdonef1,d2q
ÝÝÝÝÝÝÝÑ

d0 ptr
p0q
1

u, 1q

d1 pl
p1q
1

q

ǫ
ÝÝÑ

d0 ptr
p0q
3

u, 1q

d1 pl
p1q
1

q

prunc,d1
1

q
ÝÝÝÝÝÑ

d0 pH, 1q

d1 pl
p1q
1

q d1
1

pr
p1q
1

q

pdonec,d1
1

q
ÝÝÝÝÝÝÑ

d0 ptr
p0q
4

u, 1q

d1 pl
p1q
1

q

pdonef ,d1q
ÝÝÝÝÝÝÑ d0 ptl

p0q
2

, r
p0q
4

u, 1q
p1,d0q

ÝÝÝÝÑ :

Fig. 5. A transition sequence corresponding to s2 (Figure 4c).

ADD(0), DEL(0): :
q

ÝÝÑtl
p0q
1

, r
p0q
1

u tl
p0q
2

, r
p0q
4

u
1

ÝÝÑ:

ADD(1), DEL(1): l
p0q
1

runf
ÝÝÝÑl

p1q
1

l
p1q
1

donef

ÝÝÝÝÑl
p0q
2

r
p0q
3

runc
ÝÝÝÑr

p1q
1

r
p1q
1

donec

ÝÝÝÑr
p0q
4

ADD(2), DEL(2): l
p1q
1

runf1
ÝÝÝÑtl

p2q
1

u tl
p2q
2

u
donef1

ÝÝÝÝÑ:

EPS(0,0): p0, 1, 0, r
p0q
1

q
ε

ÝÝÑp0, r
p0q
2

q p0, 1, i, r
p0q
1

q
ε

ÝÝÑpi, r
p0q
3

q p0 ă i ď max q

EPS(0,2): p0, 1, i, l
p2q
1

q
ε

ÝÝÑp1, l
p2q
2

q p0 ď i ď max q

We give a possible transition sequence for A. For the sake of simplicity, data values from D will be
subscripted with a number corresponding to their level, and superscripted with zero or more primes to
distinguish within each level. Configurations are denoted as a tree of nodes, reflecting the subtree of D
currently maintained in the automaton.

Nodes at even levels 2i are written dpXq or dpX, vq, where d is a level-2i data value, X P MpCp2iqq and
v represents the memory value maintained at that node (in this case always a single number). Nodes at

odd levels 2i´ 1 have the form dpXq, where d is a level-p2i´ 1q data value and X P Cp2i´1q. The complete
transition sequence is given in Figure 5. It witnesses the acceptance of a data word corresponding to the
play s2 from Figure 4c.

5 Saturation

In this section we define a language variant of saturation and show that languages traced and accepted
by SATA satisfy it. d1, d2 P D will be called independent if neither d1 “ predkpd2q nor d2 “ pred kpd1q for
k ě 0, i.e. the data lie on different branches. Let ΣO “ ΣOQ ` ΣOA and ΣP “ ΣPQ ` ΣPA.

Definition 5.1 We shall say that L Ď pΣ ˆ Dq˚ is saturated iff, for any w P L and independent d1, d2,
w “ w1pt1, d1qpt2, d2qw2 P L implies w1pt2, d2qpt1, d1qw2 P L whenever t1 P ΣP or t2 P ΣO.

Remark 5.2 The condition “t1 P ΣP or t2 P ΣO” is the negation of “t1 P ΣO and t2 P ΣP”, i.e. the swap
is allowed unless the first letter is from ΣO and the second one from ΣP . Note that this is analogous to
the game-semantic saturation condition (Definition 3.8). The definition above uses independent d1, d2. It

10

Dixon, Murawski

would not make sense to extend it to any dependent cases: one can show that in such cases the swap will
never result in a trace.

To show that saturating automata are bound to produce saturated sets of traces/accepted words, we
establish a series of lemmas about commutativity between various kinds of transitions.

Lemma 5.3 (ǫO ÞÑ Oǫ) If κ1
ǫ

ÝÝÑκ2
pt,dq

ÝÝÝÑκ3 and t P ΣO then κ1
pt,dq

ÝÝÝÑκ1
2

ǫ
ÝÝÑκ3 for some κ1

2
.

Proof. We need to consider all combinations of the transitions listed below.

ǫ O

Dp2iq ǫ
ÝÝÑEp2iq or p2j, h, v, cp2iqq

ǫ
ÝÝÑpv1, dp2iqq cp2i1´1q qOÝÝÑDp2i1q or cp2i1`1q aOÝÝÑdp2i1q

Observe that the EPS transitions do not modify states at odd levels or add nodes. Thus, the ΣO transitions
could be fired from κ1. Now note that the ΣO transitions cannot prevent the EPS transitions from being
executed next, because they do not change states at even levels (though they add new ones). l

Remark 5.4 The converse to Lemma 5.3 is false. If a ΣO transition is followed by an EPS transition, it
may be impossible to swap them, because the latter could rely on states introduced by the former.

Lemma 5.5 (Pǫ ÞÑ ǫP) If κ1
pt,dq

ÝÝÝÑκ2
ǫ

ÝÝÑκ3 and t P ΣP then κ1
ǫ

ÝÝÑκ1
2

pt,dq
ÝÝÝÑκ3 for some κ1

2
.

Proof. We inspect the shape of the relevant rules, which are listed below.

P ǫ

cp2iq qPÝÝÑdp2i`1q or Dp2iq aPÝÝÑ: Dp2i1q ǫ
ÝÝÑEp2i1q or p2j, h, v, cp2i1 qq

ǫ
ÝÝÑpv1, dp2i1qq

Observe that the ǫ transitions do not depend on any information introduced by transitions on ΣP . Hence,
they are executable from κ1. Note also that they will not destroy any information needed to execute the
ΣP transitions when fired, as there must already have been enough copies of any information to fire the
transitions in the original order. l

Remark 5.6 The converse to Lemma 5.5 is false: an ǫ transition may well be followed by a transition on
ΣP that relies on the states introduced by the ǫ transition.

Remark 5.7 One can use Lemmata 5.3 and 5.5 to replace sequences of transitions of the form

κ
pt1,d1q

ÝÝÝÝÑp
ǫ

ÝÝÑq˚ pt2,d2q
ÝÝÝÝÑκ1 with sequences of transitions between the same configurations such that the tran-

sitions on pt1, d1q and pt2, d2q will be adjacent.

‚ If t1 P ΣP then, using Lemma 5.5 repeatedly, one can obtain κ1p
ǫ

ÝÝÑq˚ pt1,d1q
ÝÝÝÝÑ

pt2,d2q
ÝÝÝÝÑκ1.

‚ If t2 P ΣO then, using Lemma 5.3 this time, one can obtain κ1
pt1,d1q

ÝÝÝÝÑ
pt2,d2q

ÝÝÝÝÑp
ǫ

ÝÝÑq˚κ1.

Note that these transformations require either t1 P ΣP or t2 P ΣO, so they cannot be carried out if t1 P ΣO

and t2 P ΣP .

Next we examine permutability of consecutive transitions involving independent data values.

Lemma 5.8 Suppose d1, d2 are independent and κ1
pt1,d1q

ÝÝÝÝÑκ2
pt2,d2q

ÝÝÝÝÑκ3, where t1 P ΣP or t2 P ΣO. Then

there exists κ1
2
such that κ1

pt2,d2q
ÝÝÝÝÑκ1

2

pt1,d1q
ÝÝÝÝÑκ3.

Proof. Recall that non-ǫ transitions rely only on two consecutive levels of the configuration tree. Conse-
quently, if d1, d2 are independent and predpd1q ‰ predpd2q then the transitions operate on disjoint regions
of the configuration and can be swapped.

Now suppose predpd1q “ pred pd2q and note that, because of independence, we have d1 ‰ d2. Conse-
quently, the transitions must operate at the same level and concern different children of the same node.

‚ If the level is even, we need to consider the following combinations of transitions: ADDp2iqADDp2iq,
DELp2iqADDp2iq, DELp2iqDELp2iq (other cases can be ignored due to the t1 P ΣP or t2 P ΣO

11

Dixon, Murawski

constraint). Recalling that ADDp2iq and DELp2iq transitions have the form cp2i´1q qOÝÝÑDp2iq and

Dp2iq aPÝÝÑ: respectively, we can confirm that the Lemma holds, because the state cp2i´1q associated
with pred pd1q “ predpd2q is not modified and there is no scope for interference between the transitions.

‚ If the level is odd, we need to consider the following combinations of transitions: ADDp2i`1qADDp2i`1q,
ADDp2i ` 1qDELp2i ` 1q, DELp2i ` 1qDELp2i ` 1q (other cases can be ignored due to the t1 P ΣP or

t2 P ΣO constraint). Recalling that ADDp2i`1q and DELp2i`1q transitions have the form cp2iq qPÝÝÑdp2i`1q

and cp2i`1q aOÝÝÑdp2iq respectively, we can confirm that the Lemma holds, because the transitions will not
interfere. In particular, due to d1 ‰ d2, the DELp2i ` 1q transition in ADDp2i ` 1qDELp2i ` 1q cannot
use the state introduced by the preceding ADDp2i ` 1q transition.

l

Remark 5.9 Note that the “t1 P ΣP or t2 P ΣO” condition is necessary: in the DELp2i ` 1qADDp2i ` 1q
case (i.e. aOqP), it is possible for the latter transition to use the target state of the former.

Theorem 5.10 For any SATA A, the sets TrpAq,LpAq are saturated.

Proof. Consider t1, t2, d1, d2 such that t1 P ΣP or t2 P ΣO, d1, d2 are independent and w1pt1, d1qpt2, d2qw2 P

TrpAq. Thus, there exist κ1, κ2 such that κ1
pt1,d1q

ÝÝÝÝÑp
ǫ

ÝÝÑq˚ pt2,d2q
ÝÝÝÝÑκ2. By Remark 5.7, we can re-

arrange the transitions to get κ1p
ǫ

ÝÝÑq˚ pt1,d1q
ÝÝÝÝÑ

pt2,d2q
ÝÝÝÝÑp

ǫ
ÝÝÑq˚κ2. By Lemma 5.8, we then obtain

κ1p
ǫ

ÝÝÑq˚ pt2,d2q
ÝÝÝÝÑ

pt1,d1q
ÝÝÝÝÑp

ǫ
ÝÝÑq˚κ2, i.e. w1pt2, d2qpt1, d1qw2 P Tr pAq. Hence, TrpAq is saturated. As LpAq is

a subset of TrpAq in which all questions have answers, LpAq is also saturated, because the swaps do not
affect membership in LpAq. l

Remark 5.11 Earlier proposals for automata models of FICA [10,11] failed to satisfy saturation. In
retrospect, this was because they allowed for too much communication between control states at various
levels.

Leafy automata [10] could access the whole branch of the configuration tree at each transition and
modify it during transition. In particular, each move could access and update the state at the root. This
feature could easily be used to define leafy automata that are very rigid and not closed under any kind
of transition swaps. Local leafy automata, also introduced in [10], restrict access only to the local part
of the branch but still allow communication (thus preventing swaps) between nodes sharing a parent or
great-grandparent.

Split automata [11] in turn featured restricted access to control states at various levels, but
their transitions still allowed for state-based communication between siblings, through transitions

cp2iq qPÝÝÑpdp2iq, dp2i`1qq and pcp2iq, cp2i`1qq
aOÝÝÑdp2iq. The first rule could be used to create two child nodes in

a specific order only, violating Lemma 5.8 for t1, t2 P ΣP . The second rule could be used to delete child
nodes in a specific order only, violating the same lemma for t1, t2 P ΣO. Finally, the fact that the two rules
can communicate through level 2i means that we can make the second one conditional on the first one,
meaning that Lemma 5.8 would be violated for t1 P ΣP and t2 P ΣO. Consequently, split automata did
not offer native support for saturation, regardless of the polarity of letters.

6 From FICA to SATA

In this section we provide an inductive translation from FICA to SATA. The main result states that,
for terms in normal form, the construction can be carried out in quadratic time and the automata have
linearly many states and transitions (with respect to term size).

First, we describe how to encode justification pointers in plays using data and a special indexing scheme.
Recall from Section 3 that, to interpret base types, game semantics uses moves from the set

M “ MJcomK Y MJexpK Y MJvarK Y MJsemK

“ t run, done, q, read, grb, rls, ok u Y t i, writepiq | 0 ď i ď max u.

12

Dixon, Murawski

The game-semantic interpretation of a term-in-context Γ $ M : θ is a strategy over the arena JΓ $ θK,
which is obtained through product and arrow constructions, starting from arenas corresponding to base
types. As both constructions rely on the disjoint sum, the moves from JΓ $ θK are derived from the base
types present in types inside Γ and θ. To indicate the exact occurrence of a base type from which each
move originates, we will annotate elements of M with a specially crafted scheme of superscripts. Suppose
Γ “ tx1 : θ1, ¨ ¨ ¨ , xl : θlu. The superscripts will have one of the two forms, where i P N

˚ and ρ P N:

‚ pi, ρq will represent moves from θ;

‚ pxvi, ρq will represent moves from θv (1 ď v ď l).

The annotated moves will be written as mpi,ρq or mpxvi,ρq, where m P M. We will sometimes omit ρ on
the understanding that this represents ρ “ 0. Similarly, when i is omitted, the intended value is ǫ, e.g. m
stands for mpǫ,0q and mx for mpx,0q. The next definition explains how the i superscripts are linked to moves
from JθK. Given X Ď tmpi,ρq | i P N

˚, ρ P Nu and y P N Y tx1, ¨ ¨ ¨ , xlu, we let yX “ tmpyi,ρq |mpi,ρq P Xu.

Definition 6.1 Given a type θ, the corresponding alphabet Tθ is defined as follows

Tβ “ tmpǫ,ρq |m P MJβK, ρ P N u β “ com, exp,var, sem

TθlÑ...Ñθ1Ñβ “
Ťl

u“1
puTθuq Y Tβ

For Γ “ tx1 : θ1, ¨ ¨ ¨ , xl : θlu, the alphabet TΓ$θ is defined to be TΓ$θ “
Ťl

v“1
pxvTθvq Y Tθ.

Example 6.2 Given Γ “ tf : com Ñ com, c : comu, we have

TΓ$exp “ trunpf1,ρq, donepf1,ρq, runpf,ρq, donepf,ρq, runpc,ρq, donepc,ρq, qpǫ,ρq, ipǫ,ρq | 0 ď i ď max , ρ P N u.

Note that TΓ$θ admits a natural partitioning into X-questions and X-answers (X P tO,P u), depending
on whether the underlying move is an X-question or an X-answer. To represent the game semantics of
terms-in-context Γ $ M : θ, we will represent plays as words over Σ ˆ D, where Σ is a finite subset of
TΓ$θ. Only a finite subset will be needed, because ρ will be bounded.

Next we explain how ρ and data will be used to represent justification pointers. Because no data
value can be used twice with a question, occurrences of questions correspond to unique data values. A
justification pointer from an answer to a question can then be represented simply by pairing up the same
data value with the answer. Pointers from question-moves will be represented with the help of the index
ρ. Initial question-moves do not have a pointer and to represent such questions we simply use ρ “ 0.
To represent moves with justification pointers, we will rely on ρ on the understanding that pmpy,ρq, dq
represents a pointer to the unique question-move that introduced predρ`1pdq. The reader may wish to

check that Example 4.2 does follow this convention (therein mx stands for mpx,0q). Below we give another
example involving ρ ą 0, which may arise in our translation for certain P-moves.

Example 6.3 The play q runf runf1 runc can be represented by prunpǫ,0q, d0q prunpf,0q, d1q prunpf1,0q, d2q
prunpc,2q, d3q, given predpdi`1q “ di (0 ď i ď 2).

Below we state the main result linking FICA with saturating automata. Question-moves in this trans-
lation are handled with ADD transitions: ADDp2iq and ADDp2i ` 1q correspond to O- and P-questions
respectively. Answer-moves are processed with DEL transitions: DELp2iq for P-answers and DELp2i ` 1q
for O-answers.

Theorem 6.4 For any FICA term Γ $ M : θ there exists a SATA AM over a finite subset of TΓ$θ

such that the set of plays represented by words from TrpAM q is JΓ $ M : θK, and LpAM q represents
comppJΓ $ M : θKq. Moreover, when M is in β-normal η-long form 3 , AM has linearly many states and
transitions, and can be constructed in quadratic time.

3 A term is in β-normal form if none of its subterms is a β-redex, and it is η-long if all occurrences of function
identifiers inside the term are fully applied. For every term one can obtain a corresponding β-normal η-long form
by β-reduction and η-expansion; these reductions preserve equivalence.

13

Dixon, Murawski

Proof. It follows from analogous results for the simply-typed λ-calculus that any FICA term can be reduced
to an equivalent term in β-normal η-long form. The argument proceeds by induction on the structure of
such forms. When referring to the inductive hypothesis for a subterm Mi, we use the subscript i to refer

to the automata components, e.g. C
pjq
i ,

m
ÝÝÑi etc. In contrast, Cpjq,

m
ÝÝÑ (without subscripts) will refer to

the automaton that is being constructed. Inference lines indicate that the transitions listed under
the line should be added to the new automaton provided the transitions listed above the line are present
in the automaton obtained from the inductive hypothesis.

The following three invariants that strengthen the inductive hypothesis help us establish correctness
and the requisite complexity. They concern labelled transitions only.

‚ OA (OA determinacy): if cp2i`1q aOÝÝÑd
p2iq
1

and cp2i`1q aOÝÝÑd
p2iq
2

then d
p2iq
1

“ d
p2iq
2

.

‚ PQ (PQ pre-determinacy): if c
p2iq
1

qPÝÝÑdp2i`1q and c
p2iq
2

qPÝÝÑdp2i`1q then c
p2iq
1

“ c
p2iq
2

.

‚ FA (final readiness): for every Dp0q aPÝÝÑ:, i.e. where aP is a final answer, whenever the automaton

reaches a configuration pD,E, f,mq with Dp0q Ď fprq, where r is the root, then the transition can be

executed, i.e. r has no children and fprq “ Dp0q.

Below we discuss a selection of cases. In the first three cases, the corresponding automaton merely needs
to respond to the initial question with a suitable answer or not respond at all (for divθ).

M ” skip:

k “ 0, N “ 0, Cp0q “ t0u, δ consists of :
run

ÝÝÑt0u and t0u
done

ÝÝÝÑ:.

M ” i:

k “ 0, N “ 0, Cp0q “ t0u, δ consists of :
q

ÝÝÑt0u and t0u
i

ÝÝÑ:.

M ” divθ:
k “ 0, N “ 0, Cp0q “ t0u. Supposing θ ” θl Ñ ¨ ¨ ¨ Ñ θ1 Ñ β, recall that IJβK stands for the set of

initial questions in JβK. δ is then given by
x P IJβK

:
x

ÝÝÑt0u

PQ and OA hold vacuously in the above cases, as they do not feature the relevant transitions. FA is also
clearly satisfied.

M ” oppM1q:

k “ k1, N “ N1, C
pjq “ C

pjq
1

(0 ď j ď k). In this case, we only need to adjust the final answers, i.e.
we take all transitions for AM1

except DELp0q, and modify the DELp0q transitions as follows.

Dp0q i
ÝÝÑ1:

Dp0q xoppiq
ÝÝÝÑ:

The above relabelling does not concern transitions relevant to OA and PQ, so the properties are simply
inherited from AM1

. FA holds by appeal to IH.

M ” M1||M2:
In order to match JΓ $ M1||M2K, this construction needs to interleave AM1

and AM2
while gluing

the initial and final moves. Accordingly, we take k “ maxpk1, k2q, N “ N1 ` N2, C
p0q “ C

p0q
1

` C
p0q
2

`

t˝1, ˝2, ‚1, ‚2u, Cpiq “ C
piq
1

` C
piq
2

(0 ă i ď k, assuming C
piq
u “ H for i ą ku). All transitions from AM1

14

Dixon, Murawski

and AM2
other than ADDp0q, DELp0q, EPSp0, 2iq are simply embedded into the new automaton. ADDp0q

and DELp0q need to be synchronised, as shown below.

:
run

ÝÝÑt˝1, ˝2u

:
run

ÝÝÑuD
p0q
u u P t1, 2u

t˝uu
ǫ

ÝÝÑD
p0q
u

D
p0q
u

done
ÝÝÝÑu: u “ 1, 2

D
p0q
u

ǫ
ÝÝÑt‚uu t‚1, ‚2u

done
ÝÝÝÑ:

N “ N1 ` N2 reflects the need to combine local memories of the two automata. This need arises only at
level 0, as memory at other levels will be disjoint. Consequently, we need to adjust memory indices for
EPSp0, 2iq transitions from AM2

only:

p0, h, v, cp2iqq
ǫ

ÝÝÑ1pv1, dp2iqq

p0, h, v, cp2iqq
ǫ

ÝÝÑpv1, dp2iqq

p0, h, v, cp2iqq
ǫ

ÝÝÑ2pv1, dp2iqq

p0, N1 ` h, v, cp2iqq
ǫ

ÝÝÑpv1, dp2iqq
.

It follows from IH and the construction that FA will be preserved for done. OA and PQ are preserved
too, because the construction does not affect the relevant transitions.

M ” M1;M2 : com:
Here we need to let AM1

run to completion and then direct the computation to AM2
. We take

k “ maxpk1, k2q, N “ N1 ` N2, C
p0q “ C

p0q
1

` C
p0q
2

` t˝u, Cpiq “ C
piq
1

` C
piq
2

(0 ă i ď k).
We modify the ADDp0q and DELp0q transitions as follows.

:
run

ÝÝÑ1D
p0q

:
run

ÝÝÑDp0q

D
p0q
1

done
ÝÝÝÑ1:

D
p0q
1

ǫ
ÝÝÑt˝u

:
run

ÝÝÑ2D
p0q
2

t˝u
ǫ

ÝÝÑD
p0q
2

D
p0q
2

done
ÝÝÝÑ2:

D
p0q
2

done
ÝÝÝÑ:

The remaining transitions are simply copies of other transitions from AM1
, AM2

, with the proviso that in
EPSp0, 2jq transitions from AM2

we add N1 to the index of the memory cell that is accessed.
For correctness, we need to appeal to FA for M1, which tells us that reaching a configuration in which

the root is labelled with D
p0q
1

amounts to the termination of M1. As before, the construction does not
modify transitions relevant to OA, PQ, so the properties are simply inherited from M1 and M2. FA
follows from IH.

M ” fpM1q:
This case is interesting, because this is where labelled transitions are created rather than inherited.

According to [12], the automaton should start with run runf and end with donef done. In the meantime,
after the first two moves, it should allow for an arbitrary number of runf1s, each of which should trigger a
separate copy of AM1

, which will terminate with donef1. donef should be read only when all of the copies
are finished.

We discuss the simplest instance f : com Ñ com. We take k “ 2 ` k1, N “ N1, C
p0q “ t0run, 0doneu,

Cp1q “ t1runu, Cpj`2q “ C
pjq
1

(0 ď j ď k1). First we add transitions corresponding to calling and returning
from f :

:
runpǫ,0q

ÝÝÝÝÑt0runu 0run
runpf,0q

ÝÝÝÝÝÑ1run 1run
donepf,0q

ÝÝÝÝÝÑ0done t0doneu
donepǫ,0q

ÝÝÝÝÝÑ:.

In state 1run we want to allow the environment to spawn an unbounded number of copies of the strategy
for Γ $ M1 : com:

:
runpǫ,0q

ÝÝÝÝÑ1D
p0q
1

1run
runpf1,0q

ÝÝÝÝÝÑD
p0q
1

D
p0q
1

donepǫ,0q

ÝÝÝÝÝÑ1:

D
p0q
1

donepf1,0q

ÝÝÝÝÝÝÑ:
.

Note that the copies will run two levels lower than in AM1
.

The remaining moves related to M1 originate from Γ, i.e. are of the form mpxvi,ρq, where pxv : θvq P Γ.
The associated transitions need to be embedded into the new automaton, but P-question-moves of the

15

Dixon, Murawski

form mpxv ,ρq (corresponding to initial moves of JθvK) need to have their pointer adjusted so that they point

at the move tagged with runpǫ,0q (leaving ρ unchanged in this case would mean pointing at runpf1,0q). To
achieve this, it suffices to add 2 to ρ in this case. Otherwise ρ can remain unchanged, because the pointer
structure is preserved. Below we use ˝L, ˝R to refer to arbitrary left/right-hand sides of transition rules.

˝L
mpxv,ρq

ÝÝÝÝÝÑ1 ˝R m P ΣQ

˝L
mpxv,ρ`2q

ÝÝÝÝÝÝÑ˝R

˝L
mpxvi,ρq

ÝÝÝÝÝÑ1 ˝R i ‰ ǫ or (i “ ǫ and m P ΣA)

˝L
mpxvi,ρq

ÝÝÝÝÝÑ˝R

Memory-related transitions are also copied, while adjusting the depth of the level that is being accessed
by adding 2:

p2j, h, v, cp2iqq
ǫ

ÝÝÑ1pv1, dp2iqq

p2j ` 2, h, v, cp2iqq
ǫ

ÝÝÑpv1, dp2iqq
.

The preservation of OA and PQ follows from the construction and IH, as the old transitions are simply
copied in and relabelled injectively. FA follows from the shape of the new transitions and IH.

M ” newvarx inM1:
According to [12], it suffices to consider plays from M1 in which readpx,ρq and writepjqpx,ρq moves are

immediately followed by answers, and the sequences obey the “good variable” discipline (a value that is
read corresponds to the most recently written value). To implement this recipe in an automaton, we add
an extra cell at level 0 to store values of x along with explicit initialisation (to facilitate automata re-use

in loops). To this end, we take k “ k1, N “ N1 ` 1, Cp0q “ C
p0q
1

` t˝, ‚u, Cpiq “ C
piq
1

(0 ă i ď k). All
transitions from AM1

can be copied over except ADDp0q,DELp0q and those with superscripts of the form
px, ρq, i.e. related to x. ADDp0q and DELp0q are handled as specified below.

m P IJβK

:
m

ÝÝÑt˝u

0 ď v ď max

p0, N, v, ˝q
ǫ

ÝÝÑp0, ‚q

:
q

ÝÝÑ1D
p0q
1

t‚u
ǫ

ÝÝÑD
p0q
1

D
p0q
1

a
ÝÝÑ1:

D
p0q
1

a
ÝÝÑ:

Note that in this case β “ com, exp, so IJβK “ trunu or IJβK “ tqu.
For transitions related to x we proceed as follows.

cp2iq writepjqpx,ρq

ÝÝÝÝÝÝÝÑ1d
p2i`1q okpx,0q

ÝÝÝÝÑ1e
p2iq 0 ď v ď max

p0, N, v, cp2iqq
ǫ

ÝÝÑpj, ep2iqq

cp2iq readpx,ρq

ÝÝÝÝÝÑ1d
p2i`1q jpx,0q

ÝÝÝÑ1e
p2iq

p0, N, j, cp2iqq
ǫ

ÝÝÑpj, ep2iqq

Thanks to OA, the construction will add (at most) max ` 1 new transitions for each transition

cp2iq writepjqpx,ρq

ÝÝÝÝÝÝÝÑ1d
p2i`1q. Observe that they have the shape p0, N, v, cp2iqq

ǫ
ÝÝÑpj, ep2iqq (0 ď v ď max), and

could be represented succinctly by writing p0, N, ?, cp2iqq
ǫ

ÝÝÑpj, ep2iqq, where ? is a wildcard representing

an arbitrary value. So, each cp2iq writepjqpx,ρq

ÝÝÝÝÝÝÝÑ1d
p2i`1q gives rise to a single transition with a wildcard. As

the only modifications on EPSp2j, 2iq transitions are of the kind discussed above (adding to the first two
components, but never values), this representation with wildcards can be propagated in further steps.

Similarly, thanks to PQ, each transition dp2i`1q jpx,0q

ÝÝÝÑ1e
p2iq gives rise to (at most) one new transition

p0, N, j, cp2iqq
ǫ

ÝÝÑpj, ep2iqq.
Correctness follows from the fact that it suffices to restrict the work of M1 to traces in which the

relevant moves follow each other [12]. Further, by Lemma 5.3, it suffices to consider scenarios in which
the associated transitions follow each other. OA,PQ are preserved, because no new relevant transitions
are introduced. FA follows by appealing to IH.

M ” newsems inM1:
This case is very similar to the previous one but only two values are possible: 0 (the initial one) or 1.

Transitions corresponding to grabbing change 0 to 1, whereas releasing the semaphore does the opposite.

16

Dixon, Murawski

Thanks to OA and PQ, only one transition will be added for each original transition on grb and rls
respectively.

cp2iq grbps,ρq

ÝÝÝÝÝÑ1d
p2i`1q okps,0q

ÝÝÝÝÑ1e
p2iq

p0, N, 0, cp2iqq
ǫ

ÝÝÑp1, ep2iqq

cp2iq rlsps,ρq

ÝÝÝÝÑ1d
p2i`1q okps,0q

ÝÝÝÝÑ1e
p2iq

p0, N, 1, cp2iqq
ǫ

ÝÝÑp0, ep2iqq

Complexity analysis

The constructions produce an automaton in which there are linearly many states, memory cells and
transitions, with respect to term size. For states, it suffices to observe that each construction adds at most
a fixed number of new states to those obtained from IH. The same applies to memory cells.

The case of transitions is harder, as there are several ways in which transitions are added to the new
automaton. The easiest case is when a transition is simply copied from an automaton obtained through IH
without any changes to transition labels. Other cases, represented by inference rules, are based on single
premises (old transitions) and generate new single transitions. As the old ones are not included in the new
automaton, such rules preserve the number of transitions. newvar in relies on a rule with two premises
but, as discussed, the outcome could still be viewed as a single transition with a wildcard. Finally, when
transitions cannot be traced back to old ones, their number is always bounded by a constant (we regard
max as a constant too).

Hence, we can conclude that the number of transitions (possibly with wildcards) will be linear. Because
each transition with a wildcard represents max ` 1 transitions without wildcards, by instantiating them
we still obtain a linear number of transitions. It is also worth noting that each transition involves at most
three states: whenever sets of states are involved in transitions, they contain at most two elements.

Finally, we assess the time complexity of the constructions. A typical case consists of invoking IH and
performing a bounded number of linear-time operations on the results to implement the constructions, such
as retagging to implement the disjoint sum and relabelling. The combinations of transitions mentioned
in newvar can also be considered in linear time after some preprocessing that guarantees constant-time
access to incoming and outgoing transition of a given state. Overall, this could be viewed as a linear
number of linear-time operations, yielding quadratic time complexity. Note that the quadratic bound will
not extend to the general case, as the conversion to β-normal η-long form can induce a significant blowup
in the size of the term. l

7 Conclusion

We have introduced saturating automata, a new model of computation over infinite alphabets. Unlike
earlier proposals [10,11], the automata accept only languages that satisfy a closure property corresponding
to saturation, a property that naturally emerges in concurrent interactions between programs and their
environment. Consequently, the automata can be claimed to provide a more intrinsic model of such
interactions.

We also showed that saturating automata can be used to represent the game semantics of FICA, a
paradigmatic language combining higher-order functions, state and concurrency. In contrast to previous
translations, one does not incur an exponential penalty for using saturating automata to interpret FICA
terms in normal form, which further confirms their fit with FICA. Regarding emptiness testing, one can still
obtain decidable cases by imposing restrictions analogous to those for leafy [10] and split automata [11].

The opportunity for further exploration of saturating automata remains, with a view to finding verifi-
cation routines that can capitalise on saturation.

Acknowledgement

We thank the anonymous reviewers for helpful comments.

17

Dixon, Murawski

References

[1] Abramsky, S., K. Honda and G. McCusker, Fully abstract game semantics for general references, in: Proceedings of LICS,
1998, pp. 334–344.

[2] Abramsky, S., R. Jagadeesan and P. Malacaria, Full abstraction for PCF, Inf. Comput. 163 (2000), pp. 409–470.

[3] Abramsky, S. and G. McCusker, Linearity, sharing and state: a fully abstract game semantics for Idealized Algol with
active expressions, in: P. W. O’Hearn and R. D. Tennent, editors, Algol-like languages, Birkhaüser, 1997 pp. 297–329.

[4] Berger, M., K. Honda and N. Yoshida, Sequentiality and the pi-calculus, in: Proceedings of TLCA, LNCS 2044 (2001),
pp. 29–45.

[5] Cartier, P. and D. Foata, Problèmes combinatoires de commutation et réarrangements, Lecture Notes in Mathematics 85
(1969).

[6] Castellan, S. and P. Clairambault, The geometry of causality: Multi-token geometry of interaction and its causal unfolding,
Proc. ACM Program. Lang. 7 (2023), pp. 689–717.

[7] Castellan, S., P. Clairambault, S. Rideau and G. Winskel, Games and strategies as event structures, Log. Meth. Comput.
Sci. 13 (2017).

[8] Cotton-Barratt, C., D. Hopkins, A. S. Murawski and C. L. Ong, Fragments of ML decidable by nested data class memory
automata, in: Proceedings of FOSSACS, LNCS 9034 (2015), pp. 249–263.

[9] Cotton-Barratt, C., A. S. Murawski and C. L. Ong, ML, visibly pushdown class memory automata, and extended branching
vector addition systems with states, ACM Trans. Program. Lang. Syst. 41 (2019), pp. 11:1–11:38.

[10] Dixon, A., R. Lazic, A. S. Murawski and I. Walukiewicz, Leafy automata for higher-order concurrency, in: Proceedings of
FoSSaCS, LNCS 12650 (2021), pp. 184–204.

[11] Dixon, A., R. Lazic, A. S. Murawski and I. Walukiewicz, Verifying higher-order concurrency with data automata, in:
Proceedings of LICS, 2021, pp. 1–13.

[12] Ghica, D. R. and A. S. Murawski, Angelic semantics of fine-grained concurrency, Ann. Pure Appl. Log. 151(2-3) (2008),
pp. 89–114.

[13] Hyland, J. M. E. and C.-H. L. Ong, On Full Abstraction for PCF: I. Models, observables and the full abstraction problem,
II. Dialogue games and innocent strategies, III. A fully abstract and universal game model, Inf. Comput. 163(2) (2000),
pp. 285–408.

[14] Jifeng, H., M. B. Josephs and C. A. R. Hoare, A theory of synchrony and asynchrony, in: Programming Concepts and
Methods, Elsevier, 1990 pp. 459–473.

[15] Lago, U. D., R. Tanaka and A. Yoshimizu, The geometry of concurrent interaction: handling multiple ports by way of
multiple tokens, in: Proceedings of LICS, 2017, pp. 1–12.

[16] Laird, J., Full abstraction for functional languages with control, in: Proceedings of LICS, 1997, pp. 58–67.

[17] Laird, J., A game semantics of Idealized CSP, in: Proceedings of MFPS, ENTCS 45 (2001), pp. 1–26.

[18] Laird, J., Game semantics for higher-order concurrency, in: Proceedings of FSTTCS, LNCS 4337 (2006), pp. 417–428.

[19] Mazurkiewicz, A., Concurrent program schemes and their interpretations, Technical Report DAIM1-PB-78, Computer
Science Department, Aarhus University (1978).

[20] Murawski, A. S., S. J. Ramsay and N. Tzevelekos, Game semantic analysis of equivalence in IMJ, in: Proceedings of
ATVA, LNCS 9364 (2015), pp. 411–428.

[21] Murawski, A. S. and N. Tzevelekos, Algorithmic games for full ground references, Formal Methods Syst. Des. 52 (2018),
pp. 277–314.

[22] Reynolds, J. C., The essence of Algol, in: J. W. de Bakker and J. van Vliet, editors, Algorithmic Languages, North Holland,
1978 pp. 345–372.

[23] Röckl, C. and D. Sangiorgi, A pi-calculus process semantics of Concurrent Idealised ALGOL, in: Proceedings of FoSSaCS,
LNCS 1578 (1999), pp. 306–321.

[24] Sangiorgi, D., Expressing mobility in process algebras: First-order and higher-order paradigms, Technical Report CST-99-
93, University of Edinburgh (1993), PhD thesis.

[25] Udding, J. T., A formal model for defining and classifying delay-insensitive circuits and systems, Distributed Comput.
1(4) (1986), pp. 197–204.

18

	Introduction
	Finitary Idealised Concurrent Algol (FICA)
	Game semantics
	Saturating automata (SATA)
	Saturation
	From FICA to SATA
	Conclusion
	Acknowledgement
	References

