
Electronic Notes in Volume 3

Theoretical Informatics ENTICS Proceedings of
And Computer Science https://entics.episciences.org MFPS 2023

A Denotationally-based Program Logic
for Higher-order Store

Frederik Lerbjerg Aagaard1 Jonathan Sterling2 Lars Birkedal3

Department of Computer Science
Aarhus University
Aarhus, Denmark

Abstract

Separation logic is used to reason locally about stateful programs. State of the art program logics for higher-order store are
usually built on top of untyped operational semantics, in part because traditional denotational methods have struggled to
simultaneously account for general references and parametric polymorphism. The recent discovery of simple denotational
semantics for general references and polymorphism in synthetic guarded domain theory has enabled us to develop Tulip, a
higher-order separation logic over the typed equational theory of higher-order store for a monadic version of System Fref

µ . The
Tulip logic differs from operationally-based program logics in two ways: predicates range over the meanings of typed terms in
an arbitrary model rather than over the raw code of untyped terms, and they are automatically invariant under the equational
congruence of higher-order store, which applies even underneath a binder. As a result, “pure” proof steps that conventionally
require focusing the Hoare triple on an operational redex are replaced by a simple equational rewrite in Tulip. We have
evaluated Tulip against standard examples involving linked lists in the heap, comparing our abstract equational reasoning
with more familiar operational-style reasoning. Our main result is the soundness of Tulip, which we establish by constructing
a BI-hyperdoctrine over the denotational semantics of Fref

µ in an impredicative version of synthetic guarded domain theory.

Keywords: denotational semantics, higher-order separation logic, higher-order store, general references, guarded recursion,
synthetic guarded domain theory, BI-hyperdoctrine, impredicative polymorphism, recursive types

1 Introduction

State of the art program logics such as Iris [30] and the Verified Software Toolchain [1] typically combine two
design decisions: the basic sorts of the logic are generated by the raw, untyped terms of the programming
language, and constructs of the program logic are defined in terms of operational semantics layered over
this raw syntax. In contrast, the original program logic LCF [24,41,39,23] and successors like HOLCF [27]
work in a more abstract way: predicates range over typed denotations rather than over untyped raw syntax.
The difference in abstraction is substantial: whereas a predicate on raw syntax need not even be invariant
under α-equivalence, a predicate on denotations is automatically invariant under the entire equational
theory of the language. Nevertheless, denotationally-based program logics have fallen by the wayside in part
because of the historic failure of denotational methods to provide simple enough answers to the questions

1 Email: aagaard@cs.au.dk
2 Email: jsterling@cs.au.dk
3 Email: birkedal@cs.au.dk

Published November 15, 2023 Proceedings Available Online at © F. Aagaard, J. Sterling, L. Birkedal

10.46298/entics.12232 https://doi.org/10.46298/entics.proceedings.mfps39 cb Creative Commons

https://entics.episciences.org
mailto:aagaard@cs.au.dk
mailto:jsterling@cs.au.dk
mailto:birkedal@cs.au.dk
https://doi.org/10.46298/entics.12232
https://doi.org/10.46298/entics.proceedings.mfps39
https://creativecommons.org/licenses/by/4.0/

1–2 A denotationally-based program logic for higher-order store

posed by higher-order effectful programming, e.g . the combination of general references, polymorphism,
and concurrency; as a result, the benefits of denotations are primarily reaped today in the first-order realm,
as in the successful revival of coinductive resumption semantics by Xia et al . [47].

Denotational and algebraic approaches to program semantics have other benefits besides their abstract-
ness: they are more modular, and they are more directly compatible with practical mathematical tools
from category theory and topology, which have become increasingly relevant in light of recent interest in
probabilistic and differentiable computing for the sciences. We therefore have ample motivation to bridge
the gap between denotational methods and modern logics for reasoning about programs.

1.1 Denotational semantics of general references and polymorphism

Sterling et al . [46] have recently discovered a simple denotational semantics for general references and
polymorphism, decomposing the problem of higher-order store with semantic worlds into two separate con-
structs that are easily combined: impredicativity and guarded recursion. At the heart of their development
is Impredicative Guarded Dependent Type Theory (iGDTT), a type theoretic metalanguage for
synthetic guarded domain theory [11] extended by an impredicative universe of sets. Although op. cit . have
made promising strides in the denotational understanding of higher-order stateful programs, non-trivial
reasoning about state requires more than equational logic. Operationally-based program logics like Iris
employ guarded higher-order separation logic for this purpose; our contribution in this paper is to
adapt these methods to the denotational semantics of Sterling et al .

1.2 Higher-order separation logic over denotational semantics

We extend the monadic equational theory of higher-order store for System Fref
µ to a full higher-order

separation logic called Tulip. In contrast to systems like Iris which layer the separation logic over an
encoding of the raw syntax of the object language, predicates in Tulip range not over code but rather over

the actual types of Fref
µ , subject to the full equational congruence. In a conventional operationally-based

program logic, equational reasoning is rather only applicable within the focus of a Hoare triple and is
moreover limited to operational head reduction and cannot occur under binders, etc.

Our main contribution is the soundness of Tulip for reasoning about Sterling et al .’s denotational

semantics of Fref
µ , which we establish by constructing a suitable BI-hyperdoctrine [8]. We have made

pervasive use of type theoretic internal languages to facilitate this work: first, System Fref
µ is intepreted in

internal co-presheaves on a poset of semantic heap layouts W defined in iGDTT by solving a guarded
recursive domain equation; then, our BI-hyperdoctrine is itself constructed in the type theoretic language
of co-presheaves on W. Because iGDTT itself is sound [46], it follows that our logic is sound.

1.3 Structure of this paper

In Section 2 we describe the Tulip logic and its computational substrate Fref
µ ; in Section 3, we illustrate

the use of Tulip through a worked example involving linked lists in the heap. In Section 4.1, we recall the
iGDTT metalanguage and the basics of synthetic guarded domain theory, which we use in Sections 4.2
and 4.3 to explain the denotational semantics of higher-order store and the interpretation of guarded
higher-order separation logic over this model. In Section 4.4, we show that Tulip is sound with respect to
this model and therefore consistent.

2 Tulip: an equational program logic for higher-order store

In this section, we introduce a Tulip program logic that extends the monadic equational logic of System Fref
µ

with the connectives and rules of guarded higher-order separation logic [13], together with a built-in

connective for weakest preconditions. The Tulip logic is related to System Fref
µ in roughly the same way

that LCF relates to PCF [41,44].

Aagaard, Sterling, and Birkedal 1–3

Tulip will have two kinds of types — “program types” and “logical types” — and to efficiently
organize the formalism, we will define the typehood judgment schematically in a flag ι ∈ {p, ℓ}. 4 With

this convention in hand, the forms of judgment of Tulip classify type contexts Ξ tctx , element contexts

Ξ ⊢ Γ ctx , types Ξ ⊢ A type @ ι , program elements Ξ | Γ ⊢ a : A , propositions Ξ | Γ ⊢ ϕ prop , and

entailments Ξ | Γ | ϕ ⊢ ψ . Every syntactic construct of Tulip is subject to a relation of judgmental

equality (≡) which is respected by all judgments and preserved by all operations; for instance, we shall
write Ξ | Γ ⊢ u ≡ v : A to mean that u and v are judgmentally equal elements of type A.

Notation 2.1 When specifying the rules of Tulip, we will often write entailments Ξ | Γ | ϕ ⊢ ψ as ϕ ⊢ ψ
when the contexts do not change from premise to conclusion.

2.1 Rules for types and elements

Type contexts Ξ tctx contain variables α ranging over program types only. Element contexts Ξ ⊢ Γ ctx
contain variables x : A ranging over elements of types Ξ ⊢ A type @ ι. Both program types and logical
types are closed under function spaces, cartesian products, inductive types, and universal quantification
over program types; program types are furthermore closed under a computational monad in the sense of
Moggi [36], as well as existential and recursive types. The only subtlety is that the unfold destructor for
recursive types is treated effectfully, confining recursion to the monad. Every program type is a logical
type, and the inclusion of program types into logical types commutes up to isomorphism with function
spaces, product types, and inductive types. We will treat these coercions silently as it causes no ambiguity.

For lack of space, we will not dwell on the product and function types except to comment that they
satisfy the full universal properties of exponentials and cartesian products up to judgmental equality.
Likewise, we do not present here the (quite standard) account of inductive types — except to note that we
close both program and logical types under inductives, and structurally recursive functions into logical
types on program-level data are permitted.

2.1.1 The computational monad
The universe of program types is closed under a computational monad T in the sense of Moggi [36] governing
both state and general recursion.

Ξ ⊢ A type @ p

Ξ ⊢ TA type @ p

Ξ | Γ ⊢ u : A

Ξ | Γ ⊢ retu : TA

Ξ | Γ ⊢ u : TA Ξ | Γ, x : A ⊢ v : TB

Ξ | Γ ⊢ x← u; v : TB

We present the standard equational theory of monads in Appendix A. We defer our discussion of the
monadic operations for general recursion and state to Section 2.1.2.

2.1.2 General recursion and general references
Program types are closed under both general recursive types and general reference types. As the rules for
these are somewhat subtle in our monadic environment, we cover them in detail. First we describe the

4 Both System F and higher-order logic are modeled by impredicative universes, but it is well-known that one
impredicative universe cannot contain another [17], which leads us to introduce the stratification of logical types from
program types. The prime example of a logical type that is not a program type will be the type of all propositions.

1–4 A denotationally-based program logic for higher-order store

formation rules for types and terms, before introducing their equational theory.

Ξ, α ⊢ A type @ p

Ξ ⊢ µα.A type @ p

Ξ | Γ ⊢ u : A[µα.A/α]

Ξ | Γ ⊢ foldu : µα.A

Ξ | Γ ⊢ u : µα.A

Ξ | Γ ⊢ unfoldu : TA[µα.A/α]

Ξ ⊢ A type @ p

Ξ ⊢ refA type @ p

Ξ | Γ ⊢ u : refA

Ξ | Γ ⊢ getu : TA

Ξ | Γ ⊢ u : refA Ξ | Γ ⊢ v : A

Ξ | Γ ⊢ setu v : T ()

Ξ | Γ ⊢ u : A

Ξ | Γ ⊢ newu : T (refA) Ξ | Γ ⊢ step : T ()

The step constructor above is a “no-op” instruction witnessing the guarded or intensional nature of
our denotational semantics; 5 this is reflected in the equational theory by the emission of step instructions
with reads to the heap and the unfolding of recursive types. Our logic, as we explain later, will provide
rules that allow these steps to be used as fuel for recursive deductions.

unfold-of-fold

⊢ unfold (foldu) ≡ step; retu : TA[µα.A/α]
fold-of-unfold

⊢ x← unfoldu; ret (foldx) ≡ step; retu : T (µα.A)

get-after-set

⊢ setu v; getu ≡ step; setu v; ret v : TA
set-after-new

⊢ (x← newu; setx v;w) ≡ (x← new v;w) : TB

set-after-set

⊢ setu v; setuw ≡ setuw : TA
get-after-get

⊢ (x← getu; y ← get v;w) ≡ (y ← get v;x← getu;w) : TC

set-after-get

⊢ (x← getu; setux;w) ≡ (x← getu;w) : TB

We also have, but do not present, rules that commute step past all primitive effects.

Remark 2.2 Observe that ours is a theory of higher-order global store rather than higher-order local store
in the sense that allocations are not hidden but rather have a globally observable effect. The state of the
art in denotational semantics for local store is currently restricted to references of ground type [31].

2.1.3 Universal and existential types
Our language contains both universal and existential types; it is common to “encode” the latter in terms
of the former, but encodings of this form are not quite correct as they neglect the equational theory of
existential types. 6 We therefore include both connectives as primitives.

Ξ, α ⊢ A type @ ι

Ξ ⊢ ∀α.A type @ ι

Ξ, α ⊢ A type @ p

Ξ ⊢ ∃α.A type @ p

Ξ, α | Γ ⊢ u : A

Ξ | Γ ⊢ Λα.u : ∀α.A
Ξ | Γ ⊢ u : ∀α.A Ξ ⊢ B type @ p

Ξ | Γ ⊢ u ·B : A[B/α]

Ξ ⊢ B type @ p Ξ | Γ ⊢ u : A[B/α]

Ξ | Γ ⊢ pack (B, u) : ∃α.A
Ξ ⊢ C type @ p Ξ | Γ ⊢ u : ∃α.A Ξ, α | Γ, x : A ⊢ v : C

Ξ | Γ ⊢ let pack (α, x) = u in v : C

The equational theory of universals and existentials is presented in Appendix A.

5 In the presence of polymorphism, the guarded interpretation of state and general recursion seems to be forced [12].
6 The correct equational theory of polymorphically-encoded existentials does hold up to parametricity, but para-
metricity is an emergent property of syntax. The purpose of specifying an equational theory is to constrain all models,
not only the nonstandard parametric models.

Aagaard, Sterling, and Birkedal 1–5

2.2 Rules for the propositional fragment

The logical layer of Tulip is a form of guarded higher-order separation logic. We will treat each of these
aspects modularly; in Sections 2.2.1 and 2.2.2 we recall the rules of intuitionistic higher-order equational
logic, and in Section 2.2.3 we recall (affine) separation logic, and we finish in Section 2.2.4 with an overview
of the later modality and its Löb induction principle, and how they interact with the rest of the logic.

2.2.1 Equational logic
So far the only form of equality that we have considered is judgmental or external equality in the sense of
Jacobs [29, §3.2]; in order to facilitate equational reasoning in the logic, we add propositional equality and
relate it to judgmental equality using the following rules:

equality formation

Ξ ⊢ A type @ ι Ξ | Γ ⊢ u, v : A

Ξ | Γ ⊢ u =A v prop

Lawvere rule
Ξ | Γ, x : A | ϕ[x/y] ⊢ ψ[x/y]

Ξ | Γ, x : A, y : A | ϕ ∧ x =A y ⊢ ψ
================================

equality reflection

Ξ | Γ | ⊤ ⊢ u =A v

Ξ | Γ ⊢ u ≡ v : A

As Jacobs [29] explains, the Lawvere rule entails all important properties of equality, including

congruence for all constructs of Tulip and its Fref
µ substrate. The equality reflection rule above is

needed to complete the relationship between (unconditional) judgmental equality and propositional equality
without assumptions. 7

2.2.2 Intuitionistic higher-order logic
We assume the usual rules of intuitionistic first-order logic over logical types; in particular, in addition to
implications ⇒, conjunctions ∧, and disjunctions ∨, we may form universal and existential quantifications
∀(x : A).ϕ and ∃(x : A).ϕ when A is a logical type. The logic is made higher-order by introducing a logical
type classifying all propositions.

Ξ ⊢ prop type @ ℓ

Ξ | Γ ⊢ ϕ : prop

Ξ | Γ ⊢ ϕ prop
===============

Ξ | Γ ⊢ ϕ ≡ ψ : prop

Ξ | Γ ⊢ ϕ ≡ ψ prop
===================

Ξ | Γ | χ ∧ ϕ ⊢ ψ Ξ | Γ | χ ∧ ψ ⊢ ϕ
Ξ | Γ | χ ⊢ ϕ =prop ψ

2.2.3 Separation logic for local reasoning
We assume the standard rules for intuitionistic affine separation logic, in which we have a separating
conjunction ϕ ∗ ψ with unit ⊤, and separating implications given as right adjoints (− ∗ ψ) ⊣ (ψ −∗ −).

χ ∗ ϕ ⊢ ψ

χ ⊢ ϕ −∗ ψ
==========

ϕ ⊢ ϕ′ ψ ⊢ ψ′

ϕ ∗ ψ ⊢ ϕ′ ∗ ψ′

ϕ ∗ ψ ⊢ ϕ ∧ ψ
(χ ∗ ϕ) ∗ ψ ⊣⊢ χ ∗ (ϕ ∗ ψ)
ϕ ∗ ψ ⊣⊢ ψ ∗ ϕ

In addition to the separating conjunction and implication, separation logic contains a coreflective
sublogic of persistent propositions , which are to a first approximation those that are not sensitive to the
state of the heap and can therefore be duplicated freely. In particular, we add an idempotent comonadic
modality □ that takes a proposition to its “persistent core”; a proposition ϕ is then called persistent if
the entailment ϕ ⊢ □ϕ holds. Persistent propositions in this sense are closed under all the connectives of
intuitionistic first-order logic; we omit the rules that establish this and instead focus on the interaction
between persistence and the connectives of separation logic:

Ξ | Γ ⊢ ϕ prop

Ξ | Γ ⊢ □ϕ prop

ϕ ⊢ ψ
□ϕ ⊢ □ψ

□ϕ ⊢ ϕ ∗ □ϕ
□ϕ ⊢ □□ϕ
ϕ ∧□ψ ⊢ ϕ ∗ □ψ

7 Ordinarily, equality reflection would imply the Lawvere rule but for the lack of propositional assumptions in
judgmental equality.

1–6 A denotationally-based program logic for higher-order store

It follows from the above that the separating conjunction of persistent propositions is their conjunction.

2.2.4 The later modality and guarded recursion
In order to use Tulip as a logic to reason about general recursion (including recursion inherent in the heap),
it is necessary to introduce the later modality �; as in prior works [2,21,30], the later modality abstracts
away the onerous step-indices of more concrete accounts of higher-order store leaving only the essential
logical structure of guarded-recursive reasoning. The abstract will meet the concrete, however, when we
illustrate below the interaction between the later modality and the constructions of our programming
language in the fold equality and step equality rules.

Ξ | Γ ⊢ ϕ prop

Ξ | Γ ⊢ �ϕ prop

ϕ ⊢ �ϕ
�ϕ ∧�ψ ⊢ �(ϕ ∧ ψ)

�ϕ ∗ �ψ ⊢ �(ϕ ∗ ψ)
ϕ −∗ ψ ⊢ �ϕ −∗ �ψ
�□ϕ ⊣⊢ □�ϕ

fold equality

ϕ ⊢ �(u =A[µα.A/α] v)

ϕ ⊢ foldu =µα.A fold v
=======================

step equality

ϕ ⊢ �(u =TA v)

ϕ ⊢ step;u =TA step; v
=======================

Löb induction

�ϕ⇒ ϕ ⊢ ϕ

The Löb induction rule above is what makes (guarded) recursive reasoning possible in Tulip; the
function of the fold equality and step equality rules is to provide “fuel” that can be used to discharge
the later modality in the Löb induction hypothesis. This is the sense in which Tulip evinces an abstract
form of step-indexing: operations that semantically involve unfolding a recursive domain equation leave
behind abstract steps that can be used to advance in time in relation to the later modality.

2.2.5 Weakest preconditions
For reasoning about programs, we introduce a connective called the partial weakest precondition .
Morally, the weakest precondition of a program and a predicate, as the name suggests, is the weakest
proposition that guarantees the predicate shall hold of any return value of the program. Note, however,
that, despite the name, we make no claim, neither in the logic nor in its semantics, that it is in fact the
weakest such proposition; this is in line with the usage in Iris [30].

wp formation
Ξ ⊢ A type @ p Ξ | Γ ⊢ e : TA Ξ | Γ, x : A ⊢ ϕ prop

Ξ | Γ ⊢ wp e {x. ϕ} prop

wp-wand

(∀x. ϕ −∗ ψ) ∗ wp e {x. ϕ} ⊢ wp e {x. ψ}

wp-val

ϕ[e/x] ⊢ wp (ret e) {x. ϕ}
wp-bind

wp e1 {x. wp e2 {y. ϕ}} ⊢ wp (x← e1; e2) {y. ϕ}

wp-get

∃x. [ℓ ↪→ x] ∗ �([ℓ ↪→ x] −∗ ϕ) ⊢ wp (get ℓ) {x. ϕ}
wp-set

(∃y. [ℓ ↪→ y]) ∗ ([ℓ ↪→ e] −∗ ϕ) ⊢ wp (set ℓ e) { . ϕ}

wp-new

∀x. [x ↪→ e] −∗ ϕ ⊢ wp (new e) {x. ϕ}
wp-step

�ϕ ⊢ wp step { . ϕ}

It is worth comparing the above rules to the rules in Iris [30, Fig.13]. Our first four entailments are
exactly the same as the corresponding rules in Iris; note that as in Iris, wp-wand implies the frame rule.
Our rules for wp-set and wp-new rules differ slightly from those of Iris, which have an occurrence of the
later modality in the antecedent that ours lack. This is because every operation in Iris takes a step, but in
our semantics, only operations that semantically correspond to unfolding a recursive domain equation do.

Values in the heap are stored “one step in the future”, so get must take a step before returning;
consequently, the postcondition of get only needs to hold later. However, it is not an issue for set and new
to send a value to the future without going there, implying the postcondition must be known now. This
behaviour is reflected in the rules get-after-set and set-after-new, where the former shows that get

Aagaard, Sterling, and Birkedal 1–7

takes a step, whilst ret does not, and the latter shows that set does not take a step. A second difference
to point out is that whilst Iris has a rule for β-reduction of functions, we do not. This is because our
programming language is subject to the β/η-equational theory of monadic λ-calculus, so rather than having
a rule stating that wp (e[v/x]) {y. ϕ} ⊢ wp ((λx. e) v) {y. ϕ}, the two propositions are actually convertible.

Example 2.3 It is not difficult to encode the more familiar Hoare triples in Tulip, using the standard
decomposition into persistence, separating implication, and weakest precondition:

{ϕ} e {x. ψ} ≜ □(ϕ −∗ wp e {x. ψ}).

2.3 Recursive Functions

As is standard, recursive types can be used to derive recursive terms via self-referential types (see e.g .
Harper [25]). Using this approach, we obtain terms rec f(x) in e for recursive functions typed as follows:

Ξ ⊢ A,B type @ p Ξ | Γ, f : A→ TB, x : A ⊢ e : TB

Ξ | Γ ⊢ rec f(x) in e : A→ TB

This derived form satisfies the equation (rec f(x) in e)x ≡ step; e[rec f(x) in e/f]. Löb induction
implies the following weakest precondition rule, reminiscent of the corresponding Hoare triple rule in Iris [9]:

wp-rec
Ξ ⊢ A,B type @ p Ξ ⊢ C type @ ℓ Ξ | Γ, z : C, f : A→ TB, x : A ⊢ e : TB
Ξ | Γ ⊢ ϕ prop Ξ | Γ, z : C, x : A ⊢ ψ prop Ξ | Γ, z : C, x : A, y : B ⊢ χ prop
Ξ | Γ | ϕ ∧ ∀z.∀x. ψ −∗ wp ((rec f(x) in e)x) {y. χ} ⊢ ∀z. ∀x. ψ −∗ wp (e[rec f(x) in e/f]) {y. χ}

Ξ | Γ | �ϕ ⊢ ∀z. ∀x. ψ −∗ wp ((rec f(x) in e)x) {y. χ}

3 Case study: verifying the append function on linked lists

In this section, we illustrate the use of Tulip by an elementary case study: linked lists in the heap and
their append function. The proof is very similar to the one in Iris [9, §4.2], although some steps are
perhaps slightly simpler as they use equational reasoning rather than explicit rules for reduction in weakest
preconditions. We first define a recursive type of imperative linked lists on any type α:

ilistα ≜ µρ.1 + ref (α× ρ).

Our goal is to define the append function on imperative linked lists and prove that it is correct. This
means, in particular, to show that it behaves the same as a pure reference implementation defined on
functional lists. In order to say what it means for a function on imperative lists to behave like a function
on linked lists, we must first introduce a formal correspondence between the two types [9, Sec.4.2]. This
can be done directly as a structurally recursive function in Tulip.

Construction 3.1 (The list invariant) We define a correspondence (≈) : ilistα→ listα→ prop in
Tulip by structural recursion on the second argument.

(≈) : ilistα→ listα→ prop

l ≈ [] ≜ (l = fold (inl ()))

l ≈ (x :: xs) ≜
∃(r : ref (A× ilistα)).
∃(l′ : ilistα).
(l = fold (inr r)) ∗ [r ↪→ (x, l′)] ∗ (l′ ≈ xs)

Note that whilst elements of type ilistα could potentially be cyclic, this is ruled out by the list
invariant above: the separating conjunction consumes the location r so it cannot appear again, and
furthermore, a cyclic list would be infinite and therefore cannot correspond to a functional list.

1–8 A denotationally-based program logic for higher-order store

Construction 3.2 (The append function) We define the append function on linked lists and its pure
reference implementation on functional lists below.

iap : ilistα× ilistα→ T (ilistα)

iap ≜
rec f(l1, l2) in
z ← unfold l1;
match z with
inl ⇒ ret l2
inr r ⇒ (a, l′1)← get r; l3 ← f (l′1, l2); set r (a, l3); ret (fold (inr r))

The function above is both impure and general recursive. By contrast, the reference implementation
below is pure and structurally recursive.

(⊕) : listα→ listα→ listα

[]⊕ ys ≜ ys

(x :: xs)⊕ ys ≜ x :: (xs ⊕ ys)

We can now prove that iap behaves according to the reference implementation (⊕).

Theorem 3.3 The following sequent is derivable in Tulip:

α | · | ⊤ ⊢ ∀(u1, u2 : listα; l1, l2 : ilistα). l1 ≈ u1 ∗ l2 ≈ u2 −∗ wp (iap (l1, l2)) {x. x ≈ u1 ⊕ u2}

Proof. Let [iap] be the function defined so that iap (l1, l2) ≡ rec f(l1, l2) in [iap] f (l1, l2), and let Q be
the following predicate:

Q : (ilistα× ilistα→ T (ilistα))→ prop

Qf ≜ ∀(u1, u2 : listα; l1, l2 : ilistα). l1 ≈ u1 ∗ l2 ≈ u2 −∗ wp (f (l1, l2)) {x. x ≈ u1 ⊕ u2}

Our goal is to prove Q iap; applying the wp-rec rule, it suffices to show that Q iap ⊢ Q ([iap] iap).
We proceed by cases on u1; the only non-trivial case is the following: Q iap ∗ l1 ≈ v :: vs ∗ l2 ≈
u2 ⊢ wp ([iap] iap (l1, l2)) {x. x ≈ v :: (vs ⊕ u2)}. Rewriting by the defining clause of (≈), we may assume
r : ref (A× ilistα) and s : ilistα to prove the following:

Q iap ∗ (l2 ≈ u2) ∗ [r ↪→ (v, s)] ∗ (s ≈ vs) ⊢
wp ([iap] iap (fold (inr r), l2)) {x. x ≈ v :: (vs ⊕ u2)}
Applying equational reasoning (including unfold-of-fold), we convert our goal to the following:

Q iap ∗ (l2 ≈ u2) ∗ [r ↪→ (v, s)] ∗ (s ≈ vs) ⊢
wp (step; (a, l′1)← get r; l3 ← iap (l′1, l2); set r (a, l3); ret (fold (inr r))) {x. x ≈ v :: (vs ⊕ u2)}
Applying wp-step and the introduction rule for the later modality, it suffices to prove:

Q iap ∗ (l2 ≈ u2) ∗ [r ↪→ (v, s)] ∗ (s ≈ vs) ⊢
wp ((a, l′1)← get r; l3 ← iap (l′1, l2); set r (a, l3); ret (fold (inr r))) {x. x ≈ v :: (vs ⊕ u2)}
Repeatedly applying weakest precondition rules and other administrative rules, it suffices to prove:

Q iap ∗ (l2 ≈ u2) ∗ (s ≈ vs) ∗ [r ↪→ (v, s)] ⊢
wp (iap (s, l2)) {l3. wp (set r (v, l3)) { . fold (inr r) ≈ v :: (vs ⊕ u2)}}
Next we use Q iap and wp-wand to reduce our goal as follows, fixing l3 : ilistα:

[r ↪→ (v, s)] ∗ (l3 ≈ vs ⊕ u2) ⊢ wp (set r (v, l3)) { . fold (inr r) ≈ v :: (vs ⊕ u2)}
Applying wp-set, we arrive at the following goal:

[r ↪→ (v, l3)] ∗ (l3 ≈ vs ⊕ u2) ⊢ fold (inr r) ≈ v :: (vs ⊕ u2)
The above is immediate by definition of (≈) and instantiation of existential variables. 2

Aagaard, Sterling, and Birkedal 1–9

4 Denotational semantics of Tulip in impredicative guarded dependent type theory

The denotational semantics of Tulip is an extension of the model of System Fref
µ previously constructed by

Sterling, Gratzer, and Birkedal [46]. For lack of space, we can only give a brief introduction to the latter,
focusing on the main ideas. The main ingredient to our semantics is the use of impredicative guarded
dependent type theory (iGDTT) as a sufficiently powerful metalanguage to admit both the synthetic
solution of domain equations for recursively defined semantic worlds (which uses guarded recursion) and the
definition of the store-passing monad (which uses impredicativity). In Section 4.1 we give a brief overview
of iGDTT, and we proceed in Section 4.2 to explain the interpretation of higher-order store.

4.1 Impredicative guarded dependent type theory

Impredicative guarded dependent type theory or iGDTT is roughly the extension of extensional guarded
dependent type theory [14,15] by additional (impredicative) universe structure. We first describe the
universes in Section 4.1.1, and then briefly explain the basics of iGDTT’s synthetic guarded domain theory
in Sections 4.1.2 and 4.1.3. Finally, we describe a simple recipe for constructing models of iGDTT in
Section 4.1.4 from which consistency immediately follows.

4.1.1 Impredicative universes
iGDTT adds to ordinary guarded dependent type theory the following additional universe structure:

(i) We assume an ordinary hierarchy of predicative universes Type0 : Type1 : . . .; when it causes no
confusion, we will write Type for any appropriate Typei.

(ii) We further assume a pair of impredicative universes Set,Prop : Type0 of small types and proof-irrelevant
propositions respectively, where the latter satisfies propositional extensionality. 8 Finally, we assume
that any element of Prop is also an element of Set.

The universe structure above is roughly that of the Set and Prop universes of Coq [16] underneath Type
when the -impredicative-set option is activated. Impredicativity of Set means closure under dependent
products∀x:A

B : Set of “large-indexed” families x : A ⊢ B : Set when A : Type, and likewise for Prop. The

coherent impredicative encoding of Awodey, Frey, and Speight [6] ensures that the full internal subcategory
determined by Set is reflective in Type, and so a genuine existential ∃x:A

B : Set can be obtained by

applying the reflection to the (large) dependent sum
∑

x:AB : Type. On Prop these are exactly the ordinary
universal and existential quantifiers — as the reflection is the “bracket type” of Awodey and Bauer [5].

In what follows, we shall let U stand for any of the universes of iGDTT described here.

4.1.2 The later modality and guarded recursion
Every universe U is closed under a “later modality” ▶ : U → U facilitating guarded recursion. The later
modality also satisfies a dependently typed version of the rules of an applicative functor. Although there are
many ways to present this structure, we choose to follow prior work [14,15,46] by formulating them using

8 Note that Prop is not an element of Set, as this would be inconsistent [17].

1–10 A denotationally-based program logic for higher-order store

delayed substitutions δ ; ∆ , which we describe simultaneously with the rules of the later modality:

later formation
δ ; ∆ ∆ ⊢ A type

▶[δ].A type

later functoriality
δ ; ∆ ∆ ⊢ a : A

next[δ].a : ▶[δ].A

empty dsubst.

·; ·

extended dsubst.
δ ; ∆ a : ▶[δ].A

(δ, x← a) ; ∆, x : A

later weakening
δ ; ∆ a : ▶[δ].A ∆ ⊢ B type

▶[δ, x← a].B = ▶[δ].B

next weakening
δ ; ∆ a : ▶[δ].A ∆ ⊢ b : B

next[δ, x← a].b = next[δ].b

later exchange
δ ; ∆ a : ▶[δ].A b : ▶[δ].B ∆, x : A, y : B ⊢ δ′ ; ∆′ ∆, x : A, y : B,∆′ ⊢ C type

▶[δ, x← a, y ← b, δ′].C = ▶[δ, y ← b, x← a, δ′].C

next exchange
δ ; ∆ a : ▶[δ].A b : ▶[δ].B ∆, x : A, y : B ⊢ δ′ ; ∆′ ∆, x : A, y : B,∆′ ⊢ c : C

next[δ, x← a, y ← b, δ′].c = next[δ, y ← b, x← a, δ′].c

later force
δ ; ∆ ∆ ⊢ a : A ∆, x : A ⊢ B type

▶[δ, x← next[δ].a].B = ▶[δ].B[a/x]

next force
δ ; ∆ ∆ ⊢ a : A ∆, x : A ⊢ b : B

next[δ, x← next[δ].a].b = next[δ].b[a/x]

later id
δ ; ∆ ∆ ⊢ a : A ∆ ⊢ a′ : A

(next[δ].a = next[δ].a′) = ▶[δ].(a = a′)

next variable
δ ; ∆ a : ▶[δ].A

next[δ, x← a].x = a

Then the ordinary later modality ▶ : U → U sends A : U to ▶[·].A via the empty delayed substitution;
likewise, we shall write next a for next[·].a. From these rules, we may deduce that the later modality forms
a well-pointed endofunctor ▶ : U → U in the sense of Kelly [32], and moreover preserves cartesian
products. The later modality also comes equipped with a Löb recursor for defining guarded fixed points
as specified below:

Löb recursor

gfix : (▶A→ A)→ A
Löb unfolding

gfix f = f(next (gfix f))

4.1.3 Basic synthetic guarded domain theory

Definition 4.1 A guarded domain in U is defined to be an algebra for the endofunctor ▶ : U → U , i.e.
a type X : U equipped with a function ϑX : ▶A→ A. A homomorphism from X to Y is then given by a
function f : X → Y that commutes with the algebra maps in the sense that ϑY ◦▶f = f ◦ ϑX . We will
write U▶ for the category of guarded domains in U and their homomorphisms.

Example 4.2 The universe U is a guarded domain in any higher universe V as we may define ϑU : ▶U → U
to send A : ▶U to the delayed type ▶[Z ← A].Z using the unary delayed substitution (Z ← A) ; Z : U .

Following Birkedal and Møgelberg [10], the Löb recursor can be used to solve domain equations by
computing fixed points on the universe U . The simplest example of a guarded domain equation is the
one that defines the guarded lift functor L : U → U▶ of Paviotti, Møgelberg, and Birkedal [40] which
sends a type to the free guarded domain on that type, i.e. the left adjoint to the forgetful functor from
guarded domains to types. The domain equation in question is LA = A+ ▶LA, which we solve using the
Löb recursor on the universe together with the latter’s guarded domain structure:

LA ≜ gfix (λX : ▶U .A+ ϑUX) = A+ ϑU (next (LA)) = A+ ▶[Z ← next (LA)].Z = A+ ▶LA

Aagaard, Sterling, and Birkedal 1–11

The algebra structure ϑLA : ▶LA→ LA is given by the right-hand coproduct injection; the left-hand
injection then defines the unit map η : A → LA for the monad determined by the resulting adjunction
between guarded domains and types.

Construction 4.3 (Guarded domains are lift-algebras) Any guarded domain X is also an algebra
for the monad L. As LX is the free ▶-algebra on X, there is a unique homomorphism of ▶-algebras
αX : LX → X such that αX ◦ η = idX which induces an L-algebra structure on X.

Construction 4.4 (Family lifting for the guarded lift monad) Let U be a universe, and let A : Type
be a type. We may lift a family Φ : A→ U to a family ΦL : LA→ U defined using the induced L-algebra
structure on U , i.e. ΦL ≜ αU ◦ LΦ. We will occasionally write u ⇓ Φ to mean ΦLu.

4.1.4 Consistency and models of iGDTT
A simple and modular recipe for constructing non-trivial models of iGDTT is provided by Sterling, Gratzer,
and Birkedal [46], from which consistency is easily deduced.

Theorem 4.5 (S., Gratzer, and B. [46]) Let (O,≤,≺) be a separated intuitionistic well-founded
poset 9 in a realizability topos S . Then internal presheaves [Oop,S] give a model of iGDTT in which:

(i) the predicative universes Type are modeled by the Hofmann–Streicher liftings [26,4] of the universes of
(small) assemblies [34] from S ;

(ii) the impredicative universes Prop, Set : Type are modeled by the Hofmann–Streicher liftings of the
universes of ¬¬-closed propositions and of modest sets in S respectively;

(iii) the later modality ▶ is computed explicitly by the limit (▶A)u = lim←−v≺u
Av.

Example 4.6 The simplest example of a model of iGDTT instantiating Theorem 4.5 is given by the
standard order of the natural numbers object in Hyland’s [28] effective topos Eff ; this is exactly the “topos
of trees” [11] constructed internally to Eff . This model can be adjusted in two orthogonal directions, by
varying the underlying partial combinatory algebra and by varying the internal well-founded order.

Corollary 4.7 (S., Gratzer, and B. [46]) iGDTT is consistent.

4.2 Denotational semantics of general store in iGDTT

We briefly recall the denotational semantics of general store in iGDTT via a presheaf model. We will first
construct a preorder W of semantic worlds (representing heap layouts), and then we shall interpret program
types as Set-valued co-presheaves on W and logical types as Type-valued co-presheaves on W.

Notation 4.8 When P is a partial order and p ≤P q, we will write q∗ : Ep → Eq for the covariant
functorial action of any functor E : P → E .

4.2.1 Recursively defined semantic worlds
In this section, we will define a partial order (W,≤) of semantic worlds simultaneously with the collection
of semantic types by solving a guarded domain equation in Type. We will ultimately define W to be a kind
of finite mapping of locations to types, but we must be more careful than usual because notions like “finite
subtype” are somewhat sensitive when Prop is not a true subobject classifier.

Definition 4.9 Let I be a totally ordered type; a finite subtype U ⊆fin. I is an element |U | : N together
with a monotone injective 10 function σU : N<|U | ↪→ I. We will often abuse notation by writing U to refer
to the image of σU in I. There is a (decidable) preorder on finite subtypes given by inclusion, which is in
fact a partial order because of the monotonicity of σU in the total order I.

9 We omit the definition of separated intuitionistic well-founded posets for brevity and refer the reader to Sterling,
Gratzer, and Birkedal [46] for details.
10We mean injective in the general intuitionistic sense: elements of the domain are equal if and only if they are
identified by the function in question.

1–12 A denotationally-based program logic for higher-order store

Definition 4.10 Given a totally ordered type I, a finite mapping w : I ⇀fin. T is given by a finite
subtype |w| ⊆fin. I called the support together with a function τw : |w| → T called the labeling . Given
i ∈ |w| we shall simply write wi : T for τwi. There is a partial order on finite mappings w : I ⇀fin. T given
by inclusion of supports: we say that w ≤ w′ when |w| ≤ |w′| and the restriction of τw′ to |w| is equal to
τw. Note that the partial order on finite mappings is not decidable unless T has decidable equality.

We can now use the notion of finite mapping to define a partial order of semantic worlds W
simultaneously with the categories Sp ,Sℓ of semantic program types and semantic logical types respectively
by solving the following guarded domain equation:

W = N⇀fin. ▶Sp Sp = [W, Set] Sℓ = [W,Type]

In the above, we have defined a world to be a finite mapping from memory locations to delayed semantic
program types, which are defined to be Set-valued co-presheaves on the poset of semantic worlds. Semantic
logical types are defined similarly as Type-valued co-presheaves.

The impredicativity of Set is essential for Sp to be cartesian closed and therefore capable of modelling
function types. This is because exponentials of co-presheaves are defined from natural transformations. In
Sp , these are W-indexed, and thus, since W is not Set-small, were it not for the impredicativity of Set, the
homsets would also not be Set-small. The cartesian closure of Sℓ follows simply from W being Type-small.

Observation 4.11 Note that both Sp and Sℓ are guarded domains in the sense of Definition 4.1: the
structure map ϑSι sends A : ▶Sι to the co-presheaf w 7→ ▶[Z ← A].Zw.

4.2.2 Semantic heaplets; total heaps and partial heaps
The semantic notion of heap or memory can be specified in terms of the more general heaplet distributor
on W. This is the distributor H : Wop ×W→ Set that classifies heaps whose layout is governed by the
contravariant parameter and whose values vary in the covariant parameter.

H(w−, w+) ≜
∏

l∈|w−| ϑSp (w−l)w+ =
∏

l∈|w−|▶[Z ← w−l].Zw+

Using the notion of a heaplet, we can define partial heaps and total heaps and at a given world; the

latter are used to interpret the state monad of Fref
µ , whereas the former are used to interpret the program

logic. Partial heaps will be functorial in worlds, whereas total heaps are a non-functorial derived form.

Definition 4.12 A partial heap h at a world w is given by a finite subtype ∥h∥ ⊆fin. |w| together with a

heaplet ηh : H(w∥h∥, w). We shall write |h| ≜ w∥h∥ for the supporting world; given l ∈ ∥h∥ we shall write
hl for ηhl. Partial heaps are arranged into a functor pH : W→ Set; the covariant functoriality in worlds
w ≤ w′ takes a partial heap h : pHw to w′

∗h ≜ (∥h∥, w′
∗ηh).

Definition 4.13 Two partial heaps are disjoint from each other when their supports do not intersect.
This property is both decidable and functorial in W, so it yields a decidable subobject of pH× pH in Sℓ. In
the internal language of Sℓ, we will write h#h′ to mean that h and h′ are disjoint.

Construction 4.14 We may define an internal partial commutative monoid structure on pH in Sℓ.
The unit is the empty heap ∅, and the partial multiplication h1 · h2 is defined when h1#h2 as follows:

∥h1 ·w h2∥ ≜ ∥h1∥ ∪ ∥h2∥

ηh1·wh2ℓ ≜

{
|h1 ·w h2|∗ηh1ℓ if ℓ ∈ ∥h1∥
|h1 ·w h2|∗ηh2ℓ if ℓ ∈ ∥h2∥

Definition 4.15 A total heap at a world w is a partial heap h : pHw such that |h| = w; this is not
functorial in W, but we may write total heaps as a functor tH• : |W| → Set where |W| is the underlying
discrete category of W. We shall abusively write tH for the dependent sum

∑
w:W tHw that bundles a heap

with its world. We will write tH#w to mean the type of total heaps whose support is disjoint from w.

Aagaard, Sterling, and Birkedal 1–13

4.2.3 Semantic domains for predicates
Here we describe the semantic domains that govern predicates and entailments; these domains will ultimately
form the basis for a BI-hyperdoctrine B• over Sℓ, to be described later. We shall denote by PropW the
Hofmann–Streicher lifting of Prop into Sℓ = [W,Type], defining B to be the internal poset of PropW-valued
co-presheaves on the partial commutative monoid pH under its extension order:

PropW : Sℓ
PropWw ≜ [w ↓W,Prop]

B : Sℓ
B ≜ [pH,PropW]

Notation 4.16 (Forcing for PropW) For any X : Sℓ, ϕ : X → PropW and w : W and x : Xw, we shall
write w ⊩ ϕx in iGDTT to mean that ϕwxw holds.

Notation 4.17 (Forcing for B) Let X : Sℓ be a semantic type; then in the internal language of Sℓ, for
any ϕ : BX , h : pH, and x : X, we shall write h |= ϕx to mean that ϕxh holds.

We note that Sℓ inherits [38] from iGDTT a later modality ▶ defined pointwise; it follows that PropW
is closed under a later modality � : PropW → PropW satisfying w ⊩ �(ϕx)⇐⇒ ▶(w ⊩ ϕx).

4.2.4 Interpretation of judgmental structure
We summarize the interpretation of the judgmental structure of Tulip below:

(i) Type contexts Ξ tctx are interpreted as semantic logical types JΞK : Type.

(ii) Element contexts Ξ ⊢ Γ ctx are interpreted as families JΓK : JΞK→ Sℓ.

(iii) Types Ξ ⊢ A type @ ι are interpreted as families JAK : JΞK→ Sι.

(iv) Elements Ξ | Γ ⊢ a : A are interpreted as elements JaK :
∏

ξ:JΞKJΓKξ → JAKξ.

(v) Propositions Ξ | Γ ⊢ ϕ prop are interpreted as predicates JϕK :
∏

ξ:Ξ BJΓKξ.

(vi) Entailments Ξ | Γ | ϕ ⊢ ψ are interpreted as parameterized inequalities ∀ξ:JΞKJϕKξ ≤BJΓKξ JψKξ.

4.2.5 Recursive types, general reference types, and the monad
In our semantics, recursive types are computed using the guarded domain structure of the semantic universes
Sι; general reference types are defined pointwise as a subtype of the world’s support; the monad is likewise
defined pointwise using a combination of universal types, existential types, and the guarded lifting monad:

µ : (Sι → Sι)→ Sι
µF = gfix (ϑSι ◦▶F)

ref : Sp → Sp
ref Aw =

{
ℓ : |w|

∣∣ wℓ = nextA
} T : Sp → Sp

TAw =∀w′≥w
tHw′ → L∃w′′≥w′ tHw′′ ×Aw′′

We do not have the space to display the operations of the monad; we note, however, that T is Sp -enriched
and therefore strong. It follows that the semantic type operations in this section can be used to interpret

the types of Fref
µ . We show how to interpret the getter and setter for reference types in the model:

setA : ref A×A→ T()

(setA)w (ℓ : ref Aw, a : Aw) (w′ ≥ w) (h : tHw′) ≜

η (pack (w′, h[ℓ 7→ nextw′
∗a], ()))

getA : ref A→ TA

(getA)w (ℓ : ref Aw) (w′ ≥ w) (h : tHw′) ≜

ϑ (next[B ← w′ℓ, x← hℓ]. η (pack (w′, h, x)))

Note that setA returns immediately in the guarded lift monad via the unit η, whereas getA takes a
single step via the ▶-algebra map ϑ; this is because the heap stores its elements under the later modality,

1–14 A denotationally-based program logic for higher-order store

so reading from memory takes one abstract step of computation in the guarded lift monad. This is also
reflected in the rule wp-get, which allows an assumption to be under the later modality.

4.2.6 Semantics of logical types
We interpret the logical type of propositions prop as the internal poset B = [pH,PropW]. The interpretation
of the remaining type connectives is standard.

4.3 Semantics of predicate connectives

We will impose enough structure on B such that the indexed partial order B• : Sopℓ → PosetType has the
structure of a BI-hyperdoctrine with appropriate modalities (□, �) and weakest preconditions.

4.3.1 A complete BI-algebra
We will argue that B forms a complete BI-algebra in Sℓ. Note that in this section, when we say that a
partial order is complete, we mean that it is complete in the sense of internal category theory [29].

Lemma 4.18 PropW is a complete Heyting algebra in Sℓ.

Corollary 4.19 The internal poset B is a complete Heyting algebra in Sℓ.

We will use Day’s convolution [19,20] to construct a BI-algebra structure on B = [pH,PropW]. Day’s
convolution product is most well-known for extending monoidal structures on small categories to presheaves,
but we will need the full generality of his result: the categories involved are PropW-enriched, and the
structure on the base is promonoidal rather than monoidal.

Construction 4.20 (PropW-enriched promonoidal structure on a pcm) A partial commutative
monoid M = (M, ∅, ·) in Sℓ can be viewed as a PropW-enriched category, because its extension order
is valued in PropW. As a PropW-enriched category, M has a PropW-enriched promonoidal structure in
the sense of Day [19,20], which essentially encodes graph of the partial multiplication operation:

(i) The PropW-distributor mul : M × (M ×M)op → PropW sends (m, (n0, n1)) to ∃n2.m = n0 · n1 · n2.
(ii) The PropW-distributor unit : M × 1op → PropW sends (m, ∗) to the proposition (m = ∅).

(iii) The associativity and unit isomorphisms are defined using the associativity and unit laws for the partial
multiplication operation.

Construction 4.21 (BI algebra) We obtain a BI-algebra structure (∗,−∗) on B = [pH,PropW] by taking
the Day convolution of the induced PropW-enriched promonoidal structure (Construction 4.20) on the partial
commutative monoid pH, such that the separating conjunction extends the partial multiplication operation
on representables. In particular, if h#h′ are two disjoint partial heaps, then yh ∗ yh′ = y(h · h′).

These constructions are explained in more detail for BI-algebras arising from partial commutative
monoids by Bizjak and Birkedal [13].

4.3.2 Modalities: persistence and later
The persistence modality is interpreted as the map □ : B → B obtained by reindexing along the constant
endomap h 7→ ∅, sending ϕ : B to h 7→ ϕ ∅. The later modality � : B → B is given pointwise.

4.3.3 The points-to predicate
We interpret the points-to predicate in the generic case Jα | ℓ : refA, a : A ⊢ [ℓ ↪→ a] propK. In particular,
we must define for each program type A : Sp a natural transformation [− ↪→ −] : ref A×A→ B, which will
turn out to be representable by a singleton heap, i.e. we may define h |= [ℓ ↪→ a]⇐⇒ {l 7→ next a} ≤ h.

4.3.4 Weakest preconditions
Finally we must interpret the weakest precondition connective, which we do in the generic case of
Jα | ϕ : α→ prop, u : Tα ⊢ wpu {x.ϕ x} propK. This amounts to constructing for each semantic program

Aagaard, Sterling, and Birkedal 1–15

type A : Sp a natural transformation wpA : BA ×TA→ B. As the denotation of the state monad is defined
world-by-world, so must be the interpretation of h |= wpA uϕ; to that end, we give the forcing clause for
w ⊩ (h |= wpA uϕ) in the external iGDTT language as follows, recalling the ⇓ notation for the predicate
lifting of L from Construction 4.4:

w ⊩ (h |= wpA uϕ)⇐⇒
∀(w′ ≥ w) (hf : pHw′) (ht : tHw′) (ht = hf · w′

∗h).
uw′ ht ⇓ λp.
∃(w′′ ≥ |h|) (wr = w′′ · |hf |) (h′ : tHw′′) (a : Awr).
p = pack (wr, (wr)∗hf · (wr)∗h

′, a)
∧ wr ⊩ ((wr)∗h

′ |= ϕwr a = ⊤)

Although the definition is quite technical, the idea is simple. The denotation of a monadic program is a
guarded-recursive process taking a heap and ultimately producing a return configuration at a larger world.
In simple terms, the weakest precondition of a predicate ϕ should quantify over all frames for the starting
heap and check that the process returns only configurations satisfying ϕ without disturbing the frame.

4.3.5 Explicit Kripke–Joyal translation
We have given the interpretation of our logic in a mostly abstract–categorical way; such an abstract
presentation verifies all the “logical” rules of our system, but explicit computations are needed in order
to verify the rules for weakest preconditions. In this section, we provide some tools to assist with these
explicit computations; in Computation 4.22 we describe how to interpret each of the main connectives of
the logic as a transformer of subobjects in the internal language of Sℓ.
Computation 4.22 (Kripke–Joyal translation of the B logic) The action of each connective on B =
[pH,PropW] can be computed explicitly as a forcing clause in the Kripke–Joyal translation [35]. We omit
the forcing clauses for ⊤,⊥,∧,∨,∃,� because they are pointwise:

h |= ϕx⇒ ψ x⇐⇒ ∀(h′ ≥ h). h′ |= ϕx⇒ h′ |= ψ x

h |= ∀Y ϕ(x,−)⇐⇒ ∀(h′ ≥ h) (y : Y). h′ |= ϕ (x, y)

h |= □(ϕx)⇐⇒ ∅ |= ϕx

h |= ϕx ∗ ψ x⇐⇒ ∃(h1 · h2 = h). h1 |= ϕx ∧ h2 |= ψ x

h |= ϕx −∗ ψ x⇐⇒ ∀(h′#h). h′ |= ϕx⇒ h · h′ |= ψ x

h |= [l ↪→ a]⇐⇒ {ℓ 7→ next a} ≤ h

Computation 4.23 (Kripke–Joyal translation of the PropW logic) The connectives on PropW can
be further computed in terms of the ambient iGDTT model by another layer of Kripke–Joyal forcing:

w ⊩ ϕx⇒ ψ x⇐⇒ ∀(w′ ≥ w). w′ ⊩ ϕ (w′
∗x)⇒ w′ ⊩ ψ (w′

∗x)

w ⊩ ∀Y ϕ(x,−)⇐⇒ ∀(w′ ≥ w) (y : Y w′). w′ ⊩ ϕ (w′
∗x, y)

4.4 Soundness results

The following results are stated internally to iGDTT.

Theorem 4.24 (Soundness) If Ξ | Γ | ϕ ⊢ ψ is derivable in Tulip, then for any ξ : JΞ tctxK it holds

that JΞ | Γ ⊢ ϕ propKξ ≤ JΞ | Γ ⊢ ψ propKξ in BJΞ⊢Γ ctxKξ.

Proof. Since B• is a BI-hyperdoctrine, all the specified rules of higher-order separation logic are valid [8],
and the rules for the modalities follow similarly. What remains is to verify rules for weakest preconditions;
we show just one illustrative case in Lemma 4.25. 2

Lemma 4.25 The following weakest precondition law for get is valid:

α | ϕ : α→ prop, ℓ : refα, a : α | [ℓ ↪→ a] ∗ �([ℓ ↪→ a] −∗ ϕa) ⊢ wp (get ℓ) {x.ϕ x}

1–16 A denotationally-based program logic for higher-order store

Proof. We will follow the Kripke–Joyal unfolding of the separation logic from Computation 4.22. Fixing
A : Sp , we must prove the following:

∀ (h1#h2 : pH) (ϕ : A→ B) (ℓ : ref A) (a : A).
({ℓ 7→ next a} ≤ h1) ∧�(∀(h3#h2). {ℓ 7→ a} ≤ h3 ⇒ h2 · h3 |= ϕa)
⇒ h1 · h2 |= wpA (getA ℓ)ϕ

At this point, the only way to unfold further is to pass through a second Kripke–Joyal translation
(Computation 4.23), where the indexing comes from W rather than pH. What follows, therefore, will be in
ambient iGDTT language rather than the internal language of Sℓ; in particular, we assume the following:

(w : W) (h1#h2 : pHw) (ϕ : BAw) (ℓ : ref Aw) (a : Aw) such that:
H1 : {ℓ 7→ next a} ≤ h1
H2 : ▶

(
∀(w′ ≥ w) (h3#w

′
∗h2 : pHw′). {ℓ 7→ nextw′

∗a} ≤ h3 ⇒ w′ ⊩ (w′
∗h2 · h3 |= ϕw′ (w′

∗a) = ⊤)
)

Our goal is to prove w ⊩ (h1 · h2 |= wpA (getA ℓ)ϕ); we fix a world w′ ≥ w, a frame hf : pHw′ and a
total heap ht : tHw′ such that ht = hf · w′

∗h1 · w′
∗h2 to prove the following:

getA ℓw
′ ht ⇓ λp.

∃(w′′ ≥ |h1 · h2|) (wr = w′′ · |hf |) (h′ : tHw′′) (a : Awr).
p = pack (wr, (wr)∗hf · (wr)∗h

′, a)
∧ wr ⊩ ((wr)∗h

′ |= ϕwr a = ⊤)

Our assumption H1 guarantees that getA ℓw
′ ht is equal to ϑ (next (η (pack (w′, ht, w

′
∗a)))). Therefore,

our goal reduces to the following by definition of the L–predicate lifting:

▶∃(w′′ ≥ |h1 · h2|) (wr = w′′ · |hf |) (h′ : tHw′′) (x : Awr).
pack (w′, ht, w

′
∗a) = pack (wr, (wr)∗hf · (wr)∗h

′, x)
∧ wr ⊩ ((wr)∗h

′ |= ϕwr x = ⊤)

Going under the later modality in the goal, we discharge the corresponding modality from H2. Then
we instantiate w′′ ≜ |h1| · |h2| and wr ≜ w′ and h′ ≜ w′′

∗h1 · w′′
∗h2 and x ≜ w′

∗a. Our remaining goal is

w′ ⊩ (w′
∗h1 · w′

∗h2 |= ϕw′ (w′
∗a) = ⊤), which follows by instantiating H2 with w′ ≜ w′ and h3 ≜ w′

∗h1. 2

Corollary 4.26 (Consistency) It is not the case that ⊤ ≤ ⊥ in BJ·Kξ for any ξ : JΞK.

5 Conclusions; related and future work

5.1 Comparison with operationally-based program logics

We have contributed a program logic Tulip over the equational theory of polymorphic, general recursive,
higher-order stateful programs by building on the recent denotational semantics of general references and
polymorphism of Sterling et al . [46], adapting many ideas that were first developed in the context of
operationally based program logics. Prior works on the operational side such as Iris [30], the Verified
Software Toolchain [1], and TaDA [18] have reached great heights of expressivity, incorporating constructs
such as invariants and higher-order ghost state which are critical for reasoning about concurrent programs.
For the sake of simplicity, we have restricted our attention to a fixed notion of resource (partial heaps), but
we hope in the future to adapt more sophisticated constructs including higher-order ghost state, etc. to
reach parity with existing operationally-based program logics.

5.2 Other denotationally-based program logics for state

The model of Sterling et al . is not the only denotational semantics of state. First-order store, both local
and global, is well-represented in the literature [37,36,42,45]; there is also Levy’s model of non-polymorphic
higher-order store [33], and notably, a model of local full ground store by Kammar et al . [31]. Polzer and
Goncharov [43] have constructed a BI-hyperdoctrine over the denotational semantics of Kammar et al .,
and our own work is much in the spirit of theirs. However, there is an apparent mismatch between the

Aagaard, Sterling, and Birkedal 1–17

semantics of local store and the model of bunched implications over it, which has impeded op. cit . from
developing a full program logic with an interpretation of weakest preconditions.

5.3 Future perspectives

One of the methodological questions raised by our work is where, exactly, to draw the line between
equational reasoning and logical reasoning. For instance, conventional operationally-based program logics
do not use equational reasoning at all: our logic, in contrast, allows some equational reasoning but it is
limited by the intensionality of Sterling et al .’s model. One possible direction for future work is to attempt
to make the model itself less intensional, either by enhancing the semantic worlds [22] or by improving the
interpretation of the state monad [31].

Another question is how Tulip can be implemented in a practical tool. Currently, definitional and
logical equality coincide due to equality reflection, which leads the former to become undecidable. An
implementation will therefore require a more refined account of the interaction between definitional and
logical equality.

Acknowledgments

We wish to thank Daniel Gratzer for many helpful discussions. This research was supported in part by a
Villum Investigator grant (no. 25804), Center for Basic Research in Program Verification (CPV), from
the VILLUM Foundation, and in part by the European Union under the Marie Sk lodowska-Curie Actions
Postdoctoral Fellowship project TypeSynth: synthetic methods in program verification. Views and opinions
expressed are however those of the authors only and do not necessarily reflect those of the European
Union or the European Commission. Neither the European Union nor the granting authority can be held
responsible for them.

References

[1] Appel, A. W., Verified software toolchain, in: Proceedings of the 20th European Conference on Programming Languages
and Systems: Part of the Joint European Conferences on Theory and Practice of Software, ESOP’11/ETAPS’11, pages
1–17, Springer-Verlag, Saarbrücken, Germany (2011), ISBN 978-3-642-19717-8.

[2] Appel, A. W. and D. McAllester, An indexed model of recursive types for foundational proof-carrying code, ACM
Transactions on Programming Languages and Systems 23, pages 657–683 (2001), ISSN 0164-0925.
https://doi.org/10.1145/504709.504712

[3] Awodey, S., Natural models of homotopy type theory, Mathematical Structures in Computer Science 28, pages 241–286
(2018). 1406.3219.
https://doi.org/10.1017/S0960129516000268

[4] Awodey, S., On Hofmann–Streicher universes (2022). Unpublished manuscript.
https://doi.org/10.48550/ARXIV.2205.10917

[5] Awodey, S. and A. Bauer, Propositions As [Types], Journal of Logic and Computation 14, pages 447–471 (2004), ISSN
0955-792X.
https://doi.org/10.1093/logcom/14.4.447

[6] Awodey, S., J. Frey and S. Speight, Impredicative encodings of (higher) inductive types, in: Proceedings of the 33rd Annual
ACM/IEEE Symposium on Logic in Computer Science, pages 76–85, Association for Computing Machinery, Oxford,
United Kingdom (2018), ISBN 978-1-4503-5583-4.
https://doi.org/10.1145/3209108.3209130

[7] Bénabou, J., Distributors at work (2000). Notes by Thomas Streicher from lectures given at TU Darmstadt.

[8] Biering, B., L. Birkedal and N. Torp-Smith, BI-hyperdoctrines, higher-order separation logic, and abstraction, ACM
Transactions on Programming Languages and Systems 29 (2007), ISSN 0164-0925.

[9] Birkedal, L. and A. Bizjak, Lecture notes on Iris: Higher-order concurrent separation logic (2022).
https://iris-project.org/tutorial-material.html

https://cordis.europa.eu/project/id/101065303
https://doi.org/10.1145/504709.504712
1406.3219
https://doi.org/10.1017/S0960129516000268
https://doi.org/10.48550/ARXIV.2205.10917
https://doi.org/10.1093/logcom/14.4.447
https://doi.org/10.1145/3209108.3209130
https://iris-project.org/tutorial-material.html

1–18 A denotationally-based program logic for higher-order store

[10] Birkedal, L. and R. E. Møgelberg, Intensional type theory with guarded recursive types qua fixed points on universes,
in: Proceedings of the 2013 28th Annual ACM/IEEE Symposium on Logic in Computer Science, pages 213–222, IEEE
Computer Society, Washington, DC, USA (2013), ISBN 978-0-7695-5020-6, ISSN 1043-6871.
https://doi.org/10.1109/LICS.2013.27

[11] Birkedal, L., R. E. Møgelberg, J. Schwinghammer and K. Støvring, First steps in synthetic guarded domain theory:
Step-indexing in the topos of trees, in: Proceedings of the 2011 IEEE 26th Annual Symposium on Logic in Computer
Science, pages 55–64, IEEE Computer Society, Washington, DC, USA (2011), ISBN 978-0-7695-4412-0. 1208.3596.
https://doi.org/10.1109/LICS.2011.16

[12] Birkedal, L., K. Støvring and J. Thamsborg, Realisability semantics of parametric polymorphism, general references and
recursive types, Mathematical Structures in Computer Science 20, pages 655–703 (2010).
https://doi.org/10.1017/S0960129510000162

[13] Bizjak, A. and L. Birkedal, On models of higher-order separation logic, Electronic Notes in Theoretical Computer Science
336, pages 57–78 (2018).
https://doi.org/10.1016/j.entcs.2018.03.016

[14] Bizjak, A., H. B. Grathwohl, R. Clouston, R. E. Møgelberg and L. Birkedal, Guarded dependent type theory with
coinductive types, in: B. Jacobs and C. Löding, editors, Foundations of Software Science and Computation Structures:
19th International Conference, FOSSACS 2016, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2–8, 2016, Proceedings, pages 20–35, Springer Berlin
Heidelberg, Berlin, Heidelberg (2016), ISBN 978-3-662-49630-5. 1601.01586.
https://doi.org/10.1007/978-3-662-49630-5_2

[15] Bizjak, A. and R. E. Møgelberg, Denotational semantics for guarded dependent type theory, Mathematical Structures in
Computer Science 30, pages 342–378 (2020).
https://doi.org/10.1017/S0960129520000080

[16] Coq Development Team, T., The Coq Proof Assistant Reference Manual (2016).

[17] Coquand, T., An Analysis of Girard’s Paradox, in: Proceedings of the First Symposium on Logic in Computer Science,
pages 227–236, IEEE Computer Society (1986), ISBN 0-8186-0720-3.

[18] da Rocha Pinto, P., T. Dinsdale-Young and P. Gardner, TaDA: A Logic for Time and Data Abstraction, in: R. E. Jones,
editor, Proceedings of the 28th European Conference on Object-Oriented Programming (ECOOP’14), volume 8586 of Lecture
Notes in Computer Science, pages 207–231, Springer (2014).
https://doi.org/10.1007/978-3-662-44202-9_9

[19] Day, B., On closed categories of functors, in: S. MacLane, H. Applegate, M. Barr, B. Day, E. Dubuc, Phreilambud, A. Pultr,
R. Street, M. Tierney and S. Swierczkowski, editors, Reports of the Midwest Category Seminar IV, pages 1–38, Springer
Berlin Heidelberg, Berlin, Heidelberg (1970), ISBN 978-3-540-36292-0.

[20] Day, B., An embedding theorem for closed categories, in: G. M. Kelly, editor, Proceedings Sydney Category Theory Seminar
1972/1973, volume 420 of Lecture Notes in Mathematics, pages 55–64, Springer (1974).
https://doi.org/10.1007/BFb0063096

[21] Dreyer, D., A. Ahmed and L. Birkedal, Logical step-indexed logical relations, in: 2009 24th Annual IEEE Symposium on
Logic In Computer Science, pages 71–80 (2009), ISSN 1043-6871.
https://doi.org/10.1109/LICS.2009.34

[22] Dreyer, D., G. Neis, A. Rossberg and L. Birkedal, A relational modal logic for higher-order stateful ADTs, in: Proceedings
of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, POPL ’10, pages
185–198, Association for Computing Machinery, Madrid, Spain (2010), ISBN 978-1-60558-479-9.
https://doi.org/10.1145/1706299.1706323

[23] Gordon, M., From LCF to HOL: A short history, in: G. D. Plotkin, C. Stirling and M. Tofte, editors, Proof, Language,
and Interaction, pages 169–185, MIT Press, Cambridge, MA, USA (2000), ISBN 0-262-16188-5.

[24] Gordon, M., R. Milner and C. Wadsworth, Edinburgh LCF: A Mechanized Logic of Computation, volume 78 of Lecture
Notes in Computer Science, Springer-Verlag, Berlin, Heidelberg (1979).

[25] Harper, R., Practical Foundations for Programming Languages, Cambridge University Press, New York, NY, USA, second
edition (2016).

[26] Hofmann, M. and T. Streicher, Lifting Grothendieck universes (1997). Unpublished note.
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf

https://doi.org/10.1109/LICS.2013.27
1208.3596
https://doi.org/10.1109/LICS.2011.16
https://doi.org/10.1017/S0960129510000162
https://doi.org/10.1016/j.entcs.2018.03.016
1601.01586
https://doi.org/10.1007/978-3-662-49630-5_2
https://doi.org/10.1017/S0960129520000080
https://doi.org/10.1007/978-3-662-44202-9_9
https://doi.org/10.1007/BFb0063096
https://doi.org/10.1109/LICS.2009.34
https://doi.org/10.1145/1706299.1706323
https://www2.mathematik.tu-darmstadt.de/~streicher/NOTES/lift.pdf

Aagaard, Sterling, and Birkedal 1–19

[27] Huffman, B., HOLCF ’11: A Definitional Domain Theory for Verifying Functional Programs, Ph.D. thesis, Portland State
University (2012).

[28] Hyland, J. M. E., The effective topos, in: A. S. Troelstra and D. V. Dalen, editors, The L.E.J. Brouwer Centenary
Symposium, pages 165–216, North Holland Publishing Company (1982).

[29] Jacobs, B., Categorical Logic and Type Theory, number 141 in Studies in Logic and the Foundations of Mathematics,
North Holland, Amsterdam (1999).

[30] Jung, R., R. Krebbers, J.-H. Jourdan, A. Bizjak, L. Birkedal and D. Dreyer, Iris from the ground up: A modular foundation
for higher-order concurrent separation logic, Journal of Functional Programming 28, page e20 (2018).
https://doi.org/10.1017/S0956796818000151

[31] Kammar, O., P. B. Levy, S. K. Moss and S. Staton, A monad for full ground reference cells, in: Proceedings of the
32nd Annual ACM/IEEE Symposium on Logic in Computer Science, IEEE Press, Reykjavik, Iceland (2017), ISBN
978-1-5090-3018-7.
https://doi.org/10.1109/LICS.2017.8005109

[32] Kelly, G. M., A unified treatment of transfinite constructions for free algebras, free monoids, colimits, associated sheaves,
and so on, Bulletin of the Australian Mathematical Society 22, pages 1–83 (1980).
https://doi.org/10.1017/S0004972700006353

[33] Levy, P. B., Possible world semantics for general storage in call-by-value, pages 232–246 (2002), ISBN 978-3-540-44240-0.
https://doi.org/10.1007/3-540-45793-3_16

[34] Luo, Z., Computation and Reasoning: A Type Theory for Computer Science, volume 11 of International Series of
Monographs on Computer Science, Oxford Science Publications (1994).

[35] Mac Lane, S. and I. Moerdijk, Sheaves in geometry and logic: a first introduction to topos theory, Universitext, Springer,
New York (1992), ISBN 0-387-97710-4.

[36] Moggi, E., Notions of computation and monads, Information and Computation 93, pages 55–92 (1991), ISSN 0890-5401.
Selections from 1989 IEEE Symposium on Logic in Computer Science.
https://doi.org/10.1016/0890-5401(91)90052-4

[37] Oles, F. J., Type Algebras, Functor Categories and Block Structure, pages 543–573, Cambridge University Press, USA
(1986).

[38] Palombi, D. and J. Sterling, Classifying topoi in synthetic guarded domain theory, Electronic Notes in Theoretical
Informatics and Computer Science Volume 1 - Proceedings of MFPS XXXVIII (2023).
https://doi.org/10.46298/entics.10323

[39] Paulson, L. C., Logic and computation : interactive proof with Cambridge LCF, Cambridge tracts in theoretical computer
science, Cambridge University Press, Cambridge, New York, Port Chester (1987), ISBN 0-521-34632-0. Autre tirage : 1990
(br.).

[40] Paviotti, M., R. E. Møgelberg and L. Birkedal, A model of PCF in Guarded Type Theory, Electronic Notes in Theoretical
Computer Science 319, pages 333–349 (2015), ISSN 1571-0661. The 31st Conference on the Mathematical Foundations of
Programming Semantics (MFPS XXXI).
https://doi.org/10.1016/j.entcs.2015.12.020

[41] Plotkin, G. D., LCF considered as a programming language, Theoretical Computer Science 5, pages 223–255 (1977), ISSN
0304-3975.
https://doi.org/10.1016/0304-3975(77)90044-5

[42] Plotkin, G. D. and J. Power, Notions of computation determine monads, in: Proceedings of the 5th International Conference
on Foundations of Software Science and Computation Structures, pages 342–356, Springer-Verlag, Berlin, Heidelberg
(2002), ISBN 3-540-43366-X.

[43] Polzer, M. and S. Goncharov, Local local reasoning: A bi-hyperdoctrine for full ground store, in: J. Goubault-Larrecq and
B. König, editors, Foundations of Software Science and Computation Structures, pages 542–561, Springer International
Publishing, Cham (2020), ISBN 978-3-030-45231-5.

[44] Scott, D. S., A type-theoretical alternative to ISWIM, CUCH, OWHY, Theoretical Computer Science 121, pages 411–440
(1993), ISSN 0304-3975.
https://doi.org/10.1016/0304-3975(93)90095-B

[45] Staton, S., Completeness for algebraic theories of local state, in: L. Ong, editor, Foundations of Software Science and
Computational Structures, pages 48–63, Springer Berlin Heidelberg, Berlin, Heidelberg (2010), ISBN 978-3-642-12032-9.

https://doi.org/10.1017/S0956796818000151
https://doi.org/10.1109/LICS.2017.8005109
https://doi.org/10.1017/S0004972700006353
https://doi.org/10.1007/3-540-45793-3_16
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.46298/entics.10323
https://doi.org/10.1016/j.entcs.2015.12.020
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1016/0304-3975(93)90095-B

1–20 A denotationally-based program logic for higher-order store

[46] Sterling, J., D. Gratzer and L. Birkedal, Denotational semantics of general store and polymorphism (2022). Unpublished
manuscript.
https://doi.org/10.48550/arXiv.2210.02169

[47] Xia, L., Y. Zakowski, P. He, C.-K. Hur, G. Malecha, B. C. Pierce and S. Zdancewic, Interaction trees: Representing
recursive and impure programs in Coq, Proceedings of the ACM on Programming Languages 4 (2019).
https://doi.org/10.1145/3371119

https://doi.org/10.48550/arXiv.2210.02169
https://doi.org/10.1145/3371119

Aagaard, Sterling, and Birkedal 1–21

A Omitted rules

A.1 Equational theory of a strong monad

Ξ | Γ ⊢ u : A Ξ | Γ, x : A ⊢ v : TB

Ξ | Γ ⊢ x← retu; v ≡ v[u/x] : TB

Ξ | Γ ⊢ u : TA

Ξ | Γ ⊢ x← u; retx ≡ u : TA

Ξ | Γ ⊢ u : TA Ξ | Γ, x : A ⊢ v : TB Ξ | Γ, y : B ⊢ v : TC

Ξ | Γ ⊢ y ← (x← u; v);w ≡ x← u; y ← v;w : TC

A.2 Equational theory of universal and existential types

Ξ, α | Γ ⊢ u : A Ξ ⊢ B type @ p

Ξ | Γ ⊢ (λα.u)B ≡ u[B/α] : A[B/α]

Ξ | Γ ⊢ u : ∀α.A
Ξ | Γ ⊢ u ≡ Λα.u · α : ∀α.A

Ξ ⊢ B,C type @ p Ξ, α ⊢ A type @ p Ξ | Γ ⊢ u : A[B/α] Ξ, α | Γ, x : A ⊢ v : C

Ξ | Γ ⊢ let pack (α, x) = pack (B, u) in v ≡ v[B, u/α, x] : C

Ξ ⊢ C type @ p Ξ | Γ, z : ∃α.A ⊢ u : C Ξ | Γ ⊢ v : ∃α.A
Ξ | Γ ⊢ u[v/z] ≡ let pack (α, x) = v in u[pack (α, x)/z] : C

B Omitted proofs

Lemma 4.18. PropW is a complete Heyting algebra in Sℓ.

Proof. The simplest way to see this is to embed Sℓ = [W,Type0] into the larger co-presheaf category
E = [W,Type1], where we have a Hofmann–Streicher lifting V of Type0 whose global points correspond
to Sℓ. Then the completeness can be expressed internally in terms of quantification over V; this internal
quantification automatically satisfies the appropriate Beck–Chevalley conditions when externalized. In
particular, that PropW has internal products then amounts to the following pullback square existing [3]:

V

∑
A:V(A→ PropW)

A 7→ (A, λ .⊤)

1

PropW

!V

⊤

(∀)

The lower map can be be constructed explicitly using the internal completeness of Prop in Type. The
rest of the Heyting algebra structure is inherited from Prop à la Kripke semantics over W. 2

Corollary 4.26. It is not the case that ⊤ ≤ ⊥ in BJ·Kξ for any ξ : JΞK.

Proof. The ordering on BJ·Kξ is defined pointwise in relative to ordering on B, and its ordering is in turn
defined pointwise relative to the ordering on Prop. Similarly, ⊤ and ⊥ in BJ·Kξ are defined pointwise relative
to ⊤ and ⊥ in B, which in turn are defined pointwise relative to ⊤ and ⊥ in Prop. Since J·Kξ is the terminal

object, and thus in particular is inhabited, this implies that if ⊤ ≤ ⊥ in BJ·Kξ, we also have ⊤ ≤ ⊥ in Prop.
We thus conclude ⊤ ̸≤ ⊥ in BJ·Kξ. 2

	Introduction
	Denotational semantics of general references and polymorphism
	Higher-order separation logic over denotational semantics
	Structure of this paper

	: an equational program logic for higher-order store
	Rules for types and elements
	Rules for the propositional fragment
	Recursive Functions

	Case study: verifying the append function on linked lists
	Denotational semantics of in impredicative guarded dependent type theory
	Impredicative guarded dependent type theory
	Denotational semantics of general store in
	Semantics of predicate connectives
	Soundness results

	Conclusions; related and future work
	Comparison with operationally-based program logics
	Other denotationally-based program logics for state
	Future perspectives

	References
	Omitted rules
	Equational theory of a strong monad
	Equational theory of universal and existential types

	Omitted proofs

