
Electronic Notes in Volume 1

Theoretical Informatics ENTICS Proceedings of

And Computer Science https://entics.episciences.org MFPS 2022

Extended Addressing Machines for PCF,

with Explicit Substitutions

Benedetto Intrigila1

Dipartimento di Ingegneria dell’Impresa,
University of Rome “Tor Vergata”, Italy

Giulio Manzonetto2,4 Nicolas Münnich3,5

Univ. USPN, Sorbonne Paris Cité,
LIPN, UMR 7030, CNRS, F-93430 Villetaneuse, France.

Abstract

Addressing machines have been introduced as a formalism to construct models of the pure, untyped λ-calculus. We extend
the syntax of their programs by adding instructions for executing arithmetic operations on natural numbers, and introduce
a reflection principle allowing certain machines to access their own address and perform recursive calls. We prove that the
resulting extended addressing machines naturally model a weak call-by-name PCF with explicit substitutions. Finally, we
show that they are also well-suited for representing regular PCF programs (closed terms) computing natural numbers.

Keywords: Addressing machines, PCF, explicit substitutions, computational model.

Introduction

Turing machines (TM) and λ-calculus constitute two fundamental formalisms in theoretical computer sci-
ence. Because of the difficulty in emulating higher-order calculations on a TM, their equivalence on partial
numeric functions is not obtained directly, but rather composing different encodings. As a consequence,
no model of λ-calculus (λ-model) based on TM’s has arisen in the literature so far. Recently, Della Penna
et al. have successfully built a λ-model based on so-called addressing machines (AM) [11]. The intent is
to propose a model of computation, alternative to von Neumann architecture, where computation is based
on communication between machines rather than performing local operations. In fact, these machines are
solely capable of manipulating the addresses of other machines—this opens the way for modelling higher-
order computations since functions can be passed via their addresses. An AM can read an address from its
input-tape, store in a register the result of applying an address to another and, finally, pass the execution

1 Email: benedetto.intrigila@uniroma2.it
2 Partly supported by ANR Project PPS, ANR-19-CE48-0014.
3 Partly supported by ANR JCJC Project CoGITARe, ANR-18-CE25-0001.
4 Email: giulio.manzonetto@lipn.univ-paris13.fr
5 Email: munnich@lipn.univ-paris13.fr

Published February 15, 2023 Proceedings Available Online at © B. Intrigila, G. Manzonetto, N. Münnich

10.46298/entics.10533 https://doi.org/10.46298/entics.proceedings.mfps38 cb Creative Commons

https://entics.episciences.org
mailto:benedetto.intrigila@uniroma2.it
mailto:giulio.manzonetto@lipn.univ-paris13.fr
mailto:munnich@lipn.univ-paris13.fr
https://doi.org/10.46298/entics.10533
https://doi.org/10.46298/entics.proceedings.mfps38
https://creativecommons.org/licenses/by/4.0/

8–2 Exxtended Addresing Machines for PCF,...

to another machine by calling its address (possibly extending its input-tape). The set of instructions is
deliberately small, to identify the minimal setting needed to represent λ-terms. The downside is that
performing calculations on natural numbers is as awkward as using Church numerals in λ-calculus.

Contents. In this paper we extend the formalism of AM’s with a set of instructions representing
basic arithmetic operations and conditional tests on natural numbers. As we are entering a world of
machines and addresses, we need specific machines to represent numerals and assign them recognizable
addresses. Finally, in order to model recursion, we rely on the existence of machines representing fixed
point combinators. These machines can be programmed in the original formalism but we can avoid any
dependency on self-application by manipulating the addressing mechanism so that they have access to
their own address. This can be seen as a very basic version of the reflection principle which is present in
some programming languages. We call the resulting formalism extended addressing machines (EAMs).

Considering these features, one might expect EAMs to be well-suited for simulating Plotkin’s Program-
ming Computable Functions (PCF) [23], a simply typed λ-calculus with constants, arithmetical operations,
conditional testing and a fixed point combinator. A PCF term of the form (λx.M)N can indeed be trans-
lated into a machine M reading as input (x) from its tape the address of N. As M has control over the
computation, it naturally models a weak leftmost call-by-name evaluation. However, while in the con-
tractum M [N/x] of the redex the substitution is instantaneous, M needs to pass the address of N to the
machines representing the subterms of M , with the substitution only being performed if N gains control
of the computation. As a result, rather than PCF, EAMs naturally emulate the behavior of EPCF—a
weak call-by-name PCF with explicit substitutions that are only performed “on demand”, as in [19]. We
endow EAMs with a typing mechanism based on simple types and define a type-preserving translation
from well-typed EPCF terms to EAMs. Subsequently, we prove that also the operational behavior of EPCF
is faithfully represented by the translation. Finally, by showing the equivalence between PCF and EPCF
on terminating programs of type int, we are capable of drawing conclusions for the original language PCF.

In this paper we mainly focus on the properties of the translation, but our long-term goal is to construct
a sequential model of higher-order computations. The problem of finding a fully abstract model of PCF
was originally proposed by Robin Milner in [21] and is a difficult one. A model is called fully abstract (FA)
whenever two programs sharing the type α get the same denotation in the model if and only if they are
observationally indistinguishable when plugged in the same context C[] of type α→ int. Therefore, a FA
model provides a semantic characterization of the observational equivalence of PCF. Quoting from [3]:

“the problem is to understand what should be meant by a semantic characterization [. . .] Our view
is that the essential content of the problem, what makes it important, is that it calls for a semantic
characterization of sequential, functional computation at higher-types”.

A celebrated result is that FA models of PCF can be obtained by defining suitable categories of games
[4,3,13]. Preliminary investigations show that EAMs open the way to construct a more ‘computational’
FA model. E.g., in [21], the model construction starts with first-order definable functions and requires—to
cope with fixed point operator—the addition of extra ‘limit points’ to ensure that the resulting partial order
is direct complete. In the game semantics approach the fixed point operator is treated similarly, namely
via its canonical interpretation in a cpo-enriched Cartesian closed category [4]. On the contrary, in our
approach no limit construction is required to give the fixed point operator a meaning. The fact that EAMs
possess a given recursor having its own address stored inside is easily obtained from a mathematical point
of view and, as argued above, can be seen as an abstract view of the usual implementation of recursion.
We believe this new point of view may increase our understanding of PCF observational equivalence.

Outline. The paper is organized as follows. In Section 1 we introduce the language EPCF along with its
syntax, simply typed assignment system and associated (call-by-name) big-step operational semantics. In
Section 2 we define EAMs (no familiarity with [11] is assumed) and introduce their operational semantics.
In Section 3 we describe a type–checking algorithm for determining whether an EAM is well-typed. In
Section 4 we present our main results, namely:

(i) the translation of a well-typed EPCF term is an EAM typable with the same type (Theorem 4.6);

(ii) if an EPCF term reduces to a value, then their translations as machines are interconvertible (Thm. 4.7);

Intrigila, Manzonetto, Münnich 8–3

n ∈ N

σ ⊲ n ⇓d n
(nat)

σ ⊲ λx.M〈ρ〉 ⇓d λx.M〈σ + ρ〉
(fun)

σ(x) = (ρ,N) ρ ⊲ N ⇓d V

σ ⊲ x ⇓d V
(var)

σ ⊲ M · (fixM) ⇓d V

σ ⊲ fixM ⇓d V
(fix)

σ ⊲M ⇓d 0 σ ⊲ N1 ⇓d V1

σ ⊲ ifz(M,N1, N2) ⇓d V1
(ifz0)

σ ⊲ M ⇓d n+ 1 σ ⊲ N2 ⇓d V2

σ ⊲ ifz(M,N1, N2) ⇓d V2
(ifz>0)

σ ⊲ M ⇓d n+ 1

σ ⊲ predM ⇓d n
(pr)

σ ⊲ M ⇓d 0

σ ⊲ predM ⇓d 0
(pr0)

σ ⊲ M ⇓d n

σ ⊲ succM ⇓d n+ 1
(sc)

σ ⊲M ⇓d λx.M
′〈ρ〉 ρ+ [x← (σ,N)] ⊲M ′ ⇓d V

σ ⊲M ·N ⇓d V
(βv)

Fig. 1. The big-step operational semantics of EPCF.

(iii) the operational semantics of PCF and EPCF coincide on terminating programs of type int (Thm. 4.13);

(iv) the translation of a PCF program computing a number is an EAM evaluating the corresponding
numeral (Theorem 4.14).

Related works. A preliminary version of AMs was introduced in Della Penna’s MSc thesis [10] in
order to model computation as communication between distinguished processes by means of their addresses.
They were subsequently refined in [11] with the theoretical purpose of constructing a model of λ-calculus.
Similarly, our paper should be seen as a first step towards the construction of a denotational model of PCF.
Thus, the natural comparison is 6 with other models rather than other machine-based formalisms that have
been proposed in the literature (e.g., call-by-name: SECD [16], KAM [15], call-by-need: TIM [12], Lazy
KAM [6,17]); call-by-value: ZINC [18]) from which they differ at an implementational level.

Compared with models of PCF based on Scott-continuous functions [21,5,7], EAMs provide a more
operational interpretation of a program and naturally avoid parallel features that would lead to the failure
of FA as in the continuous semantics. Compared with Curien’s sequential algorithms [8] and categories
of games [4,13] they share the intensionality of programs’ denotations, while presenting an original way
of modelling sequential computation. The model based on AMs also bares some similarities with the
categories of assembly used to model PCF [20], mostly on a philosophical level, in the sense that these
models are based on the ‘codes’ (rather than addresses) of recursive functions realizing a formula (∼= type).

Concerning explicit substitutions we refer to the pioneering articles [1,2,9,19]. Explicit substitutions
have been barely considered in the context of PCF—with the notable exception of [24].

1 Preliminaries

The paradigmatic programming language PCF [23] is a simply typed λ-calculus enriched with constants
representing natural numbers, the fundamental arithmetical operations, an if-then-else conditional instruc-
tion, and a fixed-point operator. We give PCF for granted and rather present EPCF, an extension of PCF
with explicit substitutions [19]. We draw conclusions for the standard PCF by exploiting the fact that
they are equivalent on programs (closed terms) of type int.

Definition 1.1 Consider fixed a countably infinite set Var of variables. EPCF terms and explicit substi-
tutions are defined by (for n ≥ 0 and ~x ∈ Var):

L,M,N ::= x |M ·N | λx.M〈σ〉 | 0 | predM | succM | ifz(L,M,N) | fixM

σ, ρ ::= [x1 ← (σ1,M1), . . . , xn ← (σn,Mn)]

As is customary, M · N stands for the application of a term M to its argument N , 0 represents the

6 The reader interested in a comparison with other abstract machines or formalisms is invited to consult [14].

8–4 Exxtended Addresing Machines for PCF,...

natural number 0, pred and succ indicate the predecessor and successor respectively, ifz is the conditional
test on zero, and finally, fix is a fixed-point operator. We assume that application – often denoted as
juxtaposition – associates to the left and has higher precedence than abstraction. Concerning λx.M〈σ〉,
it represents an abstraction where σ is a list of assignments from variables to closures (terms with the
associated substitutions), where each variable can only have one closure assigned to it.

Definition 1.2 (i) In an explicit substitution

σ = [x1 ← (σ1,M1), . . . , xn ← (σn,Mn)]

the xi’s are assumed to be fresh and distinguished.

(ii) By (i), we can define σ(xi) = (σi,Mi).

(iii) The domain of σ is given by dom(σ) = {x1, . . . , xn}.

(iv) We write σ + ρ for the concatenation of σ and ρ, and in this case we assume dom(σ) ∩ dom(ρ) = ∅.

The set FV(M) of free variables of an EPCF term M is defined as usual, except for the abstraction
case FV(λx.M〈σ〉) = FV(M)− ({x} ∪ dom(σ)). The term M is closed if FV(M) = ∅, and in that case it
is called an EPCF program.

Hereafter terms are considered up to renaming of bound variables. Therefore the symbol = will denote
syntactic equality up to α-conversion.

Notation 1 (i) For every n ∈ N, we let n = succ n(0). In particular, 0 is an alternative notation for 0.

(ii) As a syntactic sugar, we write λx.M for λx.M〈〉. With this notation in place, PCF terms are simply
EPCF terms containing empty explicit substitutions.

(iii) For n ∈ N, we often write λx1 . . . λxn.M as λx1 . . . xn.M , or even λ~x.M when n is clear from
the context. Summing up, and recalling that · is left associative, λx1x2x3.L · M · N stands for
λx1.(λx2.(λx3.((L ·M) ·N)〈〉)〈〉)〈〉.

(iv) M [N/x] denotes the capture-free substitution of N for all free occurrences of x in M .

Example 1.3 We introduce some notations for the following (E)PCF programs, that will be used as
running examples.

(i) I = λx.x, representing the identity.

(ii) Ω = fix (I) representing the paradigmatic looping program.

(iii) succ1 = λx.succ (x), representing the successor function.

(iv) succ2 = (λsn.s · (s · n)) · succ1, representing the function f(x) = x+ 2.

(v) add aux = λfxy.ifz(y, x, (f · (succ x)) · (pred y)), i.e. the functional

Φf (x, y) =

{

x, if y = 0,

f(x+ 1, y − 1), if y > 0.

(vi) add = fix (add aux), i.e., the recursive definition of addition f(x, y) = x+ y.

The operational semantics of EPCF is defined via a call-by-name big-step (leftmost) weak reduction.

Definition 1.4 (i) We let Val = {n | n ∈ N} ∪ {λx.M〈σ〉 | M is an EPCF term} be the set of EPCF
values.

(ii) The big-step weak reduction is the least relation ⇓d from EPCF terms to Val, closed under the rules
of Figure 1.

(iii) We say that an EPCF program M is terminating whenever M ⇓d V holds, for some V ∈ Val.
Otherwise, we say that M is a non-terminating, or looping, term.

Example 1.5 We show some of the terms from Example 1.3, at work.

Intrigila, Manzonetto, Münnich 8–5

Γ, x : α ⊢E x : α
(ax)

Γ ⊢E 0 : int
(0) Γ ⊢E M : α→ α

Γ ⊢E fixM : α
(Y)

Γ ⊢E M : int

Γ ⊢E succM : int
(+) Γ ⊢E M : int

Γ ⊢E predM : int
(−)

σ |= ∆ Γ,∆, x : α ⊢E M : β

Γ ⊢E λx.M〈σ〉 : α→ β
(→I)

Γ ⊢E M : α→ β Γ ⊢E N : α

Γ ⊢E M ·N : β
(→E)

Γ ⊢E L : int Γ ⊢E M : α Γ ⊢E N : α

Γ ⊢E ifz(L,M,N) : α
(ifz)

[] |= ∅
(σ0)

σ |= Γ ρ |= ∆ ∆ ⊢E M : α

σ + [x← (ρ,M)] |= Γ, x : α
(σ)

Fig. 2. EPCF type assignment system.

(i) We have [] ⊲ succ1 · 0 ⇓d 1. To get the reader familiar with the operational semantics, we give the
details:

[] ⊲ λx.succ (x) ⇓d λx.succ (x)
(fun)

[] ⊲ 0 ⇓d 0
(nat)

[x← ([], 0)] ⊲ x ⇓d 0
(var)

[x← ([], 0)] ⊲ succ (x) ⇓d 1
(sc)

[] ⊲ (λx.succ (x)) · 0 ⇓d 1
(βv)

(ii) Similarly, [] ⊲ I · 4 ⇓d 4, [] ⊲ I · I ⇓d I, [] ⊲ succ2 · 1 ⇓d 3 and [] ⊲ add · 5 · 1 ⇓d 6.

(iii) Since Ω is looping, there is no V ∈ Val such that [] ⊲Ω ⇓d V is derivable.

We now endow EPCF terms with a type system based on simple types.

Definition 1.6 (i) The set T of (simple) types over a ground type int is inductively defined by the
grammar:

α, β ::= int | α→ β (T)

The arrow associates to the right, in other words we write α1 → · · · → αn → β for
α1 → (· · · → (αn → β) · · ·) (= ~α→ β, for short).

(ii) A typing context Γ is given by a set of associations between variables and types, written x1 :
α1, . . . , xn : αn. In this case, we let dom(Γ) = {x1, . . . , xn}. When writing Γ, x : α, we silently
assume that x /∈ dom(Γ).

(iii) Typing judgements are triples, denoted Γ ⊢E M : α, where Γ is a typing context, M is an EPCF term
and α ∈ T.

(iv) Typing derivations are finite trees built bottom-up in such a way that the root has shape Γ ⊢E M : α
and every node is an instance of a rule from Figure 2. In the rule (→I) we assume wlog that x /∈ Γ,
by α-conversion. We also use an auxiliary predicate σ |= Γ whose intuitive meaning is that Γ is a
typing context constructed from an explicit substitution σ.

(v) When writing Γ ⊢E M : α, we mean that this typing judgement is derivable.

(vi) We say that M is typable if Γ ⊢E M : α is derivable for some Γ, α.

Example 1.7 The following are examples of derivable typing judgments.

(i)

[] |= ∅
(σ0)

[] |= ∅
(σ0)

⊢E 0 : int
(0)

[y ← ([],0)] |= y : int
(σ)

y : int, x : α ⊢E y : int
(ax)

y : int, x : α ⊢E succ (y) : int
(+)

⊢E λx.succ (y)〈[y ← ([],0)]〉 : α→ int
(→I)

(ii) ⊢E (λx.succ (x)) · 0 : int.

8–6 Exxtended Addresing Machines for PCF,...

(iii) ⊢E (λsn.s · (s · n)) · (λx.succ (x)) : int→ int.

(iv) ⊢E fix (λfxy.ifz(y, x, f · (succx) · (pred y))) : int→ int→ int.

(v) ⊢E Ω : α, for all α ∈ T.

The following lemma summarizes the main (rather standard) properties of the language EPCF.

Lemma 1.8 Let M be an EPCF term, V ∈ Val, α, β ∈ T and Γ be a context.

(i) (Syntax directedness) Every derivable judgement Γ ⊢E M : α admits a unique derivation.

(ii) (Strengthening) If Γ, x : β ⊢E M : α and x /∈ FV(M) then Γ ⊢E M : α.

(iii) (Subject reduction) For M closed, ⊢E M : α and [] ⊲ M ⇓d V entail ⊢E V : α.

It follows that, if an EPCF program M is typable, then it is also typable in the empty context.

2 Extended Addressing Machines

We extend the addressing machines from [11] with instructions for performing arithmetic operations and
conditional testing. Natural numbers are represented by particular machines playing the role of numerals.

2.1 Main definitions

We consider fixed a countably infinite set A of addresses together with a distinguished countable subset
X ⊂ A, such that A − X remains infinite. Intuitively, X is the set of addresses that we reserve for the
numerals, therefore hereafter we work under the hypothesis that X = N, an assumption that we can make
without loss of generality.

Let ∅ /∈ A be a “null” constant corresponding to an uninitialised register. Set A∅ = A ∪ {∅}.

Definition 2.1 (i) An A-valued tape T is a finite ordered list of addresses T = [a1, . . . , an] with ai ∈ A

for all i (1 ≤ i ≤ n). When A is clear from the context, we simply call T a tape. We denote by TA
the set of all A-valued tapes.

(ii) Let a ∈ A and T, T ′ ∈ TA. We denote by a :: T the tape having a as first element and T as tail. We
write T @T ′ for the concatenation of T and T ′, which is an A-valued tape itself.

(iii) Given an index i ≥ 0, an A∅-valued register Ri is a memory-cell capable of storing either ∅ or an
address a ∈ A. We write !Ri to represent the value stored in the register Ri. (The notation !Ri is
borrowed from ML, where ! represents an explicit dereferencing operator.)

(iv) Given A∅-valued registers R0, . . . , Rn for n ≥ 0, an address a ∈ A and an index i ≥ 0, we write
~R[Ri := a] for the list of registers ~R where the value of Ri has been updated by setting !Ri = a.

Notice that, whenever i > n, we assume that the contents of ~R remains unchanged, i.e. ~R[Ri := a] = ~R.

Intuitively, the contents of the registers R0, . . . , Rn constitutes the state of a machine, while the tape
correspond to the list of its inputs. The addressing machines from [11] are endowed with only three
instructions (i, j, k, l range over indices of registers):

1. Load i : reads an address a from the input tape, assuming it is non-empty, and stores a in the register
Ri. If the tape is empty then the machine suspends its execution without raising an error.

2. k � App(i, j) : reads the addresses a1, a2 from Ri and Rj respectively, and stores in Rk the address
of the machine obtained by extending the tape of the machine of address a1 with the address a2. The
resulting address is not calculated internally but rather obtained calling an external application map.

3. Call i : transfers the computation to the machine having as address the value stored in Ri, whose
tape is extended with the remainder of the current machine’s tape.

As a general principle, writing on a non-existing register does not cause issues as the value is simply
discarded—this is in fact the way one can erase an argument. The attempt of reading an uninitialized

Intrigila, Manzonetto, Münnich 8–7

register would raise an error—we however show that these kind of errors can be avoided statically (see
Lemma 2.4).

We enrich the above set of instructions with arithmetic operations mimicking the ones present in PCF:

4. l � Test(i, j, k): implements the “is zero?” test on !Ri. Assuming that the value of Ri is an address
n ∈ N, the instruction stores in Rl the value of Rj or Rk, depending on whether n = 0.

5. j � Pred(i): if !Ri ∈ N, the value of Rj becomes !Ri ⊖ 1 = max(!Ri − 1, 0).

6. j � Succ(i): if !Ri ∈ N, then the value of Rj becomes !Ri + 1.

Notice that the instructions above need Ri to contain a natural number to perform the corresponding
operation. However, they are also supposed to work on addresses of machines that compute a numeral. For
this reason, the machine whose address is stored in Ri must first be executed, and only if the computation
terminates with a numeral is the arithmetic operation performed. Clearly, if the computation terminates
in an address not representing a numeral, then an error should be raised at execution time. We will see
that these kind of errors can be avoided using a type inference algorithm (see Proposition 3.5, below).

Definition 2.2 (i) A program P is a finite list of instructions generated by the following grammar,
where ε represents the empty string and i, j, k, l are indices of registers:

P ::= Load i; P | A

A ::= k � App(i, j); A | l � Test(i, j, k); A | j � Pred(i); A | j � Succ(i); A | C

C ::= Call i | ε

Thus, a program starts with a list of Load’s, continues with a list of App, Test, Pred, Succ, and
possibly ends with a Call. Each of these lists may be empty, in particular the empty program ε can
be generated.

(ii) In a program, we write Load (i1, . . . , in) as an abbreviation for the instructions Load i1; · · · ; Load in.

(iii) Let P be a program, r ≥ 0, and I ⊆ {0, . . . , r − 1} be a set of indices corresponding to the indices
of initialized registers. Define the relation I |=r P , whose intent is to specify that P does not read
uninitialized registers, as the least relation closed under the rules:

I |=r ε
i ∈ I

I |=r Call i

I ∪ {j} |=r A i ∈ I j < r

I |=r j � Pred(i); A

I ∪ {i} |=r P i < r

I |=r Load i; P

I |=r P i ≥ r

I |=r Load i; P

I ∪ {j} |=r A i ∈ I j < r

I |=r j � Succ(i); A

I ∪ {k} |=r A i, j ∈ I k < r

I |=r k � App(i, j); A

I ∪ {l} |=r A i, j, k ∈ I l < r

I |=r l � Test(i, j, k); A

(iv) A program P is valid with respect to R0, . . . , Rr−1 if R |=r P holds for R = {i | Ri 6= ∅ ∧ 0 ≤ i < r}.

Example 2.3 For each of these programs, we specify its validity with respect to R0 = 7, R1 = a,R2 = ∅

(i.e., r = 3).

P1 = 2 � Pred(0); Call 2 (valid)

P2 = Load (2, 8); 0 � Test(0, 1, 2); Call 0 (valid)

P3 = Load (0, 2, 8); Call 8 (calling the uninitialized register R8, thus not valid)

Lemma 2.4 Given A∅-valued registers ~R and a program P it is decidable whether P is valid w.r.t. ~R.

8–8 Exxtended Addresing Machines for PCF,...

Proof. Decidability follows from the syntax directedness of Definition 2.2(iii), and the preservation of the
invariant I ⊆ {0, . . . , r − 1}, since I is only extended with k < r. ✷

Definition 2.5 (i) An extended addressing machine (EAM) M with r registers over A is given by a
tuple:

M = 〈R0, . . . , Rr−1, P, T 〉

where ~R are A∅-valued registers, P is a program valid w.r.t. ~R and T ∈ TA is an (input) tape.

(ii) We write M.r for the number of registers of M, M.Ri for its i-th register, M.P for the associated
program and M.T for its input tape. When writing “Ri = a” in a tuple we indicate that Ri is present
and !Ri = a.

(iii) We say that an extended addressing machine M as above is stuck, written stuck(M), whenever its
program has shape M.P = Load i;P but its input-tape is empty M.T = []. Otherwise M is ready,
written ¬stuck(M).

(iv) The set of all extended addressing machines over A will be denoted byMA.

(v) For n ≥ 0, the n-th numeral machine is defined n = 〈R0, ε, []〉 with !R0 = n.

(vi) For n ≥ 0 and a ∈ A, define

Ya
n = 〈(R0 = a,R1 = ∅, . . . , Rn+1 = ∅, P, []〉

whereP = Load (1, . . . , n+ 1); 0 � App(0, 1); · · · ; 0 � App(0, n+ 1); 1 � App(1, 2); · · · ;

1 � App(1, n+ 1); 1 � App(1, 0); Call 1

We now enter into the details of the addressing mechanism which constitutes the core of this formalism.

Definition 2.6 Recall that N stands for an infinite subset of A, here identified with the set of natural
numbers, and Ya

n has been introduced in Definition 2.5(vi).

(i) SinceMA is countable, we can fix a bijective function # :MA → A satisfying the following conditions:
(a) (Numerals) ∀n ∈ N .#n = n, where n is the n-th numeral machine;
(b) (Fixed point combinator) for all n ≥ 0, there exists an address a ∈ A− N such that #(Ya

n) = a.
We say that the bijection #(·) is an address table map and call the element #M the address of the
EAM M. We simply write Yn for the machine satisfying the equation above and aYn

for its address,
i.e. #(Yn) = aYn

.

(ii) For a ∈ A, we write #−1(a) for the unique machine having address a, i.e., #−1(a) = M ⇐⇒ #M = a.

(iii) Given M ∈ MA and T ′ ∈ TA, we write M@T ′ for the machine 〈M. ~R,M.P,M.T @T ′ 〉.

(iv) Define the application map (·) : A×A→ A by setting a · b = #(#−1(a)@ [b]), i.e., the application of
a to b is the unique address c of the EAM obtained by adding b at the end of the input tape of the
EAM #−1(a).

Example 2.7 The following are examples of EAMs (whose registers are assumed uninitialized, i.e. ~R = ~∅).

(i) Succ1 := 〈R0, Load 0; 0 � Succ(0); Call 0, []〉.

(ii) Succ2 := 〈R0, R1, Load 0; Load 1; 1 � App(0, 1); 1 � App(0, 1); Call 1, [aS]〉, where aS = #Succ1.

(iii) Add aux := 〈~R,P, []〉 with Add aux.r = 5 and P = Load (0, 1, 2); 3 � Pred(1); 4 � Succ(2); 0 �
App(0, 3); 0 � App(0, 4); 0 � Test(1, 2, 0); Call 0.

Remark 2.8 In general, there are uncountably many possible address table maps of arbitrary compu-
tational complexity. A natural example of such maps is given by Gödelization, which can be performed
effectively. The framework is however more general and allows to consider non-r.e. sets of addresses like
the complement Kc of the halting set

K = {(i, x) | the program i terminates when run on input x}

Intrigila, Manzonetto, Münnich 8–9

and a non-computable function # :MKc → Kc as a map.

In an implementation of EAMs the address table map should be computable—one can choose a fresh
address from A whenever a new machine is constructed, save the correspondence in some table and retrieve
it in constant time.

Remark 2.9 Depending on the chosen address table map, it might be possible to construct infinite (static)
chains of EAMs (M)n∈N, e.g., Mn = 〈R0 = #Mn+1, ε, []〉.

The results we present are independent from the choice of #.

2.2 Operational semantics

The operational semantics of extended addressing machines is given through a small-step rewriting system.
The reduction strategy is deterministic, since the only applicable rule at every step is univocally determined
by the first instruction of the internal program, the contents of the registers and the head of the tape.

Definition 2.10 We introduce a fresh constant err /∈MA to represent a machine raising an error.

(i) Define a reduction strategy →c on EAMs, representing one step of computation, as the least relation
→c ⊆MA × (MA ∪ {err}) closed under the rules in Figure 3.

(ii) The multistep reduction ։c is defined as the transitive-reflexive closure of →c.

(iii) Given M,N,M ։c N, we write |M ։c N| ∈ N for the length of the (unique) reduction path from M
to N.

(iv) For M,N ∈MA, we write M↔c N if they have a common reduct Z ∈ MA∪{err}, i.e. M ։c Z cև N.

(v) An extended address machine M: is in final state if it cannot reduce, written M 6→c; reaches a final
state if M ։c M

′ for some M′ ∈ MA in final state; raises an error if M ։c err; does not terminate,
otherwise.

Notice that since the redexes in Figure 3 are not overlapping, the confluence of ։c follows easily (cf.
[11, Lemma 2.11(2)]).

Lemma 2.11 If M ։c M
′, then M@#N ։c M

′@#N .

Proof. By induction on the length of M ։c M
′. ✷

Example 2.12 See Example 2.7 for the definition of Succ1, Succ2, Add aux.

(i) We have Succ1@ [0] ։c 1 and Succ2@ [1] ։c 3.

(ii) Define Add = Y0@ [#Add aux] , an EAM performing the addition. We show:

Add@ [1, 3] →c 〈(R0 = aY0
, R1 = #Add aux), 0 � App(0, 1); 1 � App(1, 0); Call 1, [1, 3]〉

։c

〈

~R, Load (0, 1, 2); 3 � Pred(1); 4 � Succ(2); 0 � App(0, 3); 0 � App(0, 4);

0 � Test(1, 2, 0); Call 0, [#Add, 1, 3]

〉

։c

〈

R0 = #Add, R1 = 1, R2 = 3, R3, R4, 3 � Pred(1); 4 � Succ(2); 0 � App(0, 3);

0 � App(0, 4); 0 � Test(1, 2, 0); Call 0, []

〉

։c 〈R0 = #(Add@ [0, 4]), R1 = 1, R2 = 3, R3 = 0, R4 = 4, 0 � Test(1, 2, 0); Call 0, []〉

։c 〈R0 = #(Add@ [0, 5]), R1 = 0, R2 = 4, R3 = 0, R4 = 5, 0 � Test(1, 2, 0); Call 0, []〉։c 4

(iii) For I = 〈R0 = ∅, Load 0; Call 0, []〉, Y0@ [#I] ։c I@ [#(Y0 @ [#I])] .

(iv) Yn@ [#M, d1, . . . , dn] ։c M@ [d1, . . . , dn,#(Yn@ [#M, d1, . . . , dn])] , for all n ≥ 0, M ∈ MA, ~d ∈ A.

8–10 Exxtended Addresing Machines for PCF,...

Unconditional rewriting rules

〈~R, Call i;P, T 〉 →c #−1(!Ri)@T

〈~R, Load i;P, a :: T 〉 →c 〈~R[Ri := a], P, T 〉

〈~R, k � App(i, j);P, T 〉 →c 〈~R[Rk := !Ri · !Rj], P, T 〉

Under the assumption that #−1(!Ri) 6→c (i.e., it is in final state).

〈~R, j � Pred(i);P, T 〉 →c

{

〈~R[Rj := !Ri ⊖ 1, P, T 〉, if !Ri ∈ N,

err, otherwise.

〈~R, j � Succ(i);P, T 〉 →c

{

〈~R[Rj := !Ri ⊕ 1, P, T 〉, if !Ri ∈ N,

err, otherwise.

〈~R, l � Test(i, j, k);P, T 〉 →c











〈~R[Rl := !Rj], P, T 〉, if !Ri = 0,

〈~R[Rl := !Rk], P, T 〉, if !Ri ∈ N
+,

err, otherwise.

Under the assumption that #−1(!Ri)→c A (i.e., it is not in final state).

〈~R, j � Pred(i);P, T 〉 →c 〈~R[Ri := #A], j � Pred(i);P, T 〉

〈~R, j � Succ(i);P, T 〉 →c 〈~R[Ri := #A], j � Succ(i);P, T 〉

〈~R, l � Test(i, j, k);P, T 〉 →c 〈~R[Ri := #A], l � Test(i, j, k);P, T 〉

Fig. 3. Small-step operational semantics for extended addressing machines.

3 Typing Algorithm

Recall that the set T of (simple) types has been introduced in Definition 1.6(i). We now show that certain
EAMs can be typed, and that typable machines do not raise error during their execution.

Definition 3.1 (i) A typing context ∆ is a finite set of associations between registers and types, repre-
sented as a list Ri1 : α1, . . . , Rin : αn. The indices i1, . . . , in are not necessarily consecutive.

(ii) We denote by ∆[Ri : α] the typing context ∆ where the type associated with Ri becomes α. If Ri is
not present in ∆, then ∆[Ri : α] = ∆, Ri : α.

(iii) Let ∆ be a typing context, M ∈ MA, P be a program, T ∈ TA and α ∈ T. We define the typing
judgements

∆ ⊢ M : α ∆
 (P, T) : α

by mutual induction as the least relations closed under the rules of Figure 4. The rules (nat) and
(fix) are the base cases and take precedence over (R∅) and (RT).

(iv) For Ri1 , . . . , Rin ∈ ~R, write Ri1 : βi1 , . . . , Rin : βin |= ~R if #−1(!Rj) : βj , for all j ∈ {i1, . . . , in}.

The algorithm in Figure 4 deserves some discussion. As it is presented as a set of inference rules, one
should reason bottom-up. To give a machine M a type α, one needs to derive the judgement ⊢ M : α. The
machines n and Yn are recognizable from their addresses and the rules (nat) and (fix) can thus be given
higher precedence. Otherwise, the rule (RT) allows to check whether the value in a register is typable
and only retain its type, the rule (R∅) allows to get rid of uninitialized registers. Once this initial step is

Intrigila, Manzonetto, Münnich 8–11

#M ∈ N

⊢ M : int
nat

#M = aYn

~δ = δ1 → · · · → δn

⊢ M : (~δ → α→ α)→ ~δ → α
fixn

∆
 (P, T) : α

∆ ⊢ 〈(), P, T 〉 : α
R()

∆ ⊢ 〈R0, . . . , Rr−1, P, T 〉 : α !Rr = ∅

∆ ⊢ 〈(R0, . . . , Rr), P, T 〉 : α
R∅

Rr : β,∆ ⊢ 〈R0, . . . , Rr−1, P, T 〉 : α ⊢ #−1(!Rr) : β

∆ ⊢ 〈(R0, . . . , Rr), P, T 〉 : α
RT

∆[Ri : β]
 (P, []) : α

∆
 (Load i;P, []) : β → α
load∅

∆[Ri : β]
 (P, T) : α ⊢ #−1(a) : β

∆
 (Load i;P, a :: T) : α
loadT

(∆, Ri : int)[Rj : int]
 (P, T) : α

∆, Ri : int
 (j � Pred(i);P, T) : α
pred

(∆, Ri : int)[Rj : int]
 (P, T) : α

∆, Ri : int
 (j � Succ(i);P, T) : α
succ

(∆, Ri : int, Rj : β,Rk : β)[Rl : β]
 (P, T) : α

∆, Ri : int, Rj : β,Rk : β
 (l � Test(i, j, k);P, T) : α
test

(∆, Ri : α→ β,Rj : α)[Rk : β]
 (P, T) : δ

∆, Ri : α→ β,Rj : α
 (k � App(i, j);P, T) : δ
app

⊢ M1 : α1 · · · ⊢ Mn : αn

∆, Ri : α1 → · · · → αn → α
 (Call i, [#M1, . . . ,#Mn]) : α
call

Fig. 4. Typing rules for extended addressing machines.

performed, one needs to derive a judgement of the form Ri1 : βi1 , . . . , Rin : βin
 (P, T) : α, where P and
T are the program and the input tape of the original machine respectively. This is done by verifying the
coherence of the instructions in the program with the types of the registers and of the values in the input
tape. As a final consideration, notice that the rules in Figure 4 can only be considered as an algorithm
when the address table map is effectively given. Otherwise, the algorithm would depend on an oracle
deciding a = #M.
Remark 3.2 (i) For all M ∈ MA and α ∈ T, we have ⊢ M : α if and only if there exists a ∈ A such that

both #−1(a) : α and #M = a hold.

(ii) If #M /∈ N ∪ {aYn
| n ≥ 0}, then ⊢ M : α ⇐⇒ ∃∆ . [∆ |= M. ~R ∧ ∆
 (M.P,M.T) : α]

(iii) The higher priority assigned to the rules (nat) and (fix) does not modify the set of typable machines,
rather guarantees the syntax-directedness of the system.

Example 3.3 The following typing judgements are derivable.

(i) ⊢ Succ2 : int→ int

(ii) ⊢ Add : int→ int→ int, where Add = Y0 @ [#Add aux]

(iii) For a smaller example, like ⊢ Succ1 : int→ int, we can provide the whole derivation tree:

R0 : int
 〈Call 0, []〉 : int
call

R0 : int
 〈0 � Succ(0); Call 0, []〉 : int
succ

 〈Load 0; 0 � Succ(0); Call 0, []〉 : int→ int
load∅

⊢ 〈(), Load 0; 0 � Succ(0); Call 0, []〉 : int→ int
R()

!R0 = ∅

⊢ 〈(R0 = ∅), Load 0; 0 � Succ(0); Call 0, []〉 : int→ int
R∅

Lemma 3.4 Let M ∈ MA, α ∈ T. Assume that # : M→ A is effectively given.

(i) If M = 〈~R = ∅, P, []〉 then the typing algorithm is capable of deciding whether ⊢ M : α holds.

(ii) In general, the typing algorithm semi-decides whether ⊢ M : α holds.

Proof. (Sketch) (i) In this case, ⊢ M : α holds if and only if
 (M.P, []) does. By induction on the length
of M.P , one verifies if it is possible to construct a derivation. Otherwise, conclude that ⊢ M : α is not

8–12 Exxtended Addresing Machines for PCF,...

derivable.
(ii) In the rules (RT) and (loadT), one needs to show that a type for the premises exists. As the set of

types is countable, and effectively given, one can easily design an algorithm constructing a derivation tree
(by dovetailing). However, the algorithm cannot terminate when executed on M0 from Remark 2.9. ✷

The machine M0 in Remark 2.9 cannot be typable because it would require an infinite derivation tree.

Proposition 3.5 Let M,M′,N,∈ MA and α, β ∈ T.

(i) If ⊢ M : β → α and ⊢ N : β then ⊢ M@ [#N] : α.

(ii) If ⊢ M : α and M→c N then ⊢ N : α.

(iii) If ⊢ M : int then either M does not terminate or M ։c n, for some n ≥ 0.

(iv) If ⊢ M : α then M does not raise an error.

Proof. (i) Simultaneously, one proves that ∆
 (P, T) : β → α and ⊢ N : β imply ∆
 (P, T @ [#N]) : α.
Proceed by induction on a derivation of ⊢ M : β → α (resp. ∆
 (P, T) : β → α).

Case (nat) is vacuous.
Case (fixn). We show the case for n = 0, the others being similar. By definition of Y0, we have:

Y0@ [#N] = 〈(∅, aY0
), Load 0; 1 � App(1, 0); 0 � App(0, 1); Call 0, [#N]〉 .

Notice that, in this case, β = α→ α. Using #−1(aY0
) = Y0, we derive:

R0 : α,R1 : α
 (Call 0, []) : α
call

R0 : α→ α,R1 : (α→ α)→ α
 (1 � App(1, 0); · · · , []) : α
app; app

⊢ N : α→ α

R1 : (α→ α)→ α
 (Load 0; · · · , [#N]) : α
loadT

R1 : (α→ α)→ α
 〈R0 = ∅, Load 0; · · · , [#N]〉 : α
R(); R∅

fix0
⊢ Y0 : (α→ α)→ α

⊢ 〈(R0 = ∅, R1 = aY0
), Load 0; 1 � App(1, 0); 0 � App(0, 1); Call 0, [#N]〉 : α

RT

Case load∅. Then P = Load i;P ′, T = [] and ∆[Ri : β]
 (P ′, []) : α. By assumption ⊢ N : β, so we
conclude ∆
 (Load i;P ′, []) : α by applying loadT. All other cases derive straightforwardly from the IH.

(ii) The cases M = Yn or M = n for some n ∈ N are vacuous, as these machines are in final state.

Otherwise, by Remark 3.2(ii), ∆
 (M.P,M.T) : α for some ∆ |= M. ~R. By cases on the shape of M.P .

Case P = Load i;P ′. Then M.T = a :: T ′ otherwise M would be in final state, and N = 〈~R[Ri :=

a], P ′, T ′〉. From (LoadT) we get ∆[Ri : β]
 (P ′, T ′) : α for some β ∈ T satisfying #−1(a) : β. As ∆ |= ~R

we derive ∆[Ri : β] |= ~R[Ri := a], so as N =
〈

~R[Ri := a], P ′, T ′
〉

, by Remark 3.2(ii), ⊢ N : α.

Case P = Call i. Then Ri : α1 → · · · → αn → α, T = [#M1, . . . ,#Mn] and ⊢ Mj : αj , for all j ≤ n.
In this case, N = #−1(!(M.Ri))@T with ⊢ #−1(!(M.Ri)) : α1 → · · · → αn → α, so we conclude by (i).

All other cases follows easily from the IH.
(iii) Assume that ⊢ M : int and M ։c N for some N in final state. By (ii), we obtain that ⊢ N : int

holds, therefore N = n since numerals are the only machines in final state typable with int.
(iv) The three cases from Figure 3 where a machine can raise an error are ruled out by the typing rules

(pred), (succ) and (test), respectively. Therefore, no error can be raised during the execution. ✷

4 Translation and Simulation

We define a type-preserving translation from EPCF terms to extended addressing machines. More precisely,
we show that if Γ ⊢E M : α is derivable then M is transformed into a machine M which is typable with
the same α. By Proposition 3.5, M never raises a runtime error and well–typedness is preserved during its
execution. We then show that if a well-typed EPCF program M computes a value n, then its translation

Intrigila, Manzonetto, Münnich 8–13

M reduces to the corresponding EAM n. Finally, this result is transported to PCF using their equivalence
on programs of type int.

We start by showing that EAMs implementing the main PCF instructions are definable. We do not
need any machinery for representing explicit substitutions because they are naturally modelled by the
evaluation strategy of EAMs.

Lemma 4.1 Let n ≥ 0. There are EAMs satisfying (for all a, b, c, d1, . . . , dn ∈ A):

(i) Prni @ [d1, . . . , dn] ։c di, for 1 ≤ i ≤ n;

(ii) Applyn@ [a, b, d1, . . . , dn] ։c #
−1(a)@ [d1, . . . , dn, b · d1 · · · dn] ;

(iii) Predn@ [a, d1, . . . , dn] ։c 〈R0 = a · d1 · · · dn, ~R, ; 0 � Pred(0); Call 0, []〉;

(iv) Succn@ [a, d1, . . . , dn] ։c 〈R0 = a · d1 · · · dn, ~R, ; 0 � Succ(0); Call 0, []〉;

(v) Ifzn@ [a, b, c, d1, . . . , dn] ։c 〈R0 = a · ~d,R1 = b · ~d,R2 = c · ~d, ~R, 0 � Test(0, 1, 2); Call 0, []〉.

Proof. Easy. As an example, we give a possible definition of the predecessor:

Predn = 〈R0, . . . , Rn, Load (0, . . . , n); 0 � App(0, 1); · · · ; 0 � App(0, n); 0 � Pred(0); Call 0, []〉

The others are similar. ✷

Lemma 4.2 The EAMs in the previous lemma can be defined in order to ensure their typability (for all
n ≥ 0, α, β, γ, δi ∈ T):

(i) ⊢ Prni : ~δ → δi, with ~δ = δ1 → · · · → δn;

(ii) ⊢ Applyn : (~δ → β → α)→ (~δ → β)→ ~δ → α;

(iii) ⊢ Predn : (~δ → int)→ ~δ → int;

(iv) ⊢ Succn : (~δ → int)→ ~δ → int;

(v) ⊢ Ifzn : (~δ → int)→ (~δ → α)→ (~δ → α)→ ~δ → α;

Proof. The naive implementations are, in fact, typable. ✷

We will show that, using the auxiliary EAMs given in Lemma 4.2, we can translate any EPCF term
into an EAM. In order to proceed by induction, we first need to define the size of an EPCF term.

Definition 4.3 Let M be an EPCF term and σ be an explicit substitution. The sizes |−| of σ, M and
(σ,M) are defined by mutual induction, e.g.

|[]| = 0, |(σ,M)| = |σ|+ |M |,

|ρ+ [x← (ρ′, N)]| = |ρ|+ |(ρ′, N)|, |λx.M〈σ〉| = |(σ,M)|+ 1,

and the other cases of |M | are standard whence they are omitted.

Intuitively, an EPCF term M having x1, . . . , xn as free variables is translated as an EAM M loading n
arguments as input.

Definition 4.4 (Translation) Let M be an EPCF term and σ be an explicit substitution such that
FV(M) ⊆ dom(σ) ∪ {~x}, where ~x = x1, . . . , xn. The translation of the pair (σ,M) (w.r.t ~x) is a ma-
chine denoted Lσ,MM~x ∈ MA, or simply JMK~x when σ is empty. 7 The machine Lσ,MM~x is defined by

7 In other words, we set JMK~x = L[],MM~x.

8–14 Exxtended Addresing Machines for PCF,...

induction on |(σ,M)| as follows:

Lσ + [y ← (τ,N)],MM~x = Lσ,MMy,~x @ [#Lτ,NM] ;

JxiK
~x = Prni ,

Jλy.M〈σ〉K~x = Lσ,MM~x,y, where wlog y /∈ ~x;

JM ·NK~x = Applyn@ [#JMK~x,#JNK~x] ;

JkK~x = Prn+1
1 @ [k] , where k ∈ N;

JpredMK~x = Predn@ [#JMK~x] ;

JsuccMK~x = Succn @ [#JMK~x] ;

Jifz(L,M,N)K~x = Ifzn@ [#JLK~x,#JMK~x,#JNK~x] ;

JfixMK~x = Yn@ [#JMK~x] .

We show the extended abstract machines associated by this translation to some of our running examples.

Example 4.5 1. J(λx.succ (x)〈〉) · 0K = Succ1 @ [#Pr11, 0] .

2. J(λsn.s(sn))(λx.succ (x))K = Apply2 @ [#Pr21,#(Apply2 @ [#Pr21,#Pr22]),#(Succ1 @ [#Pr11])] .

3. JaddK = Y0@#Jλfxy.ifz(y, x, (f · (succ x) · (pred y)))K

= Y0@#Jifz(y, x, (f · (succ x) · (pred y)))Kf,x,y ,

= Y0@#(Ifz3@ [#Pr33,#Pr32,#Jf · (succx) · (pred y)Kf,x,y]),

where Jf ·(succ x)·(pred y)Kf,x,y = Apply3 @ [#(Apply3@ [#Pr31,#(Succ3@ [#Pr32])]),#(Pred3 @ [#Pr33])] .

Theorem 4.6 Let M be an EPCF term, α ∈ T, Γ = x1 : β1, . . . , xn : βn. Then

Γ ⊢E M : α ⇒ ⊢ JMKx1,...,xn : β1 → · · · → βn → α.

Proof. By induction on a derivation of Γ ⊢E M : α. As an induction loading, one needs to prove
simultaneously that for all explicit substitutions σ with dom(σ) = {x1, . . . , xn}, if σ |= x1 : β1, . . . , xn : βn
then ⊢ Lσ(xi)M : βi, for all i ≤ n. ✷

Theorem 4.7 Let M be an EPCF term and V ∈ Val. Then

σ ⊲M ⇓d V ⇒ Lσ,MM ↔c JV K

Proof. By induction on a derivation of σ ⊲ M ⇓d V . ✷

Corollary 4.8 For an EPCF program M of type ⊢E M : int we have

[] ⊲ M ⇓d n⇒ JMK ։c n

Proof. Assume that [] ⊲ M ⇓d n. By Theorem 4.7, we have L[],MM ↔c JnK. Since JnK ։c n and the
numeral machine n is in final state we conclude JMK ։c n. ✷

4.1 Applying the translation to regular PCF

Let us show how to apply our machinery to the usual (call-by-name) PCF. Our presentation follows [22].

Intrigila, Manzonetto, Münnich 8–15

U ∈ Val
U ⇓ U

(val)
P ⇓ 0

predP ⇓ 0
(pr0)

P ⇓ n+ 1

predP ⇓ n
(pr)

P ⇓ 0 Q ⇓ U1

ifz(P,Q,Q′) ⇓ U1
(ifz0)

P ⇓ n+ 1 Q′ ⇓ U2

ifz(P,Q,Q′) ⇓ U2
(ifz>0)

P ⇓ n

succP ⇓ n+ 1
(sc)

P · (fixP) ⇓ U

fixP ⇓ U
(fix)

P ⇓ λx.P ′ P ′[Q/x] ⇓ U

P ·Q ⇓ U
(βv)

Fig. 5. The big-step operational semantics of PCF.

Γ, x : α ⊢ x : α

Γ, x : α ⊢ P : β

Γ ⊢ λx.P : α→ β Γ ⊢ 0 : int

Γ ⊢ P : α→ β Γ ⊢ Q : α

Γ ⊢ PQ : β

Γ ⊢ P : int
Γ ⊢ pred P : int.

Γ ⊢ P : α→ α
Γ ⊢ fixP : α

Γ ⊢ P : int
Γ ⊢ succ P : int.

Γ ⊢ P : int Γ ⊢ Q : α Γ ⊢ Q′ : α

Γ ⊢ ifz(P,Q,Q′) : α

Fig. 6. The type inference rules of PCF.

Definition 4.9 (i) PCF terms are defined by the grammar (for n ≥ 0, x ∈ Var):

P,Q,Q′ ::= x | P ·Q | λx.P | 0 | predP | succP | ifz(P,Q,Q′) | fixP

(ii) A closed PCF term P is called a PCF program.

(iii) A PCF value U is a term of the form λx.P or n, for some n ≥ 0.

(iv) Given a PCF term P and a value U , we write P ⇓ U if this judgement can be obtained by applying
the rules from Figure 5.

(v) The set T of simple types and typing contexts have already been defined in items (i) and (ii) of
Definition 1.6, respectively.

(vi) Given a PCF term P , a typing context Γ and α ∈ T, we write Γ ⊢PCF P : α if this typing judgement
is derivable from the rules of Figure 6.

Recall that any PCF program P can be seen as an EPCF term, thanks to the notation λx.N := λx.N〈〉.
However, the hypotheses ⊢PCF P : int and P ⇓ n are a priori not sufficient for applying Corollary 4.8,
since one needs to show that also the corresponding EPCF judgments ⊢E P : int and P ⇓d n hold. The
former is established by the following lemma.

Lemma 4.10 Let M be a PCF term, α ∈ T and Γ be a context. Then

Γ ⊢PCF M : α ⇒ Γ ⊢E M : α

Proof. By a straightforward induction on a derivation of Γ ⊢PCF M . ✷

An EPCF term is easily translated into PCF by performing all its explicit substitutions. The converse
is trickier as the representation is not unique: for every PCF term P there are several decompositions
P = P ′[Q1/x1, . . . , Qn/xn]. Recall that the size |(σ,M)| has been defined in Definition 4.3.

Definition 4.11 Let M be an EPCF term and σ be an explicit substitution. Define a PCF term (σ,M)∗

8–16 Exxtended Addresing Machines for PCF,...

by induction on |(σ,M)| as follows:

(σ, x)∗ =

{

σ(x)∗, if x ∈ dom(σ),

x, otherwise,

(σ, λx.M〈ρ〉)∗ = λx.(σ + ρ,M)∗,

(σ,M ·N)∗ = (σ,M)∗ · (σ,N)∗,

(σ,fixM)∗ = fix ((σ,M)∗),

(σ, 0)∗ = 0,

(σ,predM)∗ = pred (σ,M)∗,

(σ, succM)∗ = succ (σ,M)∗,

(σ, ifz(L,M,N))∗ = ifz((σ,L)∗, (σ,M)∗, (σ,N)∗).

For a PCF term P , define P † = {(σ,M) | (σ,M)∗ = P}.

To show the equivalence between PCF and EPCF, we need yet another auxiliary lemma.

Lemma 4.12 (Substitution Lemma)

(i) Let M,N be EPCF terms, σ, ρ be explicit substitutions and x be a variable.

(σ + [x← (ρ,N)],M)∗ = (σ,M)∗[(ρ,N)∗/x]

(ii) Let P,Q be PCF terms with FV(P) ⊆ {x} and Q closed. For all EPCF terms M,N and explicit
substitutions σ, ρ, we have:

(σ,M) ∈ P † ∧ (ρ,N) ∈ Q† ⇒ (σ + [x← (ρ,N)],M) ∈ (P [Q/x])†

We rely on the freshness hypothesis on the variables in dom(σ).

Proof. (i) By structural induction on M .

Case M = y, with y 6= x: There are two subcases.
• If y ∈ dom(σ), then (σ + [x ← (ρ,N)], y)∗ = σ(y) = σ(y)[(ρ,N)∗/x] = (σ, y)∗[(ρ,N)∗/x], since
x /∈ FV(σ(y));

• if y /∈ dom(σ), then (σ + [x← (ρ,N)], y)∗ = y = y[(ρ,N)∗/x] = (σ, y)∗[(ρ,N)∗/x].

Case M = x: Then (σ + [x← (ρ,N)], x)∗ = (ρ,N)∗ = x[(ρ,N)∗/x] = (σ, x)∗[(ρ,N)∗/x].

Case M = λy.M ′: Wlog, we may assume y 6= x. We have (σ + [x ← (ρ,N)], λy.M ′)∗ = λy.(σ + [x ←
(ρ,N)],M ′)∗ = λy.((σ,M ′)∗[(ρ,N)∗/x]) = (λy.(σ,M ′)∗)[(ρ,N)∗/x] = ((σ, λy.M ′)∗)[(ρ,N)∗/x].

All other cases derive straightforwardly from the IH.
(ii) By an easy induction on P , using (i). ✷

Theorem 4.13 The big-step weak reduction of EPCF is equivalent to the usual big-step operational se-
mantics of PCF. Formally:

(i) Given an EPCF program M , a value V and an explicit substitution σ, we have:

σ ⊲ M ⇓d V ⇒ (σ,M)∗ ⇓ ([], V)∗

(ii) Given a PCF program P and PCF value U . If P ⇓ U then

∀(σ,M) ∈ P †, ∃V ∈ Val . (σ ⊲ M ⇓d V and ([], V) ∈ U †)

Intrigila, Manzonetto, Münnich 8–17

Proof. (Proof sketch) For the full proof, we refer to the technical Appendix A.
(i) Proceed by induction on a derivation of σ ⊲M ⇓d V , using Lemma 4.12(i) in the (βv)-case.
(ii) By induction on the lexicographically ordered pairs, whose first component is the length of a deriva-

tion of P ⇓ U and second component is |(σ,M)|, using Lemma 4.12(ii) in the (βv)-case. ✷

As promised, we now draw conclusions for the regular PCF. As customary in PCF, we are interested
on the properties of closed terms having ground type.

Theorem 4.14 For a PCF program P of type int, P ⇓ n entails JP K ։c n.

Proof. Note that P is also an EPCF term such that ([], P) ∈ P †, and that ⊢E P : int by Lemma 4.10.
Thus [] ⊲ P ⇓d n by Theorem 4.13(ii). Conclude by Corollary 4.8. ✷

References

[1] Abadi, M., L. Cardelli, P.-L. Curien and J.-J. Lévy, Explicit substitutions, in: F. E. Allen, editor, Conference Record of
the Seventeenth Annual ACM Symposium on Principles of Programming Languages, San Francisco, California, USA,
January 1990, pages 31–46, ACM Press (1990).
https://doi.org/10.1145/96709.96712

[2] Abadi, M., L. Cardelli, P.-L. Curien and J.-J. Lévy, Explicit substitutions, J. Funct. Program. 1, pages 375–416 (1991).
https://doi.org/10.1017/S0956796800000186

[3] Abramsky, S., R. Jagadeesan and P. Malacaria, Full abstraction for PCF, Inf. Comput. 163, pages 409–470 (2000).
https://doi.org/10.1006/inco.2000.2930

[4] Abramsky, S., P. Malacaria and R. Jagadeesan, Full abstraction for PCF, in: M. Hagiya and J. C. Mitchell, editors,
Theoretical Aspects of Computer Software, International Conference TACS ’94, Sendai, Japan, April 19-22, 1994,
Proceedings, volume 789 of Lecture Notes in Computer Science, pages 1–15, Springer (1994).
https://doi.org/10.1007/3-540-57887-0_87

[5] Berry, G., P.-L. Curien and J.-J. Lévy, Full abstraction for sequential languages: state of the art, in: M. Nivat and
J. Reynolds, editors, Algebraic methods in semantics, pages 89–132, Cambridge University Press (1985).
Available online at https://hal.inria.fr/inria-00076361/document.

[6] Cregut, P., Machines a environnement pour la reduction symbolique et l’evaluation partielle, Ph.D. thesis, Université
Paris-Diderot (Paris VII) (1991). In French.
http://www.theses.fr/1991PA077152

[7] Curien, P., Definability and full abstraction, Electron. Notes Theor. Comput. Sci. 172, pages 301–310 (2007).
https://doi.org/10.1016/j.entcs.2007.02.011

[8] Curien, P.-L., Observable algorithms on concrete data structures, in: Proceedings of the Seventh Annual Symposium on
Logic in Computer Science (LICS ’92), Santa Cruz, California, USA, June 22-25, 1992, pages 432–443, IEEE Computer
Society (1992).
https://doi.org/10.1109/LICS.1992.185554

[9] Curien, P.-L., T. Hardin and J.-J. Lévy, Confluence properties of weak and strong calculi of explicit substitutions, J. ACM
43, pages 362–397 (1996).
https://doi.org/10.1145/226643.226675

[10] Della Penna, G., Una semantica operazionale per il network computing: le macchine di Turing virtuali, Master’s thesis,
Università degli Studi di L’Aquila (1996-97). In Italian.

[11] Della Penna, G., B. Intrigila and G. Manzonetto, Addressing machines as models of lambda-calculus, Log. Methods
Comput. Sci. 18 (2022).
https://doi.org/10.48550/arXiv.2107.00319

[12] Fairbairn, J. and S. Wray, Tim: A simple, lazy abstract machine to execute supercombinators, in: G. Kahn, editor,
Functional Programming Languages and Computer Architecture, pages 34–45, Springer Berlin Heidelberg, Berlin,
Heidelberg (1987), ISBN 978-3-540-47879-9.
https://doi.org/10.1007/3-540-18317-5_3

https://doi.org/10.1145/96709.96712
https://doi.org/10.1017/S0956796800000186
https://doi.org/10.1006/inco.2000.2930
https://doi.org/10.1007/3-540-57887-0_87
https://hal.inria.fr/inria-00076361/document
http://www.theses.fr/1991PA077152
https://doi.org/10.1016/j.entcs.2007.02.011
https://doi.org/10.1109/LICS.1992.185554
https://doi.org/10.1145/226643.226675
https://doi.org/10.48550/arXiv.2107.00319
https://doi.org/10.1007/3-540-18317-5_3

8–18 Exxtended Addresing Machines for PCF,...

[13] Hyland, J. M. E. and C. L. Ong, On full abstraction for PCF: I, II, and III, Inf. Comput. 163, pages 285–408 (2000).
https://doi.org/10.1006/inco.2000.2917

[14] Intrigila, B., G. Manzonetto and N. Münnich, Extended addressing machines a comparative view (2022).
https://lipn.univ-paris13.fr/~gmanzonetto/papers/NotesIMM22

[15] Krivine, J.-L., A call-by-name lambda-calculus machine, Higher Order Symbol. Comput. 20, page 199–207 (2007), ISSN
1388-3690.
https://doi.org/10.1007/s10990-007-9018-9

[16] Landin, P. J., The Mechanical Evaluation of Expressions, The Computer Journal 6, pages 308–320 (1964), ISSN 0010-
4620. https://academic.oup.com/comjnl/article-pdf/6/4/308/1067901/6-4-308.pdf.
https://doi.org/10.1093/comjnl/6.4.308

[17] Lang, F., Explaining the lazy Krivine machine using explicit substitution and addresses, Higher-Order and Symbolic
Computation (2007).
https://hal.inria.fr/inria-00198756

[18] Leroy, X., The ZINC experiment: an economical implementation of the ML language, Technical report 117, INRIA (1990).

[19] Lévy, J.-J. and L. Maranget, Explicit substitutions and programming languages, in: C. P. Rangan, V. Raman and
R. Ramanujam, editors, Foundations of Software Technology and Theoretical Computer Science, 19th Conference,
Chennai, India, December 13-15, 1999, Proceedings, volume 1738 of Lecture Notes in Computer Science, pages 181–
200, Springer (1999).
https://doi.org/10.1007/3-540-46691-6_14

[20] Longley, J., Realizability toposes and language semantics, Ph.D. thesis, University of Edinburgh (1995).
https://www.lfcs.inf.ed.ac.uk/reports/95/ECS-LFCS-95-332/

[21] Milner, R., Fully abstract models of typed λ-calculi, Theor. Comput. Sci. 4, pages 1–22 (1977).
https://doi.org/10.1016/0304-3975(77)90053-6

[22] Ong, C.-H. L., Correspondence between operational and denotational semantics of PCF, in: S. Abramsky, D. Gabbay and
T. S. E. Maibaum, editors, Semantic Modelling, volume 4 of Handbook of Logic in Computer Science, pages 269–356,
Oxford University Press (1995).

[23] Plotkin, G. D., LCF considered as a programming language, Theor. Comput. Sci. 5, pages 223–255 (1977).
https://doi.org/10.1016/0304-3975(77)90044-5

[24] Seaman, J. and S. P. Iyer, An operational semantics of sharing in lazy evaluation, Sci. Comput. Program. 27, pages
289–322 (1996).
https://doi.org/10.1016/0167-6423(96)00012-3

A Technical Appendix

This technical appendix is devoted to provide the proofs that have been partially given, or completely
omitted, in the body of the paper. As an abbreviation, we write IH for “induction hypothesis”.

A.1 Proofs of Section 1

Proof. [Proof of Lemma 1.8] Items (i) and (ii) are straightforward. We prove (iii).
Given an EPCF term M , an EPCF value V , an explicit substitution σ, a type α, and a context Γ such

that σ ⊲ M ⇓d V, σ |= Γ,Γ ⊢M : α, we prove by induction on a derivation of σ ⊲ M ⇓d V that ⊢ V : α.

Case (nat): In this case M = V = n, for n ∈ N, and α = int. By the typing rules of EPCF, ⊢ n : int.

Case (fun): In this case M = λx.M ′〈ρ〉, V = λx.M ′〈σ + ρ〉, α = β → γ. As Γ ⊢ λx.M ′〈ρ〉 : β → γ, ∃!∆
such that ρ |= ∆,Γ,∆, x : β ⊢M ′ : γ. As σ |= Γ and ρ |= ∆, σ + ρ |= Γ,∆. Thus by the typing rules
of EPCF, ⊢ λx.M ′〈σ + ρ〉 : β → γ.

Case (var): In this case M = x, σ(x) = (ρ,N),Γ = Γ′, x : α. By the operational semantics of EPCF,
ρ ⊲ N ⇓d V , and by the type system of EPCF as σ |= Γ′, x : α, [x ← (ρ,N)] |= x : α and thus
ρ |= ∆,∆ ⊢ N : α. By IH, ⊢ V : α.

https://doi.org/10.1006/inco.2000.2917
https://lipn.univ-paris13.fr/~gmanzonetto/papers/NotesIMM22
https://doi.org/10.1007/s10990-007-9018-9
https://academic.oup.com/comjnl/article-pdf/6/4/308/1067901/6-4-308.pdf
https://doi.org/10.1093/comjnl/6.4.308
https://hal.inria.fr/inria-00198756
https://doi.org/10.1007/3-540-46691-6_14
https://www.lfcs.inf.ed.ac.uk/reports/95/ECS-LFCS-95-332/
https://doi.org/10.1016/0304-3975(77)90053-6
https://doi.org/10.1016/0304-3975(77)90044-5
https://doi.org/10.1016/0167-6423(96)00012-3

Intrigila, Manzonetto, Münnich 8–19

Case (βv): In this case M = N · L. By the operational semantics of EPCF, σ ⊲ N ⇓d λx.N ′〈ρ〉 and
ρ + [x ← (σ,L)] ⊲ N ′ ⇓d V . By the type system of EPCF, Γ ⊢ N : β → α, Γ ⊢ L : β. By IH,
⊢ λx.N ′〈ρ〉 : β → α, and then by the type system of EPCF ρ |= ∆,∆, x : β ⊢ N ′ : α. By the type
system we also have [x← (σ,L)] |= x : β, so ρ+ [x← (σ,L)] |= ∆, x : β, and thus by IH we conclude
⊢ V : α.

All other cases derive straightforwardly from applying the rules of the type system and the IH. ✷

A.2 Proofs of Section 4

Proof. [Proof of Theorem 4.6] We prove the following statements by mutual induction and call the
respective inductive hypotheses IH1 and IH2.

(i) Let M be an EPCF term, Γ = x1 : β1, . . . , xn : βn and α ∈ T. Then Γ ⊢ M : α ⇒ ⊢ JMKx1,...,xn :
β1 → · · · → βn → α.

(ii) For all Γ = x1 : β1, . . . , xn : βn and σ, with dom(σ) = {x1, . . . , xn}, we have σ |= Γ ⇒ ⊢ Lσ(x1)M :
β1, . . . ,⊢ Lσ(xn)M : βn.

We start with the cases concerning (i).

Case (ax): Then, x1 : β1, . . . , xn : βn ⊢ xi : βi, and JxiK
x1,...,xn = Prni . By Lemma 4.2(i) we conclude

⊢ Prni : β1 → · · · → βn → βi.

Case (0): In this case, we have Γ ⊢ 0 : int and J0Kx1,...,xn = Prn+1
1 @ [0] . By Lemma 4.2(i) ⊢ Prn+1

1 @ :

int → β1 → · · · → βn → int and, by Figure 4 ⊢ #−1(0) : int. By Proposition 3.5(i), ⊢ Prn+1
1 @ [0] :

β1 → · · · → βn → int.

Case (Y): In this case Γ ⊢ fixM ′ : α and JfixM ′K~x = Yn@ [#JM ′K~x] . By (fixn) in Figure 4, we have

⊢ Yn : (~β → α→ α)→ ~β → α. From the hypothesis IH1, we obtain ⊢ JM ′Kx1,...,xn : ~β → α→ α. By
Proposition 3.5(i), we conclude that ⊢ Yn@ [#JM ′Kx1,...,xn] : β1 → · · · → βn → α.

Case (+): In this case Γ ⊢ succM ′ : int since Γ ⊢ M ′ : int. By definition, JsuccM ′Kx1,...,xn =

Succn@ [#JM ′Kx1,...,xn] . By Lemma 4.2(iv), ⊢ Succn : (~β → int) → ~β → int. From IH1, we get

⊢ JM ′Kx1,...,xn : ~β → int, and thus by Proposition 3.5(i), we conclude ⊢ Succn@ [#JM ′Kx1,...,xn] : ~β →
int.

Case (−): Analogous, applying Lemma 4.2(iv).

Case (ifz): Assume Γ ⊢ ifz(L,N1, N2) : α since Γ ⊢ L : int and Γ ⊢ Ni : α, for i ∈ {1, 2}. By defi-
nition of the translation, we have Jifz(L,N2, N2)K

~x = Ifzn@ [#JLK~x,#JN1K
~x,#JN2K

~x] . By applying

Lemma 4.2(v), we obtain ⊢ Ifzn : (~β → int) → (~β → α) → (~β → α) → ~β → α. By the hypothesis

IH1, we get ⊢ JLK~x : ~β → int and ⊢ JNiK
~x : ~β → α for i ∈ {1, 2}, and thus by Proposition 3.5(i), we

conclude ⊢ Ifzn@ [#JLK~x,#JN1K
~x,#JN2K

~x] : ~β → α.

Case (→I): Assume that Γ ⊢ λz.M ′〈σ〉 : α1 → α2, for α = α1 → α2, because there is ∆ =
y1 : δ1, . . . , ym : δm such that σ |= ∆ and Γ,∆, z : α1 ⊢ M ′ : α2. Then σ |= ∆ en-

tails σ = [y1 ← (ρ1, N1), . . . , ym ← (ρm, Nm)] for appropriate ~ρ, ~N . By definition, we have
Jλz.M ′〈σ〉Kx1,...,xn = Lσ,M ′M~x,z = JM ′Ky1,...,ym,~x,z @ [#Lρ1, N1M, . . . ,#Lρm, NmM] . By applying IH1, we

obtain ⊢ JM ′K~y,~x,z : ~δ → ~β → α1 → α2. From IH2, we get ⊢ Lσ1, N1M : δ1 · · · ⊢ Lσm, NmM : δm. Finally,

by Proposition 3.5(i), we derive ⊢ JM ′K~y,~x,z @ [#Lσ1, N1M, . . . ,#Lσm, NmM] : ~β → α1 → α2.

Case (→E): In this case Γ ⊢ M1 ·M2 : α since, for some δ ∈ T, Γ ⊢ M1 : δ → α and Γ ⊢ M2 : δ. By

definition, JM1 ·M2K
~x = Applyn@ [#JM1K

~x,#JM2K
~x] . By Lemma 4.2(ii), we get ⊢ Applyn : (~β → δ →

α) → (~β → δ) → ~β → α. By IH1, we obtain ⊢ JM1K
~x : ~β → δ → α and ⊢ JM2K

~x : ~β → δ. Conclude,

8–20 Exxtended Addresing Machines for PCF,...

by Proposition 3.5(i), that ⊢ Applyn@ [#JM1K
~x,#JM2K

~x] : ~β → α.

We now consider the cases concerning (ii).

Case (σ0) : In this case [] |= ∅, so we have nothing to prove.

Case (σ): In this case Γ = Γ′, xn : βn and σ = σ′ + [xn ← (ρ,N)] |= Γ′, xn : βn, because σ′ |= Γ′, ρ |= ∆
and ∆ ⊢ N : βn, for some ∆ = y1 : δ1, . . . , ym : δm. By IH2 on σ′ |= Γ′, we get Lσ(xi)M = Lσ′(xi)M : βi,
for all i ∈ {1, . . . , n − 1}. We show L(ρ,N)M : βn. By IH1, we get ⊢ JNKy1,...,ym : δ1 → · · · →
δm → βn. By applying IH2 on ρ |= ∆, we get Lρ(yj)M : δj , for all j ∈ {1, . . . ,m}. Since Lρ,NM =

JNK~y @ [#Lρ(y1)M, . . . ,#Lρ(ym)M] , we conclude ⊢ Lρ,NM : βn, by Proposition 3.5(i).
✷

Proof. [Proof of Theorem 4.7] We prove σ ⊲ M ⇓d V ⇒ Lσ,MM ↔c JV K by induction on a derivation
of σ ⊲ M ⇓d V . We let dom(σ) = {x1, . . . , xn} and sometimes use the convenient notation #Lσ(~x)M =
#Lσ(x1)M, . . . ,#Lσ(xn)M.

Case (nat): Then M = V = k, for some k ≥ 0. Recall that we assume k = #k. Then using Lemma 4.1(i),
Lσ, kM = JkKx1,...,xn @ [#Lσ(~x)M] = Prn+1

1 @ [k,#Lσ(~x)M] ։c #
−1(k)cև Pr11 @ [k] = JkK

Case 2: (fun) We have M = λz.M ′〈ρ〉 and V = λx.M ′〈σ + ρ〉, with dom(σ) ∩ dom(ρ) = ∅. Say,
dom(ρ) = {y1, . . . , ym}. Then

Lσ, λz.M ′〈ρ〉M = Jλz.M ′〈ρ〉Kx1,...,xn @ [#Lσ(~x)M] = Lρ,M ′M~x,z @ [#Lσ(~x)M]

= JM ′K~y,~x,z @ [#Lρ(~y)M,#Lσ(~x)M] = Lσ + ρ,M ′Mz = Jλz.M ′〈σ + ρ〉K

The case follows by reflexivity of ↔c.

Case (var): We have M = xi, σ(xi) = (ρ,N) and ρ ⊲ N ⇓d V . Then, using Lemma 4.1(i), we have
Lσ, xiM = JxiK

x1,...,xn @ [#Lσ(~x)M] = Prni @ [#Lσ(~x)M] ։c Lσ(xi)M = Lρ,NM We conclude since, by IH,
we have Lρ,NM ↔c JV K.

Case (βv): M = M1 ·M2, σ ⊲ M1 ⇓d λz.M ′
1〈ρ〉 and ρ+ [z ← (σ,M2)] ⊲ M

′
1 ⇓d V . Easy calculations give:

Lσ,M1 ·M2M

=JM1 ·M2K
x1,...,xn @ [#Lσ(x1)M, . . . ,#Lσ(xn)M]

=Applyn@ [JM1K
~x,#JM2K

~x,#Lσ(x1)M, . . . ,#Lσ(xn)M]

։cJM1K
~x@ [#Lσ(~x)M,#(JM2K

~x@ [#Lσ(~x)M])] , by Lemma 4.1(ii),

=Lσ,M1M@ [#Lσ,M2M]

By IH on σ ⊲ M1 ⇓d λz.M ′
1〈ρ〉, we have Lσ,M1M ↔c Jλz.M ′

1〈ρ〉K = Lρ,M ′
1M

z. Calling dom(ρ) =
{y1, . . . , ym}, we get

Lσ,M1M @ [#Lσ,M2M] ↔c Lρ,M ′
1M

z @ [#Lσ,M2M] , by def. of ↔c and Lemma 2.11,

= JM ′
1K

y1,...,ym,z @ [#Lρ(~y)M,#Lσ,M2M]

= Lρ+ [z ← (σ,M2)],M
′
1M

By IH conclude Lρ+ [z ← (σ,M2)],M
′
1M ↔c JV K.

Case (pr): M = predM ′, V = n and σ⊲M ′ ⇓d n+ 1, for some n ≥ 0. By IH we get Lσ,M ′M ↔c Jn+ 1K =
#−1(n+1) and, since the (n+1)-th numeral machine is in final state, we derive Lσ,M ′M ։c #

−1(n+1).

Intrigila, Manzonetto, Münnich 8–21

Conclude as follows:

Lσ,predM ′M = JpredM ′Kx1,...,xn @ [#Lσ(x1)M, . . . ,#Lσ(xn)M]

= Predn@ [#JM ′Kx1,...,xn ,#Lσ(x1)M, . . . ,#Lσ(xn)M]

։c 〈R0 = #(JM ′K~x@ [#Lσ(~x)M]), ~R, 0 � Pred(0); Call 0, []〉, by Lemma 4.1(iii),

= 〈R0 = #Lσ,M ′M, ~R, ; 0 � Pred(0); Call 0, []〉

։c 〈R0 = n+ 1, ~R, 0 � Pred(0); Call 0, []〉։c #
−1(n)

Case (pr0): Analogous to the previous case, using the fact that Pred(0) is 0.

Case 7: (sc) M = succM ′, V = n+ 1 and σ ⊲M ′ ⇓d n, for some n ≥ 0. By IH we get Lσ,M ′M ↔c JnK =
#−1(n) and, since the n-th numeral machine is in final state, we derive Lσ,M ′M ։c #

−1(n). Conclude
as follows:

Lσ, succM ′M = JsuccM ′Kx1,...,xn @ [#Lσ(x1)M, . . . ,#Lσ(xn)M]

= Succn@ [#JM ′Kx1,...,xn ,#Lσ(x1)M, . . . ,#Lσ(xn)M]

։c 〈R0 = #(JM ′K~x@ [#Lσ(~x)M]), ~R, 0 � Succ(0); Call 0, []〉, by Lemma 4.1(iii),

= 〈R0 = #Lσ,M ′M, ~R, ; 0 � Succ(0); Call 0, []〉

։c 〈R0 = n, ~R, 0 � Succ(0); Call 0, []〉։c #−1(n+ 1)

Case 8: (ifz>0) M = ifz(L,N1, N2), σ ⊲L ⇓d n+ 1, σ ⊲N2 ⇓d V for some n ≥ 0. By IH we get Lσ,LM ↔c

Jn+ 1K, and since the (n + 1)-th numeral machine is in final state, we derive Lσ,LM ։c #
−1(n + 1).

Then

Lσ, ifz(L,N1, N2)M = Jifz(L,N1, N2)K
x1,...,xn @ [#Lσ(x1)M, . . . ,#Lσ(xn)M]

= Ifzn@ [#JLKx1,...,xn ,#JN1K
x1,...,xn ,#JN2K

x1,...,xn ,#Lσ(x1)M, . . . ,#Lσ(xn)M]

։c

〈

R0 = #Lσ,LM, R1 = #Lσ,N1M, R2 = #Lσ,N2M, ~R, 0 � Test(0, 1, 2); Call 0, []
〉

,

by Lemma 4.1(v),

։c

〈

R0 = n+ 1, R1 = #Lσ,N1M, R2 = #Lσ,N2M, ~R, 0 � Test(0, 1, 2); Call 0, []
〉

։c Lσ,N2M

We conclude since, by IH, Lσ,N2M ↔c JV K.

Case 9: (ifz0) M = ifz(L,N1, N2), σ ⊲ L ⇓d 0, σ ⊲ N1 ⇓d V . By IH we get Lσ,LM ↔c J0K, and since the
(n+ 1)-th numeral machine is in final state, we derive Lσ,LM ։c #

−1(0). Then

Lσ, ifz(L,N1, N2)M = Jifz(L,N1, N2)K
x1,...,xn @ [#Lσ(x1)M, . . . ,#Lσ(xn)M]

= Ifzn@ [#JLKx1,...,xn ,#JN1K
x1,...,xn ,#JN2K

x1,...,xn ,#Lσ(x1)M, . . . ,#Lσ(xn)M]

։c

〈

R0 = #Lσ,LM, R1 = #Lσ,N1M, R2 = #Lσ,N2M, ~R, 0 � Test(0, 1, 2); Call 0, []
〉

,

by Lemma 4.1(v),

։c

〈

R0 = 0, R1 = #Lσ,N1M, R2 = #Lσ,N2M, ~R, 0 � Test(0, 1, 2); Call 0, []
〉

։c Lσ,N1M

We conclude since, by IH, Lσ,N1M ↔c JV K.

8–22 Exxtended Addresing Machines for PCF,...

Case (fix): Then M = fixM ′ and σ ⊲ M ′ · (fixM ′). Then

Lσ,fixM ′M = JfixM ′Kx1,...,xn @ [#Lσ(x1)M, . . . ,#Lσ(xn)M]

= Yn@ [#JM ′Kx1,...,xn ,#Lσ(x1)M, . . . ,#Lσ(xn)M]

։c JM ′K~x@ [#Lσ(~x)M,#(Yn @ [#JM ′K~x,#Lσ(~x)M])]

= JM ′K~x@ [#Lσ(~x)M,#(JfixM ′K~x@ [#Lσ(~x)M])] , by Lemma 4.1(ii),

cև Applyn@ [#JM ′K~x,#JfixM ′K~x,#Lσ(x1)M, . . . ,#Lσ(xn)M]

= JM ′ · (fixM ′)Kx1,...,xn @ [#Lσ(x1)M, . . . ,#Lσ(xn)M]

= Lσ,M ′ · (fixM ′M.

This concludes the proof. ✷

Proof. [Proof of Theorem 4.13(i)] For an EPCF term M , an EPCF value V and an explicit substitution
σ, we show σ ⊲ M ⇓d V ⇒ (σ,M)∗ ⇓ ([], V)∗ by induction on a derivation of σ ⊲ M ⇓d V .

Case (nat): In this case M = V = n for some n ≥ 0. By definition, (σ, n)∗ = n, so we apply PCF’s rule
(val) and get n ⇓ n.

Case (fun): We have M = λx.M ′〈σ′〉 and V = λx.M ′〈σ + σ′〉.
As (σ, λx.M ′〈σ′〉)∗ = ([], λx.M ′〈σ + σ′〉)∗ = λx.(σ + σ′,M ′)∗ and the latter is a PCF value, we can
apply PCF’s rule (val) to conclude (σ, λx.M ′〈σ′〉)∗ ⇓ ([], λx.M ′〈σ + σ′〉)∗.

Case (var): In this case M = x, σ(x) = (ρ,N) and ρ ⊲ N ⇓d V . By IH (ρ,N)∗ ⇓ ([], V)∗. We conclude
since (σ,M)∗ = (ρ,N)∗.

Case (βv): In this case M = M1 ·M2 with σ ⊲ M1 ⇓d λx.M ′
1〈ρ〉, wlog x /∈ dom(ρ + σ), and ρ + [x ←

(σ,M2)]⊲M
′
1 ⇓d V . By IH we obtain (σ,M1)

∗ ⇓ ([], λx.M ′
1〈ρ〉)

∗ and (ρ+[x← (σ,M2)],M
′
1)

∗ ⇓ ([], V)∗.
By Lemma 4.12(i) (ρ + [x ← (σ,M2)],M

′
1)

∗ = (ρ,M ′
1)

∗[(σ,M2)
∗/x]. By definition, ([], λx.M ′

1〈ρ〉)
∗ =

λx.(ρ,M ′
1)

∗ and (σ,M1)
∗ · (σ,M2)

∗ = (σ,M1 ·M2)
∗. Thus

(σ,M1)
∗ ⇓ λx.(σ′,M ′

1)
∗ (σ′,M ′

1)
∗[(σ,M2)

∗/x] ⇓ ([], V)∗

(σ,M1 ·M2)
∗ ⇓ ([], V)∗

(βv)

Case (fix): In this case M = fixN and σ⊲N ·(fixN) ⇓d V . From the IH we get (σ,N ·(fixN))∗ ⇓ ([], V)∗.
By definition, we have (σ,N · (fixN))∗ = (σ,N)∗ · (fix (σ,N)∗) and fix (σ,N)∗ = (σ,fixN)∗. By
applying PCF’s rule (fix), we obtain

(σ,N · (fixN))∗ ⇓ ([], V)∗

(σ,fixN)∗ ⇓ ([], V)∗
(fix)

All other cases derive straightforwardly from the IH. ✷

Proof. [Proof of Theorem 4.13(ii)] For a PCF program P and PCF value U , we show that P ⇓ U entails:

∀(σ,M) ∈ P †, ∃V ∈ Val . (σ ⊲M ⇓d V and ([], V) ∈ U †)

By induction on the lexicographically ordered pairs, whose first component is the length of a derivation of
P ⇓ U and second component is |(σ,M)|.

First, consider the case M = y and σ(y) = (ρ,N), with (ρ,N) ∈ P †. In this case, the length of the
derivation (ρ,N)∗ ⇓ U remained unchanged, while |(ρ,N)| < |(σ,M)|. Thus, we may use the IH and
conclude by applying (var). Therefore, in the following we assume that M is not a variable.

Intrigila, Manzonetto, Münnich 8–23

Case (val): In this case P = U . Given (σ,M) ∈ P †, we distinguish several cases:
• Case P = U = λx.P0. Then, M = λx.M0〈ρ〉 with P0 = (σ + ρ,M0)

∗. Setting V = λx.M0〈σ + ρ〉
we obtain M ⇓d V by (fun) with ([], V)∗ = λx.(σ + ρ,M0) = λx.P0 = U.

• P = U = 0. It follows M = V = 0 and σ ⊲ 0 ⇓d 0 by (nat).
• P = U = succ (n), for some n ∈ N, and M is not a variable.

There are two possibilities:
· M = succ (n) in which case we are done, since σ ⊲ n+ 1 ⇓d n+ 1.
· M = succ (y) with σ(y) = (ρ,N) and (ρ,N) ∈ n†. Again, the length of the derivation (ρ,N)∗ ⇓ n
is unchanged, while |(ρ,N)| < |(σ,M)|. Once applied the IH, we conclude by (var) + (sc).

Case (βv): P = P1 ·P2 with P1 ⇓ λx.Q1 and Q1[P2/x] ⇓ U for some Q1. Notice that, since P is closed so

are P1, P2 and hence FV(Q1) ⊆ {x}. Now, (σ,M)∗ = P entails M = M1 ·M2 with (σ,M1) ∈ P †
1 and

(σ,M2) ∈ P †
2 . By ind. hyp., there is V ′ ∈ Val such that σ ⊲ M1 ⇓d V1 with ([], V1) ∈ (λx.Q1)

†. This

implies V1 = λx.N1〈ρ〉 for some (ρ,N1) ∈ Q†
1. By Lemma 4.12(ii), we get (ρ + [x ← (σ,M2)], N1) ∈

(Q1[P2/x])
†. By ind. hyp., there is V ∈ Val such that ρ + [x ← (σ,M2)] ⊲ N1 ⇓d V and V ∈ U †.

Conclude by EPCF’s (βv).

Case (fix): P = fixQ and Q · (fixQ) ⇓ V . Then (σ,M) ∈ P † entails M = fixN with (σ,N) ∈ Q†. It
follows that (σ,N · (fixN)) ∈ (Q · (fixQ))†, therefore by IH we get σ ⊲ N · (fixN) ⇓d V for some
V ∈ U †. We conclude by applying EPCF’s rule (fix).

All other cases derive straightforwardly from the IH. ✷

	1 Preliminaries
	2 Extended Addressing Machines
	2.1 Main definitions
	2.2 Operational semantics

	3 Typing Algorithm
	4 Translation and Simulation
	4.1 Applying the translation to regular PCF

	References
	A Technical Appendix
	A.1 Proofs of Section 1
	A.2 Proofs of Section 4

