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Abstract

A sufficient statistic is a deterministic function that captures an essential property of a probabilistic function (channel, kernel).
Being a sufficient statistic can be expressed nicely in terms of string diagrams, as Tobias Fritz showed recently, in adjoint
form. This reformulation highlights the role of split idempotents, in the Fisher-Neyman factorisation theorem. Examples
of a sufficient statistic occur in the literature, but mostly in continuous probability. This paper demonstrates that there
are also several fundamental examples of a sufficient statistic in discrete probability. They emerge after some combinatorial
groundwork that reveals the relevant dagger split idempotents and shows that a sufficient statistic is a deterministic dagger
epi.
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1 Introduction

The notion of a sufficient statistic plays an important role in statistics, but a precise definition is hard to
find. Informally, it involves a function s : X → Y that expresses a characteristic property about certain
parameterised probability distributions p(θ) on X. The statistic provides enough information such that
this distribution can be reconstructed from the push-forward of p(θ) along s. The original formulation has
been introduced and studied in the 1920s by Ronald Fisher, see [10].

A precise formulation has been given recently by Tobias Fritz as part of his efforts to express basic
concepts and results from probability theory and statistics categorically, see [11] and also [12,13]. This
approach uses Markov categories, which are symmetric monoidal categories, with a final object as tensor
unit, and with copiers (studied as ‘CD-categories’ in [5]). String diagrams provide a powerful and intuitive
language for these Markov categories.

Within this setting, the notion of sufficient statistic is formalised as an equation of string diagrams,
see [11, Defn. 14.3]. It can be read as a (symmetric) adjoint property, more in the style of adjoint matrices
then adjoint functors. One of the highlights in [11, Thm. 14.5] is an abstract formalisation (and proof) of
the Fisher-Neyman factorisation theorem (see also e.g. [2, Prop 4.10] or [31, §3.3]). It gives a necessary
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and sufficient condition for the existence of a sufficient statistic, in terms of a split idempotent. Thus, [11]
provides a great clarification of what a sufficient statistic is all about, via abstraction. But it does not
really deal with examples of sufficient statistics.

The existing descriptions of sufficient statistics in the literature have several disadvantages.

• The examples are mostly in continuous probability theory. There are hardly any illustrations in
discrete probability theory, except the one with sums and Poisson distributions that we reproduce in
Section 7. This is a pity, because there are several fundamental discrete instances.

• Typically in these examples, only the sufficiency condition of the Fisher-Neyman factorisation the-
orem is established — consisting of the disappearance of the parameter after conditioning. These
descriptions stop short of giving the full picture, with the relevant split idempotent that does the real
work and produces the adjoint situation.

• These examples do not match the abstract description of [11] — understandably so, given that [11]
is a very recent publication.

Thus there is room for a fresh look at sufficiency of statistics, given the clear and abstract reformulation
provided recently by [11]. That is what the current paper will do. The emphasis is on discrete probability
theory, since it already offers ample material. This restriction has the (technical) benefit that we do not
have to bother with “almost surely equal”, as in continuous probability. Thus, the paper only looks at
one particular kind of Markov category, namely the Kleisli category of the discrete distribution monad.

This paper elaborates examples, but it does not offer new (category) theory. We like to compare
examples of sufficient statistics with examples of adjunctions, like: the forgetful functor from compact
Hausdorff spaces to sets has a left adjoint given by ultrafilters. Proving this is quite a bit of work. It offers
valuable mathematical insight.

Similarly, we claim that the examples of sufficient statistics that we describe below offer valuable insight
in the relevant mathematical structures. As is often the case in discrete probability theory, the nature of
these structures is combinatorial. Indeed, this paper develops some new combinatorial results, especially
about (multiset) partitions, see e.g. Proposition 2.4 below (extending [20]). The emphasis is on uncovering
the relevant split idempotents.

We recall that a split idempotent is a map f : A→ A that can be written as f = s ◦ r, where r ◦ s = id.
In such a situation, the map r is called a retraction and s a section. It is easy to see that the section s
is the equaliser of f, id : A ⇒ A, and that the retraction r is their coequaliser. Such a splitting of f , if it
exists is unique, up-to-isomorphism. Split idempotents are used in the Karoubi envelope, the idempotent-
splitting completion of a category. Splittings of dagger (self-adjoint) idempotents form classical objects
in a quantum setting [29]. Here we also have daggers, relative to a prior distribution. We show that a
sufficient statistic (in discrete probability) is a deterministic dagger epi (see [14]), as retraction part of a
split dagger idempotent, see Lemma 2.3.

The paper starts with a relatively long section on background material, covering multisets, discrete
probability distributions, channels and their daggers, updating, and partitions. These partitions are special
multisets over the natural numbers that have been studied in their own right [1], but also to capture
mutations in population biology (see e.g. [8,9,25,26,27,32]; we offer some new result. Section 3 repeats the
description of sufficient statistics from [11] and puts it in perspective, in relation to disintegration. The role
of split idempotents is emphasised to obtain examples of sufficient statistics. The subsequent four sections 4
– 7 cover particular illustrations of the notion of sufficient statistic. Section 4 looks at accumulation (from
sequences to multisets) as sufficient statistic for independent and identically distributed (iid) elements in
sequences. This sufficiency situation, in Diagram 16, captures the very basic relations at the heart of
discrete probability theory. Section 5 introduces a new sufficiency situation for partitions, building on the
multiplicity count function (from [20]). Sections 6 and 7 review two examples from the literature in the
current setting, with the adjoint description based on split idempotents.
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2 Background

We briefly review the essence of multisets, distributions and partitions, and also of channels as probabilistic
functions. The main goal is to fix notation.

2.1 Multisets

A multiset (or bag) is a finite ‘subset’ in which elements may occur multiple times. There are two equivalent
representations for a multiset with elements from a set X.

• As formal finite sums
∑

i ni|xi 〉 of elements xi ∈ X with multiplicity ni ∈ N.

• As functions ϕ : X → N with finite support supp(ϕ) := {x ∈ X | ϕ(x) > 0}.
We switch between these representations whenever convenient.

We write M(X) for the set of multisets over X. It is the free commutative monoid on X. This M
forms a monad on the category of sets. We only mention how functoriality works: for a function f : X → Y
there is a function M(f) : M(X)→M(Y ) defined by:

M(f)
(∑

i ni|xi 〉
)

:=
∑

i ni
∣∣f(xi)

〉
or, equivalently, M(f)(ϕ) =

∑
y∈Y

 ∑
x∈f−1(y)

ϕ(x)

∣∣y〉. (1)

With a multiset ϕ we associate the following numbers.

• ‖ϕ‖ :=
∑

x ϕ(x) is the size of ϕ: the total number of elements in ϕ, including multiplicities;

• ϕ :=
∏
x ϕ(x)! is the product of the factorials of multiplicities;

• (ϕ) := ‖ϕ‖!
ϕ =

(
∑
x ϕ(x))!∏
x ϕ(x)!

is the multinomial coefficient;

•
(
n
ϕ

)
:= n!

ϕ ·(n−‖ϕ‖) when n ≥ ‖ϕ‖.

For a number K we define the subset M[K](X) ⊆M(X) of multisets of size K:

M[K](X) := {ϕ ∈M(X) | ‖ϕ‖ = K}.

There is an ‘accumulation’ function acc : XK → M[K](X) that accumulates multiple occurrences in a
sequence: acc(x1, . . . , xK) = 1|x1 〉+ · · ·+ 1|xK 〉. For instance acc(a, a, b, a, c, b) = 3|a〉+ 2|b〉+ 1|c〉.

For a finite set A we write |A | ∈ N for its number of elements and Perm(A) for the set of permutations
π : A

∼=→ A. Recall that
∣∣Perm(A)

∣∣ = |A |!.

Lemma 2.1 (i) For a multiset ϕ ∈ M[K](X) there are (ϕ) many sequences ` ∈ XK with acc(`) = ϕ,
that is,

∣∣acc−1(ϕ)
∣∣ = (ϕ).

(ii) If X is finite, then
∑

ϕ∈M[K](X)

(ϕ) = |X |K . �

2.2 Distributions

A (discrete finite probability) distribution over a set X is a formal sum
∑

i ri|xi 〉, where xi ∈ X and
ri ∈ [0, 1] with

∑
i ri = 1. Alternatively, it is a function ω : X → [0, 1] with finite support and

∑
x ω(x) = 1.

We write D(X) for the set of distributions over X. Such distributions may also be called states, see [16].
This D is a monad too, like M. Functoriality works as in (1).

For two distributions ω ∈ D(X) and ρ ∈ D(Y ) one can form a product distribution ω⊗ ρ ∈ D(X × Y )
via (ω ⊗ ρ)(x, y) = ω(x) · ρ(y). Equivalently, ω ⊗ ρ =

∑
x,y ω(x) · ρ(y)

∣∣x, y〉. For a single distribution
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ω ∈ D(X) we write the K-fold (tensor) product as:

iid[K](ω) := ωK = ω ⊗ · · · ⊗ ω ∈ D
(
XK

)
. (2)

The abbreviation ‘iid’ stands for ‘independent and identically distributed’. Marginalisation of a ‘joint’
state τ ∈ D(X1×· · ·×Xn) is the operation of projecting τ to a state in D(Xi), on one of the components,
obtained via functoriality, as D(πi)(τ).

We shall make frequent use of multinomial distributions, which we describe via a function mn[K] : D(X)→
D
(
M[K](X)

)
. We think of X as a set of colours and of ω ∈ D(X) as an urn with coloured balls, where

ω(x) ∈ [0, 1] is the probability of drawing a ball of colour x ∈ X. Then, mn[K](ω) ∈ D
(
M[K](X)

)
is a dis-

tribution on multisets of size K, corresponding to draws of K-many balls from the urn (with replacement).
This distribution is given by:

mn[K](ω) := D
(
acc
)(

iid[K](ω)
)

=
∑

ϕ∈M[K](X)

(ϕ) ·
∏
x∈X

ω(x)ϕ(x)
∣∣ϕ〉. (3)

See [18,23] for more details. As illustration, we consider draws of size 3 with a distribution 1
8 |a〉+

1
2 |b〉+

3
8 |c〉, corresponing to an urn with 8 balls, one of colour a, 4 of colour b, 3 of colour c. These draws (of size
3) then come with the following distribution.

mn[3]
(
1
8 |a〉+ 1

2 |b〉+ 3
8 |c〉

)
= 1

512

∣∣∣3|a〉〉+ 3
128

∣∣∣2|a〉+ 1|b〉
〉

+ 3
32

∣∣∣1|a〉+ 2|b〉
〉

+ 1
8

∣∣∣3|b〉〉+ 9
512

∣∣∣2|a〉+ 1|c〉
〉

+

9
64

∣∣∣1|a〉+ 1|b〉+ 1|c〉
〉

+ 9
32

∣∣∣2|b〉+ 1|c〉
〉

+ 27
512

∣∣∣1|a〉+ 2|c〉
〉

+ 27
128

∣∣∣1|b〉+ 2|c〉
〉

+ 27
512

∣∣∣3|c〉〉
In the previous subsection we have seen the accumulation function acc : XK →M[K](X). In the other

direction there is a channel arr : M[K](X)→ XK , called arrangement (see [18]); it is given by:

arr(ϕ) :=
∑

x∈acc−1(ϕ)

1

(ϕ)

∣∣x〉. (4)

This uniform distribution is well-defined, by Lemma 2.1 (i). We shall see that accumulation and arrange-
ment form a split idempotent, for a special ‘Kleisli’ composition, see Lemma 2.2.

We introduced distributions ω ∈ D(X) with finite support. In Section 7 we drop this finiteness
requirement and shall work with more general discrete probability distributions. We then write D∞(X)
for the set of such distributions.

2.3 Channels

We have mentioned that taking distributions D is a monad. The associated ‘Kleisli’ maps X → D(Y )
are called channels and will be written as X → Y , with a circle on the shaft. These arrows → are the
morphisms in the (symmetric monoidal) Kleisli category K̀ (D) of the distribution monad D. We recall
the basic operations, of Kleisli extension =� and Kleisli composition ◦· .

Given a channel c : X → Y and a distribution / state ω ∈ D(X) we write c =�ω ∈ D(Y ) for the state
transformation along c, obtained via Kleisli extension:(

c =�ω
)
(y) :=

∑
x∈X

ω(x) · c(x)(y).
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Via =�we can define (Kleisli) composition ◦· of channels as
(
d ◦· c

)
(x) = d =�c(x). The unit η : X → D(X)

of the monad D, with η(x) = 1|x〉, is the identity (channel) for this composition ◦· .
For two channels c : X → A and d : Y → B there is a parallel product c⊗ d : X × Y → A×B defined

as pointwise tensor:
(
c ⊗ d)(x, y) = c(x) ⊗ d(y). When the domains X,Y are equal we can form a tuple

channel 〈c, d〉 := (c⊗ d) ◦ ∆: X → A×B, where ∆: X → X ×X is the copy function ∆(x) = (x, x). We
shall see special instances of this tupling of channels when c or d is the identity channel. We shall write
such tuples as 〈c, id〉 or 〈id, d〉. We spell out the associated state transformation:

〈c, id〉 =�ω =
∑

x∈X,y∈Y
ω(x) · c(x)(y)

∣∣x, y〉. (5)

Each function f : X → Y gives rise to a deterministic channel ‹f› := η ◦ f : X → Y , via the unit η of
the monad, so that ‹f›(x) = 1

∣∣f(x)
〉
. These deterministic channels, of the form ‹f›, can be characterised

as those channels that commute with copyiers ∆. They satisfy: ‹g›◦· ‹f› = ‹g ◦ f› and d◦· ‹f› = d ◦ f and
‹f› ◦· c = D(f) ◦ c. Often we omit the brackets ‹-› when it is implicitly clear that an ordinary function is
promoted to a channel. We do so in particular for projection and copy functions πi and ∆, and also for
accumulation in the next result.

Lemma 2.2 Accumulation and arrangement (4) form (the section and retraction of) a split idempotent in
the Kleisli category K̀ (D) of the distribution monad D, since: acc◦· arr = id. The resulting split idempotent
channel tp := arr ◦· acc : XK → XK is tuple-permutation (“transposition”):

tp
(
x1, . . . , xK) =

∑
π∈Perm({1,...,K})

1

K!

∣∣∣xπ(1), . . . , xπ(K)

〉
. �

For convenience and clarity, we shall use the graphical notation of string diagrams for channels, as
probabilistic computations, where information is flowing upwards. A channel is represented as a box, and
wires are typed by the input and output sets of these channels. We assume a basic level of familiarity with
these string diagrams and refer to [5,11,30] for more information about their use in probability theory.
In this paper these string diagram are interpreted in the Kleisli category K̀ (D), or K̀ (D∞), but not in
general Markov categories.

2.4 Predicates, updating and daggers

A predicate on a set X is a function p : X → [0, 1]. We shall write Pred(X) for the set of all such (fuzzy)
predicates on X. Updating (or conditioning) of a state/distribution is a basic operation in probabilistic
reasoning, where ω ∈ D(X) is updated in the light of evidence given by a predicate p ∈ Pred(X). We first
write ω |= p :=

∑
x ω(x) · p(x) for the validity (expected value) of p in ω. If this validity is non-zero, we

can define the updated distribution ω|p ∈ D(X) as the normalised product:

ω|p(x) :=
ω(x) · p(x)

ω |= p
.

One can then prove that updating makes the predicate p ‘more true’, in the sense that ω|p |= p ≥ ω |= p,
see e.g. [17,18] for details.

Along a channel c : X → Y one can do backwards predicate transformation: for a predicate q : Y → [0, 1]
on Y we can form a predicate c �= q on X via:(

c �= q
)
(x) :=

∑
y∈Y

c(x)(y) · q(y).

There is then a basic equality of validities: c =�ω |= q = ω |= c �= q.
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Given a channel c : X → Y and a ‘prior’ state ω ∈ D(Y ) we can obtain a reversed channel c†ω : Y → X,
with ω as prior distribution, called the dagger of c, see [7,5,11]. Its formulation is:

c†ω(y) := ω|c �= 1y =
∑
x∈X

ω(x) · c(x)(y)

(c =�ω)(y)

∣∣x〉. (6)

This definition uses the point predicate 1y : Y → [0, 1] which is 1 on y ∈ Y and 0 everywhere else. The
definition only works when the pushforward distribution c =�ω has full support. The dagger is also called
Bayesian inversion; it corresponds to turning a conditional probability p(y|x) into p(x|y).

Daggers of deterministic channels play a special role; they give rise to dagger idempotents.

Lemma 2.3 Let f : X → Y be a function, considered as a (deterministic) channel, and let ω ∈ D(X) be
a distribution such that f =�ω = D(f)(ω) has full support. Then:

f †ω =�D(f)(ω) = ω f ◦· f †ω = id
(
f †ω ◦· f

)†
ω

= f †ω ◦· f.

This makes f a deterministic dagger epi, with prior ω, and f †ω ◦· f a split dagger idempotent, in K̀ (D).

Proof. We only do the middle equation and leave the other equations to the reader.

(
f ◦· f †ω

)
(y) =

∑
x∈X

f †ω(y)(x)
∣∣f(x)

〉 (6)
=

∑
x∈f−1(y)

ω(x)

D(f)(ω)(y)

∣∣f(x)
〉

=

∑
x∈f−1(y) ω(x)

D(f)(ω)(y)

∣∣y〉 = 1|y 〉. �

2.5 Multiset partitions

A multiset partition, or simply a partition 3 , is a multiset over the non-negative natural numbers N>0.
Such a partition

∑
i ni|i〉 ∈ M(N>0) has a sum (or mean, or average) defined as:

sum
(∑

i ni|i〉
)

:=
∑

i ni · i ∈ N>0 and used in: MP(K) := {ϕ ∈M(N>0) | sum(ϕ) = K}.

Thus, MP(K) is the set of partitions with sum K. The sizes
∣∣MP(K)

∣∣ of the sets of partitions with sum
K = 1, 2, 3, . . . are given by the so-called partition numbers [1]: 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, . . . for which
no closed-form expression is known. For instance, MP(4) contains the following five multisets.

4|1〉 2|1〉+ 1|2〉 1|1〉+ 1|3〉 2|2〉 1|4〉. (7)

These partitions can be seen as the different ways to describe the sum 4 via coins: 4 coins with value 1,
2 coins of 1 and 1 of 2, etc, see [20]. Such partitions are studied for instance in population biology, see
e.g. [8,9,25,26,27] and also Section 6. In economics they can be used for (un)fairness [28]: if you have 4
units of ‘wealth’ that you can distribute over 4 people, you can given each of them one unit (as on left
in (7)) or you can give all units to one individual (as on the right in (7)). The partitions in the middle
are intermediate forms of fairness. Notice that the number sum(ϕ), for ϕ ∈M(N>0), is typically different
from its size ‖ϕ‖. We do have ‖ϕ‖ ≤ sum(ϕ). For instance, the partitions in (7) all have sum four, but
their sizes are, in order, 4, 3, 2, 2, 1.

The next result involves a multiplicity count function mc, introduced in [20] (and used also in [19,24]),
that plays a fundamental role in the sequel — as analogue of accumulation acc. It counts the multiplicities

3 Commonly, the word ‘partition’ is used for ‘cover’: a collection of pairwise disjoint subsets whose union is the
whole set. This may be confusing. We use the phrases ‘multiset partition’ and ‘set partition’ (cover) to distinguish
them in [19,24]. Here, only multiset partitions are used, so we often simply use ‘partition’ for ‘multiset partition’.
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in a multiset. For instance,

mc
(

3|a〉+ 1|b〉+ 3|c〉+ 2|d〉
)

= 1|1〉+ 1|2〉+ 2|3〉.

This expresses that in the above (argument) multiset over {a, b, c, d}, 1 element occurs 1 time (namely b),
1 element occurs 2 times (namely d) and 2 elements occur 3 times (namely a and c). Thus, the multiplicity
count function abstracts away from the elements in a multiset and only looks at how many elements occur
how many times. It is a dagger epi, see Section 5.

The next result collects some combinatorial results about the relation between multisets and partitions,
via this new multiplicity count function mc. The focus is on describing mc as the retraction part of a split
idempotent.

Proposition 2.4 Let X be a finite set with at least n ≥ K elements, that is, with n := |X | ≥ K.

(i) Define for a multiset ϕ ∈M(X), its multiplicity count as: mc(ϕ) :=
∑

x∈supp(ϕ)

1
∣∣ϕ(x)

〉
. This function

restricts to mc : M[K](X)→ MP(K).

(ii) For each σ ∈ MP(K) there are(
n

σ

)
=

n!

σ · (n− ‖σ‖)!
many multisets ϕ ∈M[K](X) with mc(ϕ) = σ.

This means:
∣∣M[K](X) ∩mc−1(σ)

∣∣ =

(
n

σ

)
.

(iii) Thus, we can define a stack channel stk : MP(K)→M[K](X) via uniform distributions as:

stk(σ) :=
∑

ϕ∈mc−1(σ)

1(
n
σ

) ∣∣ϕ〉. (8)

Then: mc ◦ stk = id : MP(K)→ MP(K).

(iv) Write ep := stk ◦· mc : M[K](X) →M[K](X) for the resulting split idempotent in K̀ (D), where ep
stands for element permutation (“substitution”). It satisfies, for ϕ ∈M[K](X),

ep(ϕ) =
∑

ψ∈mc−1(mc(ϕ))

1(
n

mc(ϕ)

) ∣∣ψ〉 =
∑

π∈Perm(X)

1

n!

∣∣∣M(π)(ϕ)
〉
.

The first equation holds by definition; the second one is the statement.

Proof. (i) Straightforward.

(ii) By assumption, the set X has n elements. The question is: how many ways are there to partition
this set X into subsets with σ(1), σ(2), . . . , σ(K) elements, and finally, with n−‖σ‖ many remaining
elements? As we have seen in Lemma 2.1 (i) this number of partitions is given by the multinomial
coefficient:(

n

σ(1), . . . , σ(K), n−‖σ‖

)
=

n!

σ(1)! · . . . · σ(K)! · (n−‖σ‖)!
=

n!

σ · (n−‖σ‖)!
=

(
n

σ

)
.

(iii) For a partition σ ∈ MP(K) with sum K,

(
mc ◦· stk

)
(σ)

(8)
=

∑
ϕ∈mc−1(σ)

1(
n
σ

) ∣∣mc(ϕ)
〉

=

 ∑
ϕ∈mc−1(σ)

1(
n
σ

)
 ∣∣σ〉 = 1

∣∣σ〉.
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This last equation follows from item (ii).

(iv) For ϕ ∈M[K](X) write σ = mc(ϕ). It suffices to prove:∑
ψ∈mc−1(σ)

σ ·
(
n− ‖σ‖

)
!
∣∣ψ〉 =

∑
π∈Perm(X)

1
∣∣∣M(π)(ϕ)

〉
. (∗)

For a permutation π : X
∼=→ X the multiset M(π)(ϕ) obtained by permuting the elements occurring

in ϕ, according to π, also has multiplicity count σ = mc(ϕ). Some of these permutations of ϕ are
equal to ϕ. We have to count their number.

For each i ∈ N with σ(i) > 0 there are σ(i) many elements of X in ϕ occurring i times. Permuting
these σ(i) many elements does not change the multiset ϕ. This can be done in σ(i)! many ways. Using
this argument for each i explains the occurrence of σ =

∏
i σ(i)! in (∗). There are n−‖σ‖ =

∣∣supp(ϕ)
∣∣

many elements of X that do not occur in ϕ. They can be permuted in (n−‖σ‖)! many ways without
changing ϕ. �

This last item (iv) is somewhat mysterious, so we like to illustrate what is going on.

Example 2.5 Consider a set X = {a, b, c, d} with a multiset ϕ = 2|a〉+1|b〉+1|c〉+1|d〉 of size 5, whose
multiplicity count is σ := mc(ϕ) = 3|1〉+ 1|2〉, with sum 5. The multisets ψ ∈M[5](X) with mc(ψ) = σ
are:

2|a〉+ 1|b〉+ 1|c〉+ 1|d〉, 1|a〉+ 2|b〉+ 1|c〉+ 1|d〉,
1|a〉+ 1|b〉+ 2|c〉+ 1|d〉, 1|a〉+ 1|b〉+ 1|c〉+ 2|d〉.

There are 4! = 24 permutations π of X. The ‘swapped’ multiset M(π)(ϕ) is of one of these four forms.
Each of these forms occurs 6 times in:∑

π∈σ(X)

1

24

∣∣∣M(π)(ϕ)
〉

=
1

4

∣∣∣2|a〉+ 1|b〉+ 1|c〉+ 1|d〉
〉

+
1

4

∣∣∣1|a〉+ 2|b〉+ 1|c〉+ 1|d〉
〉

+

1

4

∣∣∣1|a〉+ 1|b〉+ 2|c〉+ 1|d〉
〉

+
1

4

∣∣∣1|a〉+ 1|b〉+ 1|c〉+ 2|d〉
〉

= ep
(
ϕ
)
.

This probability 1
4 equals σ ·(|X|−‖σ‖)!

24 = 3!·1!·0!
24 , as prescribed in Proposition 2.4 (iv).

3 Sufficient statistic

The diagrammatic formulation of the notion of sufficient statistic has been introduced recently in [11].
This formulation involves a simple equation between two diagrams, see (10) below. Implicitly, it relies on
disintegration, which we introduce first (based on [11] and also [5]). It helps to understand sufficiency as
a form of updating that trivialises, by making a parameter obsolete.

Definition 3.1 Let c : A→ X × Y be a channel, represented as a box on the left below. A disintegration
of c is a channel d : A× Y → X that satisfies the equation on the right.

c

X Y

A

c
c

d

= (9)

In this diagram we use for discarding (marginalisation, projecting away) and for copying. On the
right-hand-side of the equation, the X-output of the c channel is discarded, but reconstructed via the
d-channel.
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We do not worry about uniqueness of disintegration in the current setting. It does exist, under addi-
tional requirements, see [11,5] for details.

We use surjective functions s : X � Y to identify elements in X, resulting in abstractions in Y . This
Y may give numerical information, e.g. when Y is the set of natural or real numbers. Such a map is
also called a statistic. A statistic s is called sufficient for a channel, as statistical model depending on a
parameter, when the dependence on the parameter disappears via updating through s. Sufficency refers to
being adequate as a summary of essential aspects of the elements in X. Sufficiency involves the existence of
a reversal of the function s : X → Y to a channel d : Y → X. This channel d can be used to reconstruct a
distribution X, form its summary given by s. We first give a string diagrammatic description, following [11,
Defn. 14.3]. Subsequently we explain the relation to disintegration.

Definition 3.2 Let c : A→ X be a channel, where we think of A as the space of parameters.

(i) A statistic for the channel c is a function s : X → Y .

(ii) Such a statistic s is sufficient if there is a channel d : Y → X such that:

c

s

c

d

= s
(10)

Remark 3.3 (i) The channel d on the right-hand-side in (10) results in a special way from disintegration,
namely disintegration of the channel 〈id, s〉◦· c on the left-hand-side in (10). If we write D : A×Y → X
for its disintegration channel, as in (9), then, we should get an equation as given on the left below.
The distinguishing property of a sufficient statistic is that the dashed line is absent.

c

s

c

= s

D

D = d (11)

The situation on the left can be expressed by the equation on the right.

(ii) The fact that the dashed wire is missing in (11) is often expressed as: the conditional distribution
c(a), given s, does not depend on a. This can be made more precise. The box/channel D in (11) can
be calculated — in discrete probability — as a distribution D(a, y) ∈ D(X), for a ∈ A and y ∈ Y ,
via a dagger (see Subsection 2.4). Explicitly,

D(a, y) = s†c(a)(y)
(6)
= c(a)|s �= 1y =

∑
x∈s−1(y)

c(a)(x)

D(s)(c(a))(y)

∣∣x〉. (12)

The absence of the dashed arrow in (11) corresponds to the non-dependence of the latter expressions
on a. This is the essence of the Fisher-Neyman factorisation theorem, see [11, Thm. 14.5] and [2,
Prop 4.10] or [31, §3.3].

(iii) In the sequel we are interested in actually demonstrating sufficiency of certain statistics, in discrete
probability. Proving Equation 10 amounts to showing an equality of distributions of the following
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form. For each parameter a ∈ A,

〈id, s〉 =�c(a) =
∑
x∈X

c(a)(x)
∣∣∣x, s(x)

〉
=
∑
x,z∈X

c(a)(z) · d
(
s(z)

)
(z)

∣∣∣z, s(x)
〉

= 〈d, id〉 =�D(s)
(
c(a)

)
.

(13)

(iv) Two distributions ω, ρ ∈ D(X) are equal when ω |= p = ρ |= p for all predicates p on X. This easily
follows by just looking at point predicates 1x, where x ∈ X, for which ω |= 1x = ω(x).

This validity formulation of equality of distributions can also be used for the sufficiency equa-
tion (10). It amounts to, for all predicates p ∈ Pred(X), q ∈ Pred(Y ),

c(a) |= p & (s �= q) = D(s)
(
c(a)

)
|= (d �= p) & q. (14)

This formulation uses conjunction & for pointwise multiplication of predicates (p1 & p2)(x) =
p1(x) · p2(x). It has a clear adjointness flavour. However, there is no direction involved, or left-
right distinction, since & is a commutative operation — in classical probability, not in quantum
probability, see e.g. [6,15,33].

All our examples below follow the following pattern to obtain a sufficient statistic.

Lemma 3.4 Consider a channel together with a split idempotent in K̀ (D), consisting of a section followed
by a retraction. Then:

chan

retraction

chan

section

=
retraction

split
idempotent

chan

= chan implies (15)

The latter equation says that the retraction is a sufficient statistic for the channel.

Proof. This is in essence a special case of the Fisher-Neyman factorisation theorem, as formulated in
diagrammatic form in [11, Thm. 14.5]. It uses that K̀ (D) is a positive Markov category, justifying the last
equation below, see [11, Rem.11.23].

chan

retraction

chan

retraction

split
idempotent

= =

chan

retraction

section

retraction chan

section

=
retraction �

This result will be exploited in the next four sections.

4 Accumulation as sufficient statistic

We can now start harvesting from the previous two sections.
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Theorem 4.1 Fix a set X and a number K ∈ N. The accumulation function acc : XK → M[K](X)
is a sufficient statistic for the identically and independent distribution channel iid[K] : D(X) → XK , via
arrangement. This is expressed by the following equation between channels D(X)→ XK ×M[K](X).

iid[K]

acc

mn[K]

arr

= (16)

Proof. Accumulation acc and arragement arr are the retraction and section part of the split idempotent
tp := arr ◦· acc described in Lemma 2.2. Lemma 3.4 applies since:

(
tp ◦· iid[K]

)
(ω) =

∑
π∈Perm({1,...,K})

∑
x∈XK

ωK(x)

K!

∣∣∣xπ(1), . . . , xπ(K)

〉

=
∑

x∈XK

 ∑
π∈Perm({1,...,K})

ωK(xπ(1), . . . , xπ(K))

K!

∣∣x〉
=

∑
x∈XK

ωK(x)
∣∣x〉 = ωK = iid[K](ω).

The formulation in (16) now follows because, by definition, mn[K] = acc ◦· iid[K], see (3). �

We think that Equation (16) expresses a fundamental and elementary relationship between the com-
binatorial and probabilistic properties of sequences and multisets, in terms of the idd and multinomial
distributions. Although these distributions appear frequently in the literature, this (diagrammatic) equa-
tion (16) has not been identified before. There is a single source — as far as we are aware — namely [3,
§2.2], where it is mentioned that a particular sum — amounting to accumulation — is sufficient as statistic
for iid. But the situation is not elaborated further and arrangement does not occur, like in (16).

The reference [18, Thm. 4] contains the following two equations.

arr ◦· mn[K] = iid[K] and acc ◦· iid[K] = mn[K].

Both can be obtained from the above theorem by discarding one of the outgoing wires in (16). However,
Equation (16) expresses more than these two equations obtained by marginalisation, since it involves a
joint state formulation.

We elaborate in the concrete situation of Theorem 4.1 on two aspects discussed in Remark 3.3. First,
the sufficiency of accumulation can also be expressed (and proven directly) via arbitrary predicates p ∈
Pred

(
XK

)
and q ∈ Pred

(
M[K](X)

)
, in the style of (14), as an adjointness property:

iid[K](ω) |= p & (acc �= q) =
∑

x∈XK

ωK(x) · p
(
x
)
· q
(
acc(x)

)
=

∑
ϕ∈M[K](X)

(ϕ) ·
∏

y
ω(x)acc(x)(y) ·

 ∑
x∈acc−1(ϕ)

1

(ϕ)
· p
(
x
) · q(ϕ)

=
∑

ϕ∈M[K](X)

mn[K](ω)(ϕ) ·
(
arr �= p

)
(ϕ) · q(ϕ)

= mn[K](ω) |= (arr �= p) & q.

Next, we illustrate how in this case the dependency on ω disappears in iid if we condition on accumulation
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(to a fixed multiset ϕ), as in (12):

iid[K](ω)
∣∣
acc �= 1ϕ

(12)
=

∑
x∈acc−1(ϕ)

ωK(x)

D(acc)(iid[K](ω))(ϕ)

∣∣x〉 (3)
=

∑
x∈acc−1(ϕ)

∏
y ω(y)acc(x)(y)

mn[K](ω)(ϕ)

∣∣x〉
=

∑
x∈acc−1(ϕ)

∏
y ω(y)ϕ(y)

(ϕ) ·
∏
y ω(y)ϕ(y)

∣∣x〉 (4)
= arr(ϕ).

5 Multiplicity count as sufficient statistic

Accumulation abstracts away from the order of elements in a sequence, by turning the sequence into
a multiset. Multiplicity count mc : M[K](X) → MP(K) is a function that abstracts away from the
elements themselves, and only looks at their multiplicities. Recall, mc(ϕ) =

∑
x∈supp(ϕ) 1

∣∣ϕ(x)
〉
. The

question arises: is multiplicity count also a sufficient statistic, and if so, for which channel? This section
provides an answer, based on a split idempotent, like in Lemma 3.4. Indeed, in Proposition 2.4 we have
seen that multiplicity count mc is the retraction part of the split idempotent ep of element permutations,
given by ep = stk ◦· mc.

We first introduce a swap version of multinomial distribution, defined for a distribution ω ∈ D(X) on
a finite set X as:

swmn[K](ω) :=
∑

π∈Perm(X)

mn[K]
(
D(π)(ω)

)
|X |!

, (17)

For instance, using the same distribution 1
8 |a〉 + 1

2 |b〉 + 3
8 |c〉 as in the illustration of the multinomial in

Subsection 2.2, we now get:

swmn[3]
(
1
8 |a〉+ 1

2 |b〉+ 3
8 |c〉

)
= 23

384

∣∣∣3|a〉〉+ 29
256

∣∣∣2|a〉+ 1|b〉
〉

+ 29
256

∣∣∣1|a〉+ 2|b〉
〉

+ 23
384

∣∣∣3|b〉〉+ 29
256

∣∣∣2|a〉+ 1|c〉
〉

+

9
64

∣∣∣1|a〉+ 1|b〉+ 1|c〉
〉

+ 29
256

∣∣∣2|b〉+ 1|c〉
〉

+ 29
256

∣∣∣1|a〉+ 2|c〉
〉

+ 29
256

∣∣∣1|b〉+ 2|c〉
〉

+ 23
384

∣∣∣3|c〉〉
We see that multisets with the same multiplicity count have the same probability. This happens since
the elements in X do not really play a role in this definition. Hence, really, we should not be using
distributions, but ‘divisions’, as element-free distributions, see [20]. This is left for future work.

Theorem 5.1 Let X be a finite set and let K ≤ |X |. Multiplicity count is a sufficient statistic for the
swapped multinomial, via the stack channel stk, as expressed by the following sufficiency equation between
channels D(X)→M[K](X)×MP(K).

swmn[K]

mc

pamn[K]

stk

= (18)

It involves the ‘partition multinomial’ channel pamn[K] : D(X)→ MP(K) satisfying:

pamn[K] := mc ◦· swmn[K] = mc ◦· mn[K] = mc ◦· acc ◦· iid[K]. (19)

Proof. We use Lemma 3.4 with split idempotent ep = stk◦·acc. We thus have to prove that ep◦· swmn[K] =
swmn[K]. This follows from the fact that swmn[K] = ep ◦· mn[K]. The proof uses that the multinomial
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channel mn[K] forms a natural transformation D ⇒ DM[K], see [18].

(
ep ◦· mn[K]

)
(ω) =

∑
π∈Perm(X)

∑
ϕ∈M[K](X)

mn[K](ω)(ϕ)

|X |!

∣∣∣M(π)(ϕ)
〉

see Proposition 2.4 (iv)

=
∑

π∈Perm(X)

DM(π)(mn[K](ω))

|X |!

=
∑

π∈Perm(X)

mn[K](D(π)(ω))

|X |!
(17)
= swmn[K](ω).

Lemma 3.4 now provides a sufficient statistic situation with channel:

mc ◦· swmn[K] = mc ◦· ep ◦· mn[K] = mc ◦· stk ◦· mc ◦· acc ◦· iid[K] = mc ◦· acc ◦· iid[K].

This composite is what we have called the partition multinomial pamn[K] in (19). �

We like to get a better handle on this partition multinomial pamn[K].

Proposition 5.2 Let X be a finite set and let K be a natural number with 1 ≤ K ≤ |X |.
(i) For σ ∈ MP(K) define a multinomial coefficient for partitions (σ )P ∈ N as:

(σ )P :=
K!∏

1≤i≤K (i!)σ(i)
.

Then, for each ϕ ∈M[K](X),

ϕ =
∏

1≤i≤K

(
i!
)mc(ϕ)(i)

and thus (ϕ) = (mc(ϕ))P .

(ii) The partition multinomial can be described concretely, on ω ∈ D(X), as:

pamn[K](ω) =
∑

σ∈MP(K)

(σ )P ·
∑

ϕ∈mc−1(σ)

∏
x∈X

ω(x)ϕ(x)
∣∣σ〉.

(20)

Proof. (i) We first prove the equation ϕ =
∏

1≤i≤K
(
i!
)mc(ϕ)(i)

, for ϕ ∈ M[K](X), by induction on

K ≥ 1. The case K = 1 is trivial, since then ϕ = 1|x〉, for some x ∈ X, so that mc(ϕ) = 1|1〉.
Then: ϕ = 1 = (1!)1. For the induction step, write ϕ ∈ M[K+1](X) as ϕ = ψ + 1|x〉, for some
x ∈ supp(ϕ). Then ψ ∈M[K](X).∏

1≤i≤K+1

(
i!
)mc(ϕ)(i)

=
(
(K+1)!

)mc(ψ+1|x 〉)(K+1) ·
∏

1≤i≤K

(
i!
)mc(ψ+1|x 〉)(i)

=


(K+1)! if ψ = K|x〉∏
1≤i≤K

(
i!
)mc(ψ)(i) · (ψ(x)+1) otherwise

(IH)
=

{
(ψ + 1|x〉) if ψ = K|x〉
ψ · (ψ(x)+1) otherwise

}
= (ψ + 1|x〉) = ϕ .



9–14 Sufficient Statistics...

For the second equation fix ϕ ∈M[K](X). Then, by what we have just shown:

(ϕ) =
K!

ϕ
=

K!∏
1≤i≤K

(
i!
)mc(ϕ)(i)

= (mc(ϕ))P .

(ii) By the previous item:

pamn[K](ω)
(19)
= D

(
mc
)(

mn[K](ω)
)

(3)
=

∑
ϕ∈M[K](X)

(ϕ) ·
∏
x∈X

ω(x)ϕ(x)
∣∣mc(ϕ)

〉
=

∑
σ∈MP(K)

 ∑
ϕ∈mc−1(σ)

(ϕ) ·
∏
x∈X

ω(x)ϕ(x)

 ∣∣σ〉
=

∑
σ∈MP(K)

(σ )P ·

 ∑
ϕ∈mc−1(σ)

∏
x∈X

ω(x)ϕ(x)

 ∣∣σ〉. �

We conclude with an illustration:

pamn[3]
(
1
8 |a〉+ 1

2 |b〉+ 3
8 |c〉

)
= 9

64

∣∣∣3|1〉〉+ 87
128

∣∣∣1|1〉+ 1|2〉
〉

+ 23
128

∣∣∣1|3〉〉 .
This channel pamn[K] acts like a (Kingman) paintbox, see [4].

6 Size of partitions as sufficient statistic

We now write size(σ) := ‖σ‖, for σ ∈ MP(K), giving a function size : MP(K) → {1, . . . ,K}. These sizes
vary, for a fixed sum, see (7). We also introduce notation for the product of the numbers in a partition:

prod(σ) :=
∏
i i
σ(i). For instance, the partitions in (7) have product, in order: 1, 2, 3, 4, 4.

It is known from [9] that the size function is a sufficient statistic, namely for the channel of Ewens
distributions, see also [8, §2.2] or [25]. We elaborate this situation in terms of Lemma 2.3 — which leads
to split dagger idempotents. Due to space constraints, we only look at the main lines here. The appendix
contains more details.

The Ewens distribution, from [9], can be described as a channel ew [K] : R>0 → D
(
MP(K)

)
, given by:

ew [K](t) :=
K!∏

0≤i<K t+i
·
∑

σ∈MP(K)

tsize(σ)

σ · prod(σ)

∣∣σ〉. (21)

We show that by updating with a fixed size n, where 1 ≤ n ≤ K, the dependence on the parameter t
disappears, and gives us our dagger size†.

ew [K](t)
∣∣
size �= 1n

=
∑

σ∈size−1(n)

tsize(σ)

σ ·prod(σ)∑
τ∈size−1(n)

tsize(τ)

τ ·prod(τ)

∣∣σ〉
=

∑
σ∈size−1(n)

1
σ ·prod(σ)∑

τ∈size−1(n)
1

τ ·prod(τ)

∣∣σ〉 =: size†(n).

Theorem 6.1 For K ≥ 1, the size function size : MP(K) → {1, . . . ,K} is a sufficient statistic for the
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Ewens channel (21), via the equality of channels R>0 → MP(K)× {1, . . . ,K} in:

ew [K]

size

stir[K]

size†

= where

stir[K] : R>0 → D
(
{1, . . . ,K}

)
is the

‘Stirling’ channel given by:

stir[K](t)

:=
1∏

0≤i<K t+i
·
∑

1≤k≤K

[
K

k

]
· tk
∣∣k〉.

The latter Stirling distribution stir[K] involves the Stirling numbers of the first kind
[
K
k

]
, see [21] for

more details. It is sometimes called the Chinese restaurant table distribution. �

7 Sums of sequences as sufficient statistic

For a fixed number K we consider the addition function sum : NK → N. It is the retraction part of a split
idempotent, with section sum† : N→ D

(
NK
)

given by:

sum†(n) :=
∑

k∈sum−1(n)

(
n
k

)
Kn

∣∣k〉 =
∑

k∈sum−1(n)

n!

Kn ·
∏
i ki!

∣∣k〉.
This yields a distribution by Lemma 2.1 (ii) since a sequence k ∈ N with sum(k) = n can be identified
with a multiset in M[n]({1, . . . ,K}). Our final result is a well known instance of sufficiency, involving
the Poisson channel pois : R>0 → D∞(N) given by pois[λ] :=

∑
n e
−λ · λnn!

∣∣n〉, with infinite support. The
appendix contains a proof.

Theorem 7.1 For K ≥ 1, the addition function sum : NK → N is a sufficient statistic for K-fold possion
product

⊗
K pois : R>0 → D

(
NK
)

in the following equality of channels R>0 → NK × N.

⊗
K pois

sum

pois[K−]

sum†

= where

{(⊗
K pois

)
(λ) = pois[λ]⊗ · · · ⊗ pois[λ]

pois[K−](λ) = pois[Kλ].
�

An analogous example uses geometric instead of Poisson distributions.

8 Conclusions

This paper elaborates several examples of a sufficient statistic, in the recently introduced ‘adjoint’ formula-
tion using string diagrams of [11]. It does so for discrete distributions, since sufficiency is not well-developed
there — in contrast to the continuous case. Four examples are described, following the same pattern, by
identifying the relevant split idempotents — that arise via the Fisher-Neyman factorisation theorem. The
paper’s focus is on concrete mathematical (combinatorial) structure, and not so much on theory develop-
ment. Ewens’ distributions capture probabilistic mutations for multiset partitions. In [19] this approach
is extended to other data types — including set partitions, also studied in [24] — and leads to many
more examples of sufficient statistics. There is room for further investigations of, for instance. the use of
‘divisions’ from [20] instead of the ‘partition’ distributions in Section 5.
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A Appendix

Proof of Theorem 6.1

For K ≥ 1 we have the Ewens and Stirling channels:

R>0 ◦
ew[K]

//MP(K) R>0 ◦
stir[K]

// {1, . . . ,K}

For convenience, we repeat the definitions from Section 6: for a reproduction parameter t ∈ R>0,

ew [K](t) =
K!∏

0≤i<K t+i
·
∑

σ∈MP(K)

tsize(σ)

σ · prod(σ)

∣∣σ〉
stir[K](t) =

1∏
0≤i<K t+i

·
∑

1≤k≤K

[
K

k

]
· tk
∣∣k〉. (A.1)

In the description of the Stirling distribution stir[K](t) We write
[
K
k

]
for the Stirling number of the

first kind. These numbers are determined by the equations:[
0

0

]
= 1

[
0

k

]
=

[
k

0

]
= 0

[
n+1

k

]
= n ·

[
n

k

]
+

[
n

k−1

]
. (A.2)

One can then derive, by induction on K ≥ 1, that for all t > 0,

∑
1≤k≤K

[
K

k

]
· tk =

∏
0≤i<K

t+i (A.3)
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Therefore, the probabilities in the above Stirling distributions add up to one.
We use the following general result about the Ewens and Stirling distributions (A.1). The part about

Ewens is copied from [22].

Lemma A.1 Fix K ∈ N and t ∈ R>0.

(i) There is a commuting rectangle of ‘draw-add’ channels:

MP(K)

size
��

PDA[K](t)
//D
(
MP(K+1)

)
D(size)
��

{1, . . . ,K} SDA[K](t)
//D
(
{1, . . . ,K+1}

)
In which the partition and set draw-add channels PDA and SDA are defined by:

PDA(t)(σ) :=
t

K+t

∣∣∣σ + 1|1〉
〉

+
∑

1≤k≤K

σ(k) · k
K+t

∣∣∣σ − 1|k 〉+ 1|k+1〉
〉

SDA(t)(k) :=
t

K+t

∣∣k + 1
〉

+
K

K+t

∣∣k〉.
(ii) Both the Ewens and the Stirling distributions can be obtained inductively via: We follow [22] in the

inductive description of Ewens distributions via state transformation as:

{
ew [1](t) = 1

∣∣∣1|1〉〉
ew [K+1](t) = PDA[K](t) =�ew [K](t)

{
stir[1](t) = 1

∣∣1〉
stir[K+1](t) = SDA[K](t) =� stir[K](t).

(iii) D(size) ◦ ew [K] = stir[K].

In Section 6 we have already determined the dagger to the size function. Hence this equation in
item (iii) suffices to prove Theorem 6.1.

Proof. (i) For σ ∈ MP(K),

(
D(size) ◦ PDA[K](t)

)
(σ) =

t

K+t

∣∣∣size(σ + 1|1〉)
〉

+
∑

1≤k≤K

σ(k) · k
K+t

∣∣∣size(σ − 1|k 〉+ 1|k+1〉)
〉

=
t

K+t

∣∣∣size(σ) + 1
〉

+

∑
1≤k≤K σ(k) · k

K+t

∣∣∣size(σ)
〉

=
t

K+t

∣∣∣size(σ) + 1
〉

+
K

K+t

∣∣∣size(σ)
〉

= SDA[K](t)
(
size(σ)

)
.

(ii) We leave the Ewens case to the reader and concentrate on Stirling. First, for K = 1,

stir[1](t) =
1∏

0≤i<1 t+i
·
∑

1≤k≤1

[
1

k

]
· tk
∣∣k〉 =

1

t
·

[
1

1

]
· t1
∣∣1〉 = 1|1〉.
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Next,

SDA[K](t) =� stir[K](t)

=
∑

1≤`≤K+1

∑
1≤k≤K

SDA[K](t)(k)(`) · stir[K](t)(k)
∣∣`〉

=
∑

1≤k≤K

t

K + t
· stir[K](t)(k)

∣∣k + 1
〉

+
∑

1≤k≤K

K

K + t
· stir[K](t)(k)

∣∣k〉
(IH)
=

∑
1≤k≤K

t

K + t
· 1∏

0≤i<K t+i
·

[
K

k

]
· tk
∣∣k + 1

〉
+

∑
1≤k≤K

K

K + t
· 1∏

0≤i<K t+i
·

[
K

k

]
· tk
∣∣k〉

=
1∏

i<K+1 t+i
·

 ∑
1≤k≤K

[
K

k

]
· tk+1

∣∣k + 1
〉

+
∑

1≤k≤K
K ·

[
K

k

]
· tk
∣∣k〉


=
1∏

i<K+1 t+i
·

(
K ·

[
K

1

]
· t1
∣∣1〉+

(
K ·

[
K

2

]
+

[
K

1

])
· t2
∣∣2〉 + · · · +

(
K ·

[
K

K

]
+

[
K

K−1

])
· tK

∣∣K 〉+

[
K

K

]
· tK+1

∣∣K+1
〉)

(A.2)
=

1∏
i<K+1 t+i

·

([
K+1

1

]
· t1
∣∣1〉+

[
K+1

2

]
· t2
∣∣2〉 + · · · +[

K+1

K

]
· tK

∣∣K 〉+

[
K+1

K+1

]
· tK+1

∣∣K+1
〉)

=
1∏

i<K+1 t+i
·

∑
1≤k≤K+1

[
K+1

k

]
· tk
∣∣k〉

= stir[K+1](t).

(iii) By induction on K, using items (i) and (ii). �

As an aside, there is a no draw-delete channel {1, . . . ,K + 1} → {1, . . . ,K} that commutes with size,
as in Lemma A.1 (i), see [22] for more information about draw-add and draw-delete, for multisets and
partitions.

Proof of Theorem 7.1

For K ≥ 1 we have two D∞-channels:

R>0 ◦
⊗
K pois

//NK R>0 ◦
pois[K−]

//N with

{ (⊗
K pois

)
(λ) = pois[λ]⊗ · · · ⊗ pois[λ](

pois[K−]
)
(λ) = pois[Kλ].

In addition, there is the sum sufficient statistic with its dagger sum† in:

NK sum //N N ◦sum† //NK with


sum(k) =

∑
i ki

sum†(n) =
∑

k∈sum−1(n)

(
n
k

)
Kn

∣∣k〉
We choose to prove Theorem 7.1 via the predicate formulation of (14). For predicates p ∈ Pred(NK) and
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q ∈ Pred(N), there is an adjoint correspondence:(⊗
K pois

)
(λ) |= p & (sum �= q) =

∑
k∈NK

∏
i
pois[λ](ki) · p

(
k
)
· q
(
sum(k)

)
=
∑
k∈NK

∏
i
e−λ · λ

ki

ki!
· p
(
k
)
· q
(
sum(k)

)
=
∑
k∈NK

e−Kλ · λ
sum(k)∏
i ki!

· p
(
k
)
· q
(
sum(k)

)
=
∑
n∈N

∑
k∈sum−1(n)

e−Kλ · λ
n

n!
·
(
n

k

)
· p
(
k
)
· q(n)

=
∑
n∈N

e−Kλ · (Kλ)n

n!
·

 ∑
k∈sum−1(n)

(
n
k

)
Kn
· p
(
k
) · q(n)

=
∑
n∈N

pois[Kλ](n) ·
(
sum† �= p

)
(n) · q(n)

=
(
pois[K−]

)
(λ) |=

(
sum† �= p

)
& q.
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