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Abstract

Building on our work on type refinement systems, we continue developing the thesis that many kinds of deductive systems
may be usefully modelled as functors and derivability as a lifting problem, focusing in this work on derivability in context-free
grammars. We begin by explaining how derivations in any context-free grammar may be naturally encoded by a functor of
operads from a freely generated operad into a certain “operad of spliced words”. This motivates the introduction of a more
general notion of context-free grammar over any category, defined as a finite species S equipped with a color denoting the start
symbol and a functor of operads p : Free S → W[C] into the operad of spliced arrows in C, generating a context-free language of
arrows. We show that many standard properties of context-free grammars can be formulated within this framework, thereby
admitting simpler analysis, and that usual closure properties of context-free languages generalize to context-free languages
of arrows. One advantage of considering parsing as a lifting problem is that it enables a dual fibrational perspective on the
functor p via the notion of displayed operad, corresponding to a lax functor of operads W[C] → Span(Set). We show that
displayed free operads admit an explicit inductive definition, using this to give a reconstruction of Leermakers’ generalization of
the CYK parsing algorithm. We then turn to the Chomsky-Schützenberger Representation Theorem. We start by explaining
that a non-deterministic finite state automaton over words, or more generally over arrows of a category, can be seen as a
category Q equipped with a pair of objects denoting initial and accepting states and a functor of categories Q → C satisfying
the unique lifting of factorizations (ULF) property and the finite fiber property, recognizing a regular language of arrows.
Then, we explain how to extend this notion of automaton to functors of operads, which generalize tree automata, allowing
us to lift an automaton over a category to an automaton over its operad of spliced arrows. We show that every context-free
grammar over a category can be pulled back along a non-deterministic finite state automaton over the same category, and
hence that context-free languages are closed under intersection with regular languages. The last and important ingredient is
the identification of a left adjoint C[−] : Operad → Cat to the operad of spliced arrows functor W[−] : Cat→ Operad. This
construction builds the contour category C[O] of any operad O, whose arrows have a geometric interpretation as “oriented
contours” of operations. A direct consequence of the contour / splicing adjunction is that every pointed finite species induces
a universal context-free grammar, generating a language of tree contour words. Finally, we prove a generalization of the
Chomsky-Schützenberger Representation Theorem, establishing that any context-free language of arrows over a category C is
the functorial image of the intersection of a C-chromatic tree contour language and a regular language.
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1 Introduction

In “Functors are Type Refinement Systems” [25], we argued for the idea that rather than being modelled
merely as categories, type systems should be modelled as functors p : D → T from a category D whose
morphisms are typing derivations to a category T whose morphisms are the terms corresponding to the
underlying subjects of those derivations. One advantage of this fibrational point of view is that the
notion of typing judgment receives a simple mathematical status, as a triple (R, f, S) consisting of two
objects R,S in D and a morphism f in T such that p(R) = dom(f) and p(S) = cod(f). The question of
finding a typing derivation for a typing judgment (R, f, S) then reduces to the lifting problem of finding
a morphism α : R→ S such that p(α) = f . We developed this perspective in a series of papers [25,27,26],
and believe that it may be usefully applied to a large variety of deductive systems, beyond type systems
in the traditional sense. In this work, we focus on derivability in context-free grammars, a classic topic in
formal language theory with wide applications in computer science.

To set the stage and motivate the overall approach, let us begin by quickly explaining how context-
free grammars naturally give rise to certain functors of colored operads D → T . We will assume that
the reader is already familiar with context-free grammars and languages [30] as well as with operads or
multicategories [23, Ch. 2]. Note that “multicategory” and “colored operad” are two different names in
the literature for the same concept, and in this paper we will often just use the word operad, it being
implicit that operads always carry a (potentially trivial) set of colors. We write f ◦ (g1, . . . , gn) for parallel
composition of operations in an operad, and f ◦i g for the partial composition of g into f after the first i
inputs.

Classically, a context-free grammar is defined as a tuple G = (Σ, N, S, P ) consisting of a finite set Σ of
terminal symbols, a finite set N of non-terminal symbols, a distinguished non-terminal S ∈ N called the
start symbol, and a finite set P of production rules of the form R → σ where R ∈ N and σ ∈ (N ∪ Σ)∗

is a string of terminal or non-terminal symbols. Observe that any sequence σ on the right-hand side
of a production can be factored as σ = w0R1w1 . . . Rnwn where w0, . . . , wn are words of terminals and
R1, . . . , Rn are non-terminal symbols. We will use this simple observation in order to capture derivations
in context-free grammars by functors of operads D → T from an operad D whose colors are non-terminals
to a certain monochromatic operad T =W[Σ] that we like to call the operad of spliced words in Σ. The
n-ary operations of W[Σ] consist of sequences w0−w1− . . .−wn of n+ 1 words in Σ∗ separated by n gaps
notated with the − symbol, with composition defined simply by “splicing into the gaps” and interpreting
juxtaposition by concatenation in Σ∗. For example, the parallel composition of the spliced word a−b−c
with the pair of spliced words d−e−f and ε−a is defined as (a−b−c)◦ (d−e−f, ε−a) = ad−e−fb−ac. The
identity operation is given by the spliced word ε−ε, and it is routine to check that the operad axioms are
satisfied.

Now, to any context-free grammar G we can associate a free operad D[G] that we call the (colored) op-
erad of derivations in G. Its colors are the non-terminal symbols R ∈ N of the grammar, while its opera-
tions are freely generated by the production rules, with each rule r ∈ P of the form R→ w0R1w1 . . . Rnwn
giving rise to an n-ary operation r : R1, . . . , Rn → R. These basic operations freely generate the op-
erad D[G] whose general operations R1, . . . , Rn → R can be regarded as (potentially incomplete) parse
trees with root label R and free leaves labelled R1, . . . , Rn, and with each node labelled by a production
rule of G. Moreover, this free operad comes equipped with an evident forgetful functor D[G] → W[Σ]
that sends every non-terminal symbol R to the unique color of W[Σ], and every generating operation
r : R1, . . . , Rn → R as above to the spliced word w0− . . .−wn, extending to parse trees homomorphically.
See Fig. 1 for an illustration.

In the rest of the paper, we will see how this point of view may be generalized to define a notion of
context-free language of arrows between two objects A and B in any category C, by first introducing a
certain operad W[C] of sliced arrows in C. We will see that many standard concepts and properties of
context-free grammars and languages can be formulated within this framework, thereby admitting simpler
analysis, and that parsing may indeed be profitably considered from a fibrational perspective, as a lifting
problem along a functor from a freely generated operad. We will also develop a notion of non-deterministic
finite state automaton and regular language of arrows in a category, and show that context-free languages



Melliès and Zeilberger 11–3

𝓓[G]

1 : S → NP VP
2 : NP → mom
3 : NP → tom
4 : VP → loves NP

S

VPNP

NP NP VP

NP

1 2 3 4

ε-␣-ε mom tom loves␣-ε

↦ ↦ ↦ ↦

𝓦[Σ]

↦

S

VPNP

NP

1

3

2

4

ε-␣-ε ∘ (tom, loves␣-ε∘mom)
= tom␣loves␣mom

Fig. 1. Example of a context-free grammar and the corresponding functor D[G]→W[Σ], indicating the action of the functor
on the generating operations of D[G] as well the induced action on a closed derivation.

are closed under intersection with regular languages. Finally, we will establish a categorical generalization
of the Chomsky-Schützenberger representation theorem, relying on a fundamental adjunction between
categories and operads that we call the contour / splicing adjunction.

Related work.

The functorial perspective on context-free grammars that we just sketched and take as a starting point
for this article (§2) is very similar to that of Walters in his brief “note on context-free languages” [32],
with the main difference that we generalize it to context-free languages over any category by considering
the operad of sliced arrows construction. It is also closely related to de Groote’s treatment of CFGs in his
paper introducing abstract categorial grammars [8] and in a later article with Pogodalla [9], which were
developed within a λ-calculus framework rather than a categorical / operadic one. The contour category
construction and the contour / splicing adjunction between operads and categories is fundamental to
our treatment of the Chomsky-Schützenberger representation theorem (§4), and provides an unexpected
geometric lens on context-free grammars, evocative of the geometry of interaction [13]. Although the
adjunction is not identified, this geometric perspective is also apparent in Slavnov’s recent work [31],
inspired both by abstract categorial grammars and by proof-nets for classical linear logic [12], wherein he
constructs a compact closed monoidal category of word cobordisms reminiscent of the operad of spliced
words.

The fibrational perspective on non-deterministic finite state automata as finitary ULF functors that
we take in the middle of this article (§3) is also similar in spirit to (and roughly dual to) Colcombet and
Petrişan’s proposal [6] for modelling various forms of automata as functors. Our approach is motivated
by the desire to place both context-free grammars and non-deterministic finite state automata within
a common framework, facilitating for example taking the intersection of a context-free language with a
regular language. Our main goal is to develop a unified framework for type systems and other deductive
systems, which would benefit from the classical body of work on context-free languages and automata
theory, and in a future article we intend to consider parsing from left to right [17,10].

2 Context-free languages of arrows in a category

In this section we explain how the functorial formulation of context-free grammars discussed in the Intro-
duction extends naturally to context-free grammars over any category, which at the same time leads to
a simplification of the classical treatment of context-free languages while also providing a useful general-
ization. First, we need to explain how the operad W[Σ] of spliced words mentioned in the Introduction
generalizes to define an operad W[C] of spliced arrows over any category C.
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Fig. 2. Left: a constant ofW[C]. Middle: an identity operation. Right: illustration of partial composition. Here we compose an
operation g = u0−u1−u2 : (C1, D1), (C2, D2)→ (A2, B2) into f = w0−w1−w2−w3 : (A1, B1), (A2, B2), (A3, B3)→ (A,B) at
the gap labelled 1 to obtain the operation f ◦1 g = w0−w1u0−u1−u2w2−w3 : (A1, B1), (C1, D1), (C2, D2), (A3, B3)→ (A,B).

2.1 The operad of spliced arrows of a category

Definition 2.1 Let C be a category. The operad W[C] of spliced arrows in C is defined as follows:

• its colors are pairs (A,B) of objects of C;
• its n-ary operations (A1, B1), . . . , (An, Bn) → (A,B) consist of sequences w0−w1− . . .−wn of n + 1

arrows in C separated by n gaps notated −, where each arrow must have type wi : Bi → Ai+1 for
0 ≤ i ≤ n, under the convention that B0 = A and An+1 = B;

• composition of spliced arrows is performed by “splicing into the gaps”: formally, the partial composition
f ◦i g of a spliced arrow g = u0− . . .−um into another spliced arrow f = w0− . . .−wn is defined by
substituting g for the ith occurrence of − in f (starting from the left using 0-indexing) and interpreting
juxtaposition by sequential composition in C (see Fig. 2 for an illustration);

• the identity operation on (A,B) is given by idA−idB.

It is routine to check that W[C] satisfies the associativity and neutrality axioms of an operad, these
reducing to associativity and neutrality of composition of arrows in C. Indeed, the spliced arrows operad
construction defines a functor W[−] : Cat→ Operad since any functor of categories F : C → D induces a
functor of operads W[F ] : W[C] → W[D], acting on colors by (A,B) 7→ (FA,FB) and on operations by
w0− . . .−wn 7→ Fw0− . . .−Fwn.

Example 2.2 Words w ∈ Σ∗ may be regarded as the arrows w : ∗ → ∗ of a one-object category that
we notate BΣ, with sequential composition of arrows in BΣ given by concatenation. The operad W[Σ] of
spliced words in Σ described in the Introduction is identical to the operad W[BΣ] of spliced arrows in BΣ,
and more generally, any monoid seen as a one-object category induces a corresponding operad of spliced
words of that monoid.

Remark 2.3 Although the one-object category BΣ is a free category (being freely generated by the arrows
a : ∗ → ∗ ranging over letters a ∈ Σ), this property of being freely generated does not extend to its operad
of spliced words. Indeed, an operad of spliced arrows W[C] is almost never a free operad. That’s because
any pair of objects A and B induces a binary operation idA−idA−idB : (A,A), (A,B)→ (A,B), and any
arrow w : A → B of C induces a corresponding constant w : (A,B). Since idA−idA−idB ◦ (idA, w) = w,
W[C] cannot be a free operad except in the trivial case where C has no objects and no arrows.

Example 2.4 The ordinal sum [20] of two categories C and D may be constructed as a category C +σ D
whose objects are the disjoint union of the objects of both categories, and whose arrows are the disjoint
union of the arrows of both categories with an additional arrow A → B freely adjoined for every pair
of objects A ∈ C, B ∈ D. The operations of the spliced arrows operad W[C +σ D] may be described
accordingly as consisting of a (possibly empty) sequence of arrows of C followed by a (possibly empty)
sequence of arrows of D. As a special case, consider spliced arrows over the ordinal sum B>Σ = BΣ +σ 1,
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which is the two-object category obtained from BΣ by freely adjoining an object > and an arrow $ : ∗ → >.
The operad W[B>Σ ] includes operations of the form f = w0− . . .−wn$ : (∗, ∗), . . . , (∗, ∗) → (∗,>) which
may be seen as spliced words with an explicit “end of input” marker, since it is impossible to concatenate
anything after the last word wn using only substitution in the operad. (See Example 2.8 below for an
application of this construction.)

Remark 2.5 The operad W[1] of spliced arrows over the terminal category is isomorphic to the terminal
operad, with a single color (∗, ∗), and a single n-ary operation id− . . .−id : (∗, ∗), . . . , (∗, ∗) → (∗, ∗)
of every arity n. Likewise, the operad of spliced arrows over the product of two categories decomposes
as a product of spliced arrow operads W[C × D] ∼= W[C] × W[D]. This might suggest that the functor
W[−] : Cat→ Operad is a right adjoint, and we will see in §4.2 that this is indeed the case.

2.2 Context-free grammars and context-free derivations over a category

We already sketched in the Introduction how an ordinary context-free grammar G = (Σ, N, P, S) gives rise
to a freely generated operad D[G] equipped with a functor to the operad of spliced words W[Σ], where
D[G] has the set of non-terminals N as objects and operations freely generated by the productions in P .
To make this more precise and to generalize to context-free grammars over arbitrary categories, we first
need to recall the notion of a (colored non-symmetric) species, and how one gives rise to a free operad.

A colored non-symmetric species, which we abbreviate to “species” 3 for short, is a tuple S = (C, V, i, o)

consisting of a span of sets C∗ V Ci o with the following interpretation: C is a set of “colors”,
V is a set of “nodes”, and the functions i : V → C∗ and o : V → C return respectively the list of input
colors and the unique output color of each node. Adopting the same notation as we use for operations
of an operad, we write x : R1, . . . , Rn → R to indicate that x ∈ V is a node with list of input colors
i(x) = (R1, . . . , Rn) and output color o(x) = R. However, it should be emphasized that a species by
itself only contains bare coloring information about the nodes, and does not say how to compose them as
operations.

We say that a species is finite (also called polynomial [16]) just in case both sets C and V are finite.
A map of species φ : S → R from S = (C, V, i, o) to R = (D,W, i′, o′) is given by a pair φ = (φC , φV )

of functions φC : C → D and φV : V →W making the diagram commute:

C∗ V C

D∗ W D

φ∗C

i o

φV φC

i′ o′

Equivalently, overloading φ for both φC and φV , every node x : R1, . . . , Rn → R of S must be sent to a node
φ(x) : φ(R1), . . . , φ(Rn)→ φ(R) of R. Every operad O has an underlying species with the same colors and
whose nodes are the operations of O, and this extends to a forgetful functor Forget : Operad → Species
from the category of operads and functors of operads to the category of species and maps of species.
Moreover, this forgetful functor has a left adjoint

Species ⊥ Operad
Free

Forget

(1)

which sends any species S to an operad Free S with the same set of colors and whose operations are
freely generated from the nodes of S. By the universal property of the adjoint pair, there is a natural

3 Species in this sense are also called “multigraphs” [18] since they bear a precisely analogous relationship to
multicategories as graphs do to categories, but that terminology unfortunately clashes with a different concept in
graph theory. We use “species” to emphasize the link with Joyal’s theory of (uncolored symmetric) species [15] and
also with generalized species [11].
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isomorphism of hom-sets
Operad(Free S,O) ∼= Species(S,ForgetO)

placing functors of operads p : Free S → O and maps of species φ : S → ForgetO in one-to-one corre-
spondence. In the sequel, we will leave the action of the forgetful functor implicit, writing O for both an
operad and its underlying species ForgetO.

We are now ready to introduce the main definitions of this section.

Definition 2.6 A context-free grammar of arrows is a tuple G = (C,S, S, φ) consisting of a finitely
generated category C, a finite species S equipped with a distinguished color S ∈ S called the start symbol,
and a functor of operads p : Free S → W[C]. A color of S is then called a non-terminal while an operation
of Free S is called a derivation. The context-free language of arrows LG generated by the grammar
G is the subset of arrows in C which, seen as constants of W[C], are in the image of constants of color S
in Free S, that is, LG = { p(α) | α : S }.

As suggested in the Introduction and by Example 2.2, every context-free grammar in the classical sense
G = (Σ, N, S, P ) corresponds to a context-free grammar over BΣ. For instance, for the grammar in Fig. 1,
the corresponding species S has three colors and four nodes, and the functor p is uniquely defined by
the action on the generators in S displayed in the middle of the figure. Conversely, any finite species S
equipped with a color S ∈ S and a functor of operads p : Free S → W[BΣ] uniquely determines a context-
free grammar over the alphabet Σ. Indeed, the colors of S give the non-terminals of the grammar and S
the distinguished start symbol, while the nodes of S together with the functor p give the production rules
of the grammar, with each node x : R1, . . . , Rn → R such that p(x) = w0−w1− . . .−wn determining a
context-free production rule x : R→ w0R1w1 . . . Rnwn.

Proposition 2.7 A language L ⊆ Σ∗ is context-free in the classical sense if and only if it is the language
of arrows of a context-free grammar over BΣ.

An interesting feature of the general notion of context-free grammar of arrows G = (C,S, S, p) is that the
non-terminals of the grammar are sorted in the sense that every color of S is mapped by p to a unique
color of W[C], corresponding to a pair of objects of C. Adapting the conventions from our work on type
refinement systems, we sometimes write R@ (A,B) to indicate that p(R) = (A,B) and say that R refines
the “gap type” (A,B). The language LG generated by a grammar with start symbol S@ (A,B) is a subset
of the hom-set C(A,B).

Example 2.8 To illustrate some of the versatility afforded by the more general notion of context-free
grammar of arrows, consider a CFG over the category B>Σ from Example 2.4. Such a grammar may
include production rules that can only be applied upon reaching the end of the input, which is useful in
practice, albeit usually modelled in an ad hoc fashion. For example, the grammar of arithmetic expressions
defined by Knuth in the original paper on LR parsing [17, example (27)] may be naturally described as a
grammar over B>Σ , which in addition to having three “classical” non-terminals E, T, P @ (∗, ∗) contains a
distinguished non-terminal S@(∗,>). Knuth’s production 0 : S → E$ is then just a unary node 0 : E → S
in S, mapped by p to the operation ε−$ : (∗, ∗)→ (∗,>) in W[B>Σ ].

More significant examples of context-free languages of arrows over categories with more than one object
will be given in §4, including context-free grammars over the runs of finite-state automata.

Finally, let us remark that context-free grammars of arrows may be organized into a comma cate-
gory, observing that a grammar G may be equivalently considered as a triple of a pointed finite species
(S, S), a bipointed finitely generated category (C, A,B), and a map of pointed operads p : (Free S, S) →
(W[C], (A,B)). Since the operad of spliced arrows construction lifts to a functorW[−] : Cat•,• → Operad•
sending a category C equipped with a pair of objects A and B to the operad W[C] equipped with the
color (A,B), and likewise the free / forgetful adjunction (1) lifts to an adjunction between pointed
species and pointed operads, a CFG can therefore be considered as an object of the comma category
Free ↓ W. Although we will not explore this perspective further here, let us mention that it per-
mits another way of understanding the language of arrows generated by a grammar G: as constants
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of W[C] are in bijection with arrows of C, we have a natural isomorphism el ◦W[−] ∼= hom for the evident
functors hom : Cat•,• → Set and el : Operad• → Set, and LG is precisely the image of the function
el(p) : el(Free S, S)→ el(W[C], (A,B)) ∼= C(A,B).

2.3 Properties of a context-free grammar and its associated language

Standard properties of context-free grammars [30, Ch. 4], considered as CFGs of arrows G = (BΣ,S, S, p),
may be reformulated as properties of either the species S, the operad Free S, or the functor p : Free S →
W[BΣ], with varying degrees of naturality:

• G is linear just in case S only has nodes of arity ≤ 1. It is left-linear (respectively, right-linear) just
in case it is linear and every unary node x of S is mapped by p to an operation of the form ε−w
(resp. p(x) = w−ε).

• G is in Chomsky normal form if S only has nodes of arity 2 or 0, the color S does not appear as the input
of any node, every binary node is mapped by p to ε−ε−ε inW[BΣ], and every nullary node is mapped to
a letter a ∈ Σ, unless R = S in which case it is possible that p(x) = ε. (This last condition can be made
more natural by considering G as a context-free grammar over B>Σ with S @ (∗,>), see Example 2.8
above.)

• G is bilinear (a generalization of Chomsky normal form [19,22]) iff S only has nodes of arity ≤ 2.

• G is unambiguous iff for any pair of constants α, β : S in Free S, if p(α) = p(β) then α = β. Note that
if p is faithful then G is unambiguous, although faithfulness is a stronger condition in general.

• A non-terminal R of G is nullable if there exists a constant α : R of Free S such that p(α) = ε.

• A non-terminal R of G is useful if there exists a pair of a constant α : R and a unary operation β : R→ S.
Note that if G has no useless non-terminals then G is unambiguous iff p is faithful.

Observe that almost all of these properties can be immediately translated to express properties of context-
free grammars of arrows over any category C. Basic closure properties of classical context-free languages
also generalize easily to context-free languages of arrows.

Proposition 2.9 (i) If L1, L2 ⊆ C(A,B) are context-free languages of arrows, so is their union L1∪L2 ⊆
C(A,B).

(ii) If L1 ⊆ C(A1, B1), . . . , Ln ⊆ C(An, Bn) are context-free languages of arrows, and w0−w1− . . .−wn :
(A1, B1), . . . , (An, Bn) → (A,B) is an operation of W[C], then the “spliced concatenation”
w0L1w1 . . . Lnwn = {w0u1w1 . . . unwn | u1 ∈ L1, . . . , un ∈ Ln } ⊆ C(A,B) is also context-free.

(iii) If L ⊆ C(A,B) is a context-free language of arrows in a category C and F : C → D is a functor of
categories, then the functorial image F (L) ⊆ D(F (A), F (B)) is also context-free.

Proof. The proofs of (i) and (ii) are just refinements of the standard proofs for context-free languages of
words, keeping track of the underlying gap types. For (iii), suppose given a grammar G = (C,S, S, p) and
a functor of categories F : C → D. Then the grammar F (G) generating the language F (LG) is defined by
postcomposing p with W[F ] : W[C] → W[D] while keeping the species S and start symbol S the same,
F (G) = (D,S, S, pW[F ]).

2

We will see in §4.1 that other classical closure properties also generalize to context-free languages of
arrows. Finally, we can state a translation principle that two grammars G1 = (C,S1, S1, p1) and G2 =
(C,S2, S2, p2) over the same category have the same language whenever there is a fully faithful functor of
operads T : Free S1 → Free S2 such that p1 = Tp2 and T (S1) = S2.

2.4 A fibrational view of parsing as a lifting problem

We have seen how any context-free grammar G = (C,S, S, p) gives rise to a language LG = { p(α) | α : S },
corresponding to the arrows of C which, seen as constants of W[C], are in the image of some constant of
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color S of the free operad Free S. However, beyond characterizing the language defined by a grammar, in
practice one is often confronted with a dual problem, namely that of parsing: given a word w, we want
to compute the set of all its parse trees, or at least determine all of the non-terminals which derive it. In
our functorial formulation of context-free derivations, this amounts to computing the inverse image of w
along the functor p, i.e., the set of constants p−1(w) = {α | p(α) = w }, or alternatively the set of colors
in the image of p−1(w) along the output-color function.

To better understand this view of parsing as a lifting problem along a functor of operads, we find
it helpful to first recall the correspondence between functors of categories p : D → T and lax functors
F : T → Span(Set), where Span(Set) is the bicategory whose objects are sets, whose 1-cells S : X −→| Y
are spans X ← S → Y , and whose 2-cells are morphisms of spans. Suppose given such a functor p : D → T .
To every object A of T there is an associated “fiber” FA = p−1(A) of objects in D living over A, while
to every arrow w : A → B of T there is an associated fiber Fw = p−1(w) of arrows in D living over w,
equipped with a pair of projection functions FA ← Fw → FB mapping any lifting α : R→ S of w : A→ B
to its source R ∈ FA and target S ∈ FB. Moreover, given a pair of composable arrows u : A → B and
v : B → C in T , there is a morphism of spans

FuFv Fuv : FA FC| (2)

from the composite of the spans Fu : FA−→| FB and Fv : FB −→| FC associated to u : A → B and
v : B → C to the span Fuv : FA−→| FC associated to the composite arrow uv : A→ C. This morphism of
spans is realized using composition in the category D, namely by the function taking any pair of a lifting
α : R → S of u and a lifting β : S → T of v to the composite αβ : R → T , which is a lifting of uv by
functoriality p(αβ) = p(α)p(β). Similarly, the identity arrows in the category D define, for every object A
of the category T , a morphism of spans

idFA FidA : FA FA| (3)

from the identity span FA ← FA → FA to the span associated to the iden-
tity arrow idA : A → A. Associativity and neutrality of composition in
D ensure that the 2-cells (2) and (3) make the diagrams below commute:

FuFvFw FuFvw

FuvFw Fuvw

Fu

FidAFu

Fu

Fu

FuFidB

Fu

for all triples of composable arrows u : A → B, v : B → C and w : C → D, and therefore that this
collection of data defines what is called a lax functor F : T → Span(Set). In general it is only lax, in the
sense that the 2-cells FuFv ⇒ Fuv and idFA ⇒ FidA are not necessarily invertible.

Conversely, starting from the data provided by a lax functor F : T → Span(Set), we can define a
category noted ∫ F together with a functor π : ∫ F → T . The category ∫ F has objects the pairs (A,R)
of an object A in T and an element R ∈ FA, and arrows (w,α) : (A,R) → (B,S) the pairs of an arrow
w : A→ B in T and an element α ∈ Fw mapped to R ∈ FA and S ∈ FB by the respective legs of the span
FA ← Fw → FB. The composition and identity of the category ∫ F are then given by the morphisms of
spans FuFv ⇒ Fuv and idFA ⇒ FidA witnessing the lax functoriality of F : T → Span(Set). The functor
π : ∫ F → T is given by the first projection. This construction of a category ∫ F equipped with a functor
π : ∫ F → T starting from a lax functor F : T → Span(Set) is a mild variation of Bénabou’s construction
of the same starting from a lax normal functor F : T op → Dist [3, §7], which is itself a generalization of
the well-known Grothendieck construction of a fibration starting from a pseudofunctor F : T op → Cat.
One can show that given a functor of categories p : D → T , the construction applied to the associated
lax functor F : T → Span(Set) induces a category ∫ F isomorphic to D, in such a way that p coincides
with the isomorphism composed with π. Recently, Ahrens and Lumsdaine [1] have introduced the useful
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terminology “displayed category” to refer to this way of presenting a category D equipped with a functor
D → T as a lax functor T → Span(Set), with their motivations coming from computer formalization of
mathematics.

The constructions which turn a functor of categories p : D → T into a lax functor F : T → Span(Set)
and back into a functor π : ∫ F → T can be adapted smoothly to functors of operads, viewing
Span(Set) as a 2-categorical operad whose n-ary operations S : X1, . . . , Xn −→| Y are multi-legged-spans

X1

... S Y

Xn

or equivalently spans X1 × · · · ×Xn ← S → Y , and with the same notion of 2-cell. We will follow Ahrens
and Lumsdaine’s suggestion and refer to the data of such a lax functor F : T → Span(Set) representing
an operad D ∼= ∫ F equipped with a functor p : D → T as a displayed operad.

2.5 An inductive formula for displayed free operads

It is folklore that the free operad over a species S = (C, V, i, o) may be described concretely as a certain
family of trees: operations of Free S are interpreted as rooted planar trees whose edges are colored by the
elements of C and whose nodes are labelled by the elements of V , subject to the constraints imposed by
the functions i : V → C∗ and o : V → C. The formal construction of the free operad may be viewed as
a free monoid construction, adapted to a situation where the ambient monoidal product (in this case, the
composition product of species) is only distributive on the left, see [24, II.1.9] and [2, Appendix B].

From the perspective of programming semantics, it is natural to consider the underlying species of
Free S as an inductive data type, corresponding to the initial algebra for the endofunctor WS on C-colored
species defined by

WS = R 7→ I + S ◦ R
where + denotes the coproduct of C-colored species which is constructed by taking the disjoint union of
operations, while ◦ and I denote respectively the composition product of C-colored species and the identity
species, defined as follows. Given two C-colored species S and R, the n-ary nodes R1, . . . , Rn → R of
S ◦ R are formal composites g • (f1, . . . , fk) consisting of a node g : S1, . . . , Sk → S of S and of a tuple of
nodes f1 : Γ1 → S1, . . . , fk : Γk → Sk of R, such that the concatenation of the lists of colors Γ1, . . . ,Γk is
equal to the list R1, . . . , Rn. The unit I is the C-colored species with a single unary node ∗R : R→ R for
every color R ∈ C, and no other nodes.

As the initial WS-algebra, the free operad over S is equipped with a map of species I + S ◦ Free S −→
Free S, which by the Lambek lemma is invertible, with the following interpretation: any operation of
Free S is either an identity operation, or the parallel composition of a node of S with a list of operations
of Free S. Note that this interpretation also corresponds to a canonical way of decomposing trees labelled
by the species S, also known as S-rooted trees [4, §3.2].

It is possible to derive an analogous inductive characterization of functors p : Free S → O from a free
operad into an arbitrary operad O considered as displayed free operads, i.e., as lax functors F : O →
Span(Set) generated by an underlying map of species φ : S → O. Two subtleties arise. First, that the
species S and the operad O may in general have a different set of colors, related by the change-of-color
function φC . To account for this, rather than restricting the operations +, ◦, I to the category of C-colored
species, one should consider them as global functors

+, ◦ : Species ×Set Species → Species I : Set→ Species

on the “polychromatic” category of species, which respect the underlying sets of colors in a functorial
way. Second, and more significantly, the above functor WS transports a species R living over O to a
species living over I +O ◦ O, so that in order to obtain again a species living over O (and thus define an
endofunctor) one needs to “push forward” along the canonical WO-algebra [e,m] : I +O ◦ O −→ O that
encodes the operad structure of O, seen as a monoid in (Species, ◦, I). A detailed proof is beyond the
scope of this paper, but we nevertheless state the following:
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Proposition 2.10 Let φ : S → O be a map of species from a species S into an operad O, and let
p : Free S → O be the corresponding functor from the free operad. Then the associated lax functor
F : O → Span(Set) computing the fibers of p is given by FA = φ−1(A) on colors of O, and by the
least family of sets Ff indexed by operations f : A1, . . . , An → A of O such that

Ff ∼=
∑
f=idA
φ(R)=A

idR +
∑

f=g◦(h1,...,hk)

φ−1(g) • (Fh1 , . . . , Fhk) (4)

where we write ◦ for composition in the operad O and • for formal composition of nodes in S with operations
in Free S. Specializing the formula to constant operations, the left summand disappears and (4) simplifies
to:

Fc ∼=
∑

c=g◦(c1,...,ck)

φ−1(g) • (Fc1 , . . . , Fck) (5)

2.6 Application to parsing

Instantiating (5) with the underlying functor p : Free S → W[C] of a context-free grammar of arrows
generated by a map of species φ : S → W[C], we immediately obtain the following characteristic formula
for the family of sets of parse trees Fw of an arrow w in C, seen as liftings of the constant w in W[C] to a
constant in Free S:

Fw ∼=
∑

w=w0u1wk...unwk

φ−1(w0−w1− . . .−wk) • (Fu1 , . . . , Fuk) (6)

Taking the image along the function returning the root label of a parse tree (i.e., the underlying color of
the constant in Free S), we get that the family of sets of non-terminals Nw deriving w is the least family
of sets closed under the following inference rule:

w = w0u1w1 . . . ukwk

(x : R1, . . . , Rk → R) ∈ S
φ(x) = w0−w1− . . .−wn R1 ∈ Nu1 . . . Rk ∈ Nuk

R ∈ Nw (7)

This inference rule is essentially the characteristic formula expressed by Leermakers [22] for the defining
relation of the “C-parser”, which generalizes the well-known Cocke-Younger-Kasami (CYK) algorithm.
Presentations of the CYK algorithm are usually restricted to grammars in Chomsky normal form (cf. [19]),
but as observed by Leermakers, the relation Nw defined by (7) can be solved effectively for any context-free
grammar G and given word w = a1 . . . an by building up a parse matrix Ni,j indexed by the subwords
wi,j = ai+1 . . . aj for all 1 ≤ i ≤ j ≤ n, yielding a cubic complexity algorithm in the case that G is bilinear
(cf. §2.3). Moreover, by adding non-terminals, it is always possible to transform a CFG into a bilinear
CFG that generates the same language, even preserving the original derivations up to isomorphism.

Proposition 2.11 For any context-free grammar of arrows G = (C,S, S, p), there is a bilinear context-free
grammar of arrows Gbin = (C,Sbin, S, pbin) together with a fully faithful functor of operads B : Free S →
Free Sbin such that p = Bpbin. In particular, LG = LGbin

by the translation principle.

3 Non-deterministic finite state automata as finitary ULF functors over categories
and operads

3.1 Warmup: non-deterministic word automata as finitary ULF functors over categories

Classically, a non-deterministic finite state automaton M = (Σ, Q, δ, q0, F ) consists of a finite alphabet Σ,
a finite set Q of states, a function δ : Tran → Q × Σ × Q from a finite set Tran of transitions, an initial
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state q0 ∈ Q and a finite set of accepting states F ⊆ Q. We will focus first on the underlying “bare”
automaton M = (Σ, Q, δ) where the initial and the accepting states have been removed. Every such bare
automaton M induces a functor of categories p : Q → BΣ where Q is the category with the states of the
automaton as objects, and with arrows freely generated by arrows of the form t : q → q′ for any transition
t ∈ Tran such that δ(t) = (q, a, q′); and where the functor p : Q → BΣ transports every transition t : q → q′

with δ(t) = (q, a, q′) to the arrow a : ∗ → ∗ representing the letter a ∈ Σ in the category BΣ. Under this
formulation, every arrow α : q0 → qf of the category Q describes a run of the automaton M over the word
w = p(α) : ∗ → ∗ which starts in state q0 ∈ Q and ends in state qf ∈ Q, as depicted below:

q0 qf Q

∗ ∗ BΣ

α

p

w

One distinctive property of the functor p : Q → BΣ is that it has the unique lifting of factorizations (ULF)
property in the sense of Lawvere and Menni [21]. Recall that a functor of categories p : D → T has the
ULF property when:

For any arrow α of the category D, if p(α) = uv for some pair of arrows u and v of the category T ,

there exists a unique pair of arrows β and γ in D such that α = βγ and p(β) = u and p(γ) = v.

Note that a functor p : D → T has the ULF property precisely when the structure maps of the corre-
sponding lax functor F : T → Span(Set) discussed in §2.4 are invertible, i.e., F is a pseudofunctor. The
ULF property implies an important structural property of non-deterministic finite state automata: that
every arrow α : q0 → qf lying above some arrow p(α) = w corresponding to a run of the automaton can be
factored uniquely as a sequence of transitions along the letters of the word w. Conversely, we can easily
establish that

Proposition 3.1 A ULF functor p : Q → BΣ corresponds to a bare non-deterministic finite state automa-
ton precisely when the fiber p−1(∗) as well as the fiber p−1(w) is finite for all words w : ∗ → ∗.

This leads us to the following definitions.

Definition 3.2 We say that a functor p : Q → C is finitary if either of the following equivalent conditions
hold:

• the fiber p−1(A) as well as the fiber p−1(w) is finite for every object A and arrow w in the category C;
• the associated lax functor F : C → Span(Set) factors via Span(FinSet).

Definition 3.3 A non-deterministic finite state automaton over a category is given by a tuple
M = (C,Q, p : Q → C, q0, qf ) consisting of two categories C and Q, a finitary ULF functor p : Q → C, and
a pair q0, qf of objects of Q. An object of Q is then called a state and an arrow of Q is called a run of
the automaton. The regular language of arrows LM recognized by the automaton is the set of arrows
w in C that can be lifted along p to an arrow α : q0 → qf in Q, that is LM = { p(α) | α : q0 → qf }.

Note that the regular language of arrows LM recognized by an automaton M is a subset of the hom-set
C(A,B), where A = p(q0) and B = p(qf ).

Remark 3.4 Any non-deterministic finite state automaton M in the standard sense may be converted
into an automaton with a single accepting state (and without ε-transitions) that accepts the same lan-
guage, except in the case that the language contains ε and is not closed under concatenation. The usual
construction defines a new automaton M ′ with an additional state qf and the same transitions as M ,
except that every transition q → q′ to an accepting state q′ ∈ F of the old automaton is replaced by a
transition q → qf in the new automaton. The problem arises when the initial state q0 is also accepting, in
which case the language accepted by M ′ will be closed under concatenation.

Observe that this issue goes away if we instead consider the automaton obtained by transformation
of M as an automaton M ′ = (B>Σ ,Q′, p′, q0, qf ) over the two-object category B>Σ = BΣ +σ 1 defined in
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Example 2.4. Indeed, we can take Q′ and p′ to be defined from Q and p by adjoining a single object qf
lying over >, together with a single arrow q′ → qf lying over $ : ∗ → > for every accepting state q′ ∈ F of
M . Since arrows of type ∗ → > do not compose, the aforementioned problem does not arise.

Proposition 3.5 A language L ⊆ Σ∗ is regular in the classical sense if and only if L$ is the regular
language of arrows of a non-deterministic finite state automaton over B>Σ .

3.2 Non-deterministic tree automata as finitary ULF functors over operads

One nice aspect of the fibrational approach to non-deterministic finite state automata based on finitary
ULF functors is that it adapts smoothly when one shifts from word automata to tree automata. As a
first step in that direction, we first describe how the ULF and finite fiber properties may be extended to
functors of operads.

Definition 3.6 A functor of operads p : D → T has the unique lifting of factorizations property
(or is ULF) if any of the following equivalent conditions hold:

(i) for any operation α of D, if p(α) = g ◦ (h1, . . . , hn) for some operation g and list of operations
h1, . . . , hn of T , there exists a unique operation β and list of operations γ1, . . . , γn of D such that
α = β ◦ (γ1, . . . , γn) and p(β) = g and p(γ1) = h1, . . . , p(γn) = hn;

(ii) for any operation α of D, if p(α) = g ◦i h for some operations g and h of T and index i, there exists
a unique pair of operations β and γ of D such that α = β ◦i γ and p(β) = g and p(γ) = h;

(iii) the structure maps of the associated lax functor of operads F : T → Span(Set) discussed in §2.4 are
invertible.

Definition 3.7 We say that a functor of operads p : Q → O is finitary if either of the following equivalent
conditions hold:

• the fiber p−1(A) as well as the fiber p−1(f) is finite for every color A and operation f of the operad O;

• the associated lax functor of operads F : O → Span(Set) factors via Span(FinSet).

One can check that the underlying bare automaton M = (Σ, Q, δ) of any non-deterministic finite state
tree automaton [7] gives rise to a finitary ULF functor of operads p : Q → Free Σ, where Free Σ is the free
operad generated by the ranked alphabet Σ (which may be seen as an uncolored non-symmetric species),
where the operad Q has states of the automaton as colors, and operations freely generated by n-ary nodes
of the form t : q1, . . . , qn → q for every transition t ∈ Tran of the form δ(t) = (q1, . . . , qn, a, q) where a is an
n-ary letter in Σ, and where p transports every such n-ary transition t : q1, . . . , qn → q to the underlying
n-ary letter a : ∗, . . . , ∗ → ∗. This motivates us to proceed as for word automata and propose a more
general notion of finite state automaton over an arbitrary operad:

Definition 3.8 A non-deterministic finite state automaton over an operad is given by a tuple
M = (O,Q, p : Q → O, q) consisting of two operads O andQ, a finitary ULF functor of operads p : Q → O,
and a color q of Q. A color of Q is called a state, and an operation of Q is called a run tree of the
automaton p : Q → O. The regular language of constants LM recognized by the automaton is the set
of constants c in O that can be lifted along p to a constant α : q in Q, that is LM = { p(α) | α : q }.

3.3 From a word automaton to a tree automaton on spliced words

We now state a simple property of ULF functors establishing a useful connection between word and tree
automata.

Proposition 3.9 Suppose that p : Q → C is a functor of categories. Then, if p is ULF functor, so is the
functor of operads W[p] :W[Q]→W[C]. Moreover, if p is finitary then so is W[p].

From this it follows that every non-deterministic finite state automaton M = (C,Q, p, q0, qf ) over a given
category C induces a non-deterministic finite state automaton W[M ] = (W[C],W[Q],W[p], (q0, qf )) over
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the spliced arrow operad W[C]. Moreover, it is immediate that LM = LW[M ] since the constants of W[C]
are exactly the arrows of C. As we will see, these observations play a central role in our understanding
of the Chomsky and Schützenberger representation theorem [5]. Finally, let us emphasize that the notion
of finite state automaton over an operad is really a proper generalisation of the classical notion of tree
automaton since it allows taking a non-free operad as target, and in particular the non-free operad of
sliced arrows (see Remark 2.3). This is what enables us to transform an automaton on the arrows of C
into an automaton on the operations of the spliced arrow operad W[C], which could be seen as a kind of
tree automaton over “trees that bend” (cf. Fig. 2).

4 The Chomsky-Schützenberger Representation Theorem

4.1 Pulling back context-free grammars along finite state automata

Proposition 4.1 Suppose given a species S, a functor of operads p : Free S → O and a ULF functor of
operads pQ : Q → O. In that case, the pullback of p along pQ in the category of operads is obtained from
a corresponding pullback of φ : S → O along pQ : Q → O in the category of species:

Free S ′ Free S

pullback

Q O

p′

Free ψ

p

pQ

S ′ S

pullback

Q O

φ′

ψ

φ

pQ

(8)

This observation may be applied to pull back a context-free grammar G = (C,S, S, p) of arrows in a
category C, along a non-deterministic finite state automaton M = (C,Q, pM : QM → C, q0, qf ) over the
same category. The construction is performed by first considering the ULF functor of operads of spliced
arrows W[pM ] : W[Q] → W[C] deduced from the ULF functor of categories pM using Prop. 3.9. We
therefore have a pullback diagram of the form (8) in the category of operads for pQ = W[pM ] where
the species S ′ and the map of species φ′ : S ′ → W[Q] determining p′ are computed by a pullback
in the category of species. This pullback admits a concrete description: the colors of S ′ are triples
(q,R, q′) where p(R) = (pM (q), pM (q′)) and its n-ary nodes (q1, R1, q

′
1), . . . , (qn, Rn, q

′
n) → (q,R, q′) are

pairs (x, α) of a n-ary node x : R1, . . . , Rn → R of the species SG together with a n-ary spliced arrow
α = α0− . . .−αn : (q1, q

′
1), ..., (qn, q

′
n) → (q, q′) in W[Q] such that pM (α) = p(x), while the map of

species φ′ transports a color (q,R, q′) to the color (q, q′) of W[Q] and a n-ary node (x, α) to the n-
ary operation α. Since S is finite and the functor pM has finite fibers, the species S ′ is also finite.
To complete the construction, the pullback grammar G′ = (Q,S ′, S′, p′) is defined by taking the color
S′ = (q0, S, qf ) of the species S ′ as start symbol. Note that G′ is a context-free grammar over the arrows
of QM , which correspond to runs of the automaton M . In traditional syntax of context-free grammars,
we could describe it as having a production rule (q,R, q′) → α0(q1, R1, q

′
1)α1 . . . (qn, Rn, q

′
n)αn for every

production rule R → w0R1w1 . . . Rnwn of the original grammar G and sequence of n + 1 runs of the
automaton α0 : q → q1, α1 : q′1 → q2, . . . , αn : q′n → q′ over the respective words w0, . . . , wn.

We can then also derive a grammar G′′ = pM (G′) of arrows in C by taking the functorial image
(Prop. 2.9(iii)) of G′ along the functor pM : Q → C, which by construction will generate the intersection
of the context-free language of G and the regular language of M .

Proposition 4.2 For G′ and G′′ defined as above, we have LG′ = p−1
M (LG)∩Q(q0, qf ) and LG′′ = LG∩LM .

Corollary 4.3 Context-free languages of arrows are closed under pullback along non-deterministic finite
state automata, and under intersection with regular languages.

Example 4.4 For any word w = a1 . . . an of length n, there is an (n + 1)-state automaton Mw that
recognizes the singleton language {w }, with initial state 0, accepting state n, and transitions of the form
(i, ai+1, i+1) for each 0 ≤ i < n. By pulling back any context-free grammar G along Mw, we obtain a new



11–14 Parsing as a Lifting Problem, and the Chomsky-Schützenberger Representation Theorem

grammar that may be seen as a specialization of G to the word w, with non-terminals (i, R, j) representing
the fact that the subword wi,j = ai+1 . . . aj parses as R (cf. §2.6). This example generalizes to context-free
grammars of arrows over any category C with the property that every arrow w has only finitely many
factorizations w = uv of length 2, by observing that the underlying bare automaton of Mw is isomorphic
to the interval category [21] of w. In general, for any arrow w : A → B of a category C, the interval
category Iw is defined by taking objects to be triples (X,u, v) of an object X ∈ C and a pair of arrows
u : A → X, v : X → B such that w = uv, and arrows (X,u, v) → (X ′, u′, v′) to be arrows x : X → X ′

such that u′ = ux and v = xv′. The interval category Iw has an initial object (idA, w) and a terminal
object (w, idB), and it comes equipped with an evident forgetful functor Iw → C, which is always ULF,
and moreover finitary by the stated condition on C. The tuple Mw = (C, Iw, Iw → C, (idA, w), (w, idB))
therefore defines a finite-state automaton, and any CFG of arrows over C can be pulled back along Mw to
obtain a CFG specialized to the arrow w.

4.2 The contour category of an operad and the contour / splicing adjunction

In §2.1, we saw how to construct a functor

W[−] : Cat→ Operad

transforming any category C into an operad W[C] of spliced arrows of arbitrary arity, which played a
central role in our definition of context-free language of arrows in a category. We construct now a left
adjoint functor

C[−] : Operad → Cat

which extracts from any given operad O a category C[O] whose arrows correspond to “oriented contours”
along the boundary of the operations of the operad.

Definition 4.5 The contour category C[O] of an operad O is defined as a quotient of the following free
category:

• objects are given by oriented colors Rε consisting of a color R of O and an orientation ε ∈ {u, d } (“up”
or “down”);

• arrows are generated by pairs (f, i) of an operation f : R1, . . . , Rn → R of O and an index 0 ≤ i ≤ n,
defining an arrow Rdi → Rui+1 under the conventions that Rd0 = Ru and Run+1 = Rd;

subject to the conditions that idRu = (idR, 0) and idRd = (idR, 1) as well as the following equations:

(f ◦i g, j) =



(f, j) j < i

(f, i)(g, 0) j = i

(g, j − i) i < j < i+m

(g,m)(f, i+ 1) j = i+m

(f, j −m+ 1) j > i+m

(9)

(f ◦i c, j) =


(f, j) j < i

(f, i)(c, 0)(f, i+ 1) j = i

(f, j + 1) j > i

(10)

whenever the left-hand side is well-formed, for every operation f , operation g of positive arity m > 0,
constant c, and indices i and j in the appropriate range.

We refer to each generating arrow (f, i) of the contour category C[O] as a sector of the operation f .
See Fig. 3 for a graphical interpretation of sectors and of the equations on contours seen as compositions
of sectors.
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Fig. 3. Left: interpretation of the generating arrows of the contour category C[O]. Right: interpretation of equations (9) and
(10).

Remark 4.6 In the case of a free operad over a species S, we also write C[S] for the contour category
C[Free S] because it admits an even simpler description as a free category generated by the arrows (x, i) :
Rdi → Rui+1 for every node x : R1, . . . , Rn → R of the species S. We refer to these generating arrows
(x, i) consisting of an n-ary node x and an index 0 ≤ i ≤ n as corners since they correspond to the
corners of S-rooted trees seen as rooted planar maps [28]. Note that every sector of an operation of Free S
factors uniquely in the contour category C[S] as a sequence of corners. Thinking of the nodes of S as the
production rules of a context-free grammar, the corners (x, i) correspond exactly to the items used in LR
parsing and Earley parsing [17,10].

The contour construction provides a left adjoint to the spliced arrow construction because a functor
of operads O → W[C] is entirely described by the data of a pair of objects (A,B) = (Ru, Rd) in C for
every color R in O together with a sequence f0, f1, . . . , fn of n + 1 arrows in C, where fi : Rdi → Rui+1
for 0 ≤ i ≤ n for each operation f : R1, . . . , Rn → R of O, under the same conventions as above. The
equations (9) and (10) on the generators of C[O] reflect the equations imposed by the functor of operads
O →W[C] on the spliced arrows of C appearing as the image of operations in O. In that way we transform
any functor of operads O → W[C] into a functor C[O] → C which may be seen as an interpretion of the
contours of the operations of O in C.

The unit and counit of the contour / splicing adjunction also have nice descriptions. The unit of
the adjunction defines, for any operad O, a functor of operads O → W[C[O]] that acts on colors by
R 7→ (Ru, Rd), and on operations by sending an operation f : R1, . . . , Rn → R of O to the spliced word of
sectors (f, 0)− . . .−(f, n) : (Ru1 , R

d
1), . . . , (Run, R

d
n) → (Ru, Rd). The counit of the adjunction defines, for

any category C, a functor of categories C[W[C]]→ C that acts on objects by (A,B)u 7→ A and (A,B)d 7→ B,
and on arrows by sending the ith sector of a spliced word to its ith word, (w0− . . .−wn, i) 7→ wi.

In contrast to the situation of Prop. 3.9, it is not the case that C[−] always preserves the ULF property.

Remark 4.7 Consider the category 2 with two objects A and B and only identity arrows, and the unique
functor p to the terminal category 1. We claim that the associated ULF functor of operadsW[p] induces a
functor of categories C[W[p]] which is not ULF. Consider the two binary operations f = idA−idA−idA and
g = idA−idA−idB and the constant c = idA in W[2], as well as the binary operations h = id∗−id∗−id∗
and the constant d = id∗ in W[1]. The category C[W[2]] has the sequence of sectors α = (f, 0)(c, 0)(g, 1)
as an arrow, which is different from the identity. On the other hand, it is mapped by C[W[p]] to the
sequence w = (h, 0)(d, 0)(h, 1), which is equal thanks to Equation (10) to the sector (h◦0 d, 0) of the unary
operation h ◦0 d = id∗−id∗ of W[1], and hence w = id(∗,∗)u . Since the factorization id = idid in W[1] lifts
to two distinct factorizations α = idα = αid in W[2], p is not ULF.

Still, we can verify that maps of species induce ULF functors between their contour categories.
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Fig. 4. Left: an S-rooted tree of root color 1 and its corresponding contour word a0b0a1c0d0c1e0c2a2f0g0f1a3 : 1u → 1d. Right:
the corresponding Dyck word obtained by first decomposing each corner of the contour into alternating actions of walking
along an edge and turning around a node, and then annotating each arrow both by the orientation (with u = [, d = ]) and
the node-edge pair of its target.

Proposition 4.8 If ψ : S → R is a map of species, then C[p] : C[S]→ C[R] is a ULF functor of categories.

4.3 The universal context-free grammar of a pointed species, and its associated tree contour language

Every finite species S equipped with a color S comes with a universal context-free grammar UnivS,S =
(C[S],S, S, pS), characterized by the fact that pS : Free S → W[C[S]] is the unit of the contour / splicing
adjunction. By “universal” context-free grammar, we mean that any context-free grammar of arrows
G = (C,S, S, p) with the same underlying species and start symbol factors uniquely through UnivS,S in
the sense that there exists a unique functor qG : C[S]→ C satisfying the equation

Free S W[C] = Free S W[C[S]] W[C]p pS W[qG]

We refer to the language of arrows LUnivS,S , also noted LS,S , as a tree contour language, and to its
arrows as tree contour words, since they describe the contours of S-rooted trees with root color S, see
left side of Fig. 4 for an illustration. The factorization above shows that the context-free grammar G is the
functorial image of the universal grammar UnivS,S along the functor of categories qG, whose purpose is to
transport each corner of a node in S to the corresponding arrow in C as determined by the grammar G.
At the level of languages, we have LG = qG LS,S .

Remark 4.9 The notion of tree contour language makes sense even for non-finitary pointed species (S, S),
although in that case the resulting universal grammar UnivS,S is no longer context-free, having infinitely
many non-terminals. Still, it may be an interesting object of study. In particular, the tree contour language
UnivN,∗ generated by the terminal species N with one color and a single operation of every arity appears
to be of great combinatorial interest, with words in the language describing the shapes of rooted planar
trees with arbitrary node degrees.

4.4 Representation theorem

The achievement of the Chomsky-Schützenberger representation theorem [5, §5] is to separate any context-
free grammar G = (Σ, N, S, P ) into two independent components: a context-free grammar Dyckn with only
one non-terminal over an alphabet Σ2n = { [1, ]1, . . . , [n, ]n } of size 2n (for some n), which generates Dyck
words of balanced brackets describing the shapes of parse trees with nodes labelled by production rules of
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G ; and a finite state automaton M to check that the edges of these trees may be appropriately colored
by the non-terminals of G according to the labels of the nodes specifying the productions. The original
context-free language LG is then obtained as the image of the intersection of the languages generated by
Dyckn and by M , under a homomorphism Σ∗2n → Σ∗ that interprets each bracket of the Dyck word by a
word in the original alphabet, with a choice to either interpret the open or the close brackets as empty
words.

In this section, we give a new proof of the Chomsky-Schützenberger representation theorem, generalized
to context-free grammars of arrows G over any category C. Since the category C may have more than one
object, the appropriate statement of the representation theorem cannot require the grammar describing
the shapes of parse trees to have only one non-terminal, but we can nonetheless construct one that is
C-chromatic in the following sense.

Definition 4.10 A context-free grammar of arrows in C is C-chromatic when its non-terminals are the
colors of W[C], in other words the pairs (A,B) of objects of the category C.

Moreover, rather than using Dyck words to represent parse trees, we find it more natural to use tree contour
words, based on the observation given above (§4.3) that every context-free language may be canonically
represented as the image of a tree contour language generated by a context-free grammar with the same
set of non-terminals.

As preparation to our proof of the representation theorem, we establish:

Proposition 4.11 Let φ : S → R be a map of species with underlying change-of-color function φC . Let
φC S be the species with the same underlying set of nodes as S, but where every node x : R1, . . . , Rn → R
in S becomes a node x : φC(R1), . . . , φC(Rn)→ φC(R) in φC S. Then φ factors as

S R = S φC S Rφ φcolors φnodes

where φcolors is the identity on nodes and φnodes is the identity on colors.

Proposition 4.12 Every map of species ψ : S → S ′ injective on nodes induces a commutative diagram

Free S Free S ′

W[C[S]] W[C[S ′]]

pS

Free ψ

pS′

W[C[ψ]]

(11)

where the canonical functor of operads from Free S to the pullback of pS′ along W[C[ψ]] is fully faithful.

Now, let G = (C,S, S, p) be any context-free grammar of arrows, and by Prop. 4.11 consider the cor-
responding C-chromatic grammar Gnodes = (C, φC S, (A,B), pnodes), where (A,B) = p(S). We have a
commutative diagram

Free S Free φC S

W[C[S]] W[C[φC S]]

W[C]

pS

Free φcolors

pφC S

W[C[φcolors]]

W[qG] W[qGnodes
]

(12)

where the commutativity of the lower triangle follows from the equation φ = φcolorsφnodes and the contour
/ splicing adjunction. Note also that C[φcolors] is a ULF functor of categories by Prop. 4.8 and also
finitary because φcolors is finitary in the expected sense (and even finite). From this follows that Mcolors =
(C[φC S], C[S], C[φcolors], Su, Sd) defines a finite-state automaton. By Props 4.2 and 4.12 and the translation
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principle, we deduce that
C[φcolors]LS,S = LφC S,(A,B) ∩ LMcolors

.

Finally, using that G is the image of the universal grammar UnivS,S and considering the commutative
diagram (12), we conclude:

LG = qG LS,S = qGnodes
C[φcolors]LS,S = qGnodes

(LφC S,(A,B) ∩ LMcolors
).

Theorem 4.13 Every context-free language of arrows of a category C is the functorial image of the inter-
section of a C-chromatic context-free tree contour language with a regular language.

The original statement of the Chomsky-Schützenberger theorem can be recovered by relying on the fact
that any tree contour word can be faithfully translated to a Dyck word, via an easy translation that
doubles the number of letters, and which also has a geometric interpretation that involves decomposing
each corner of the contour into alternating actions of walking along an edge and turning around a node, see
right side of Fig. 4. Intriguingly, this decomposition suggests the existence of an embedding of the contour
category C[S] into a bipartite contour category, where each object Rε has been replaced by a pair of objects
Rε0 and Rε1, in a way that is analogous to the embedding of the “oriented cartographic group” used to
represent maps on oriented surfaces into the cartographic group for maps on not necessarily orientable
surfaces (cf. [29,14]).
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Lecture Notes in Mathematics, pages 126–159, Springer Berlin Heidelberg, Berlin, Heidelberg (1986), ISBN 978-3-540-
47402-9.
https://doi.org/10.1007/BFb0072514

[17] Knuth, D. E., On the translation of languages from left to right, Information and Control 8, pages 607–639 (1965).
https://doi.org/10.1016/S0019-9958(65)90426-2

[18] Lambek, J., Multicategories revisited, Contemporary Mathematics 92, pages 217–239 (1989).
https://doi.org/10.1090/conm/092

[19] Lange, M. and H. Leiß, To CNF or not to cnf? an efficient yet presentable version of the CYK algorithm, Informatica
Didact. 8 (2009).
https://www.informaticadidactica.de/index.php?page=LangeLeiss2009_en

[20] Lawvere, F. W., Ordinal sums and equational doctrines, in: B. Eckmann, editor, Seminar on Triples and Categorical
Homology Theory, Lecture Notes in Mathematics, pages 141–155 (1969).
https://doi.org/10.1007/BFb0083085

[21] Lawvere, F. W. and M. Menni, The Hopf algebra of Möbius intervals, Theory and Applications of Categories 24, pages
221–265 (2010).
www.tac.mta.ca/tac/volumes/24/10/24-10abs.html

[22] Leermakers, R., How to cover a grammar, in: J. Hirschberg, editor, 27th Annual Meeting of the Association for
Computational Linguistics, 26-29 June 1989, University of British Columbia, Vancouver, BC, Canada, Proceedings, pages
135–142, ACL (1989).
https://doi.org/10.3115/981623.981640

[23] Leinster, T., Higher Operads, Higher Categories, volume 298 of London Mathematical Society Lecture Note Series,
Cambridge University Press (2004).
https://doi.org/10.1017/CBO9780511525896

[24] Markl, M., S. Schnider and J. Stasheff, Operads in Algebra, Topology and Physics, volume 96 of Mathematical Surveys
and Monographs, American Mathematical Society (2002), ISBN 0-8218-2134-2.

[25] Melliès, P. and N. Zeilberger, Functors are type refinement systems, in: POPL, pages 3–16, ACM (2015).
https://doi.org/10.1145/2676726.2676970

[26] Melliès, P. and N. Zeilberger, A bifibrational reconstruction of Lawvere’s presheaf hyperdoctrine, in: LICS, pages 555–564,
ACM (2016).
https://doi.org/10.23638/LMCS-15(1:20)2019

https://doi.org/10.1007/s10849-004-2114-x
https://doi.org/10.1145/362007.362035
https://doi.org/10.1112/jlms/jdm096
https://doi.org/10.1016/0304-3975(87)90045-4
https://doi.org/10.1016/S0049-237X(08)70271-4
https://doi.org/10.1017/CBO9780511569302.006
https://doi.org/10.1016/0001-8708(81)90052-9
https://doi.org/10.1007/BFb0072514
https://doi.org/10.1016/S0019-9958(65)90426-2
https://doi.org/10.1090/conm/092
https://www.informaticadidactica.de/index.php?page=LangeLeiss2009_en
https://doi.org/10.1007/BFb0083085
www.tac.mta.ca/tac/volumes/24/10/24-10abs.html
https://doi.org/10.3115/981623.981640
https://doi.org/10.1017/CBO9780511525896
https://doi.org/10.1145/2676726.2676970
https://doi.org/10.23638/LMCS-15(1:20)2019


11–20 Parsing as a Lifting Problem, and the Chomsky-Schützenberger Representation Theorem

[27] Melliès, P. and N. Zeilberger, An Isbell duality theorem for type refinement systems, Mathematical Structures in Computer
Science 28, pages 736–774 (2018).
https://doi.org/10.1017/S0960129517000068
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A Supplementary proofs

Proofs of Props. 2.9(i) and (ii).

(i) Given two grammars G1 = (C,S1, S1, p1) and G2 = (C,S2, S2, p2), where S1 and S2 both refine the
same gap type (A,B), we define a new grammar G = (C,S, S, p) that generates the union of the two
languages LG = LG1 ∪LG2 by taking S to be the disjoint union of the colors and operations of S1 and
S2 combined with a distinguished color S and pair of unary nodes i1 : S1 → S and i2 : S2 → S, and
defining φ : S → W[C] to be the copairing of φ1 and φ2 extended with the mappings φ(S) = (A,B)
and φ(i1) = φ(i2) = idA−idB.

(ii) Given grammars G1 = (C,S1, S1, p1), . . . , Gn = (C,Sn, Sn, pn) where Si@ (Ai, Bi) for each 1 ≤ i ≤ n,
together with an operation w0−w1− . . .−wn : (A1, B1), . . . , (An, Bn)→ (A,B) of W[C], we construct
a new grammarG = (C,S, S, p) that generates the spliced concatenation w0LG1w1 . . . LGnwn by taking
S to be the disjoint union of the colors and operations of S1, . . . ,Sn combined with a distinguished
color S and a single n-ary node x : S1, . . . , Sn → S, and defining φ : S → W[C] to be the cotupling of
φ1, . . . , φn extended with the mappings φ(S) = (A,B) and φ(x) = w0−w1− . . .−wn.

Proof of Prop. 2.11

Let G = (C,S, S, p) be a context-free grammar of arrows. A bilinear grammar Gbin = (C,Sbin, S, pbin) over
the same category and with the same start symbol is constructed as follows. Sbin includes all of the colors
and all of the nullary nodes of S, with φbin(R) = φ(R) and φbin(c) = φ(c). Additionally, for every node x :
R1, . . . , Rn → R of S of positive arity n > 0, where φ(x) = w0− . . .−wn : (A1, B1), . . . , (An, Bn)→ (A,B)
in W[C], we include in Sbin:

• n new colors Ix,0, . . . , Ix,n−1, with φbin(Ix,i−1) = (A,Ai) for 1 ≤ i ≤ n;

• one nullary node x0 : Ix,0, with φbin(x0) = w0;

• n binary nodes x1, . . . , xn, where xi : Ix,i−1, Ri → Ix,i and φbin(xi) = idA−idAi−wi for all 1 ≤ i ≤ n,
under the convention that Ix,n = R.

We define the functor B : Free S → Free Sbin on colors by B(R) = R, on nullary nodes by B(c) = c, and
on nodes x : R1, . . . , Rn → R of positive arity by B(x) = xn ◦0 · · · ◦0 x1 ◦0 x0. By induction on n, there is a
one-to-one correspondence between nodes x : R1, . . . , Rn → R of S and operations B(x) : R1, . . . , Rn → R
of Free Sbin, so the functor B is fully faithful.
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Proof of Prop. 4.1

Suppose pQ : Q → O is a ULF functor of operads, and consider the pullback of φ : S → O along
pQ : Q → O in the category of species:

S ′ S

pullback

Q O

φ′

ψ

φ

pQ

We wish to show that there is a corresponding pullback in the category of operads:

Free S ′ Free S

pullback

Q O

p′

Free ψ

p

pQ

Note that Free S ′ and S ′ have the same colors, namely pairs (R,R′) of a color R in S and a color R′ in
Q such that φ(R) = pQ(R′). It suffices to show that any pair (α, α′) of an operation α of Free S and
an operation α′ of Q such that p(α) = pQ(α′) corresponds to a unique operation β of Free S ′ such that
(Free ψ)(β) = α and p′(β) = α′. Now, by the inductive characterization of Free S (cf. §2.5), there are two
cases to consider:

• α = idR is an identity operation. Since pQ(α′) = p(α) = idp(R) and ULF functors have unique liftings
of identities, α′ must also be an identity α′ = idR′ for some R′ such that pQ(R′) = p(R). We take
β = id(R,R′).

• α = x • (γ1, . . . , γn) is a formal composition of some n-ary node x of S with operations γ1, . . . , γn
of Free S. Since pQ(α′) = p(α) = φ(x) ◦ (p(γ1), . . . , p(γn)), by ULF there exist unique β′, γ′1, . . . , γ

′
n

such that α′ = β′ ◦ (γ′1, . . . , γ
′
n) and pQ(β′) = φ(x) and pQ(γ′1) = p(γ1), . . . , pQ(γ′n) = p(γn). We take

β = (x, β′) • ((γ1, γ
′
1), . . . , (γn, γ

′
n)).

Proof of Prop. 4.12.

Every map of species ψ : S → S ′ induces a naturality square

Free S Free S ′

W[C[S]] W[C[S ′]]

pS

Free ψ

pS′

W[C[ψ]]

in the category of operads where the functors of operads pS and pS′ associated to the universal grammars
are the units of the contour / splicing adjunction, see §4.2 and §4.3. By Prop. 4.1, we know that the
pullback of pS′ along W[C[ψ]] is obtained from a corresponding pullback in the category of species

R S ′

pullback

W[C[S]] W[C[S ′]]

ρ

ψ

φS′

W[C[ψ]]
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The pullback R of the map of species φS′ along the ULF functor of operads W[C[ψ]] is the species with
colors defined as triples (R, (Ru1 , R

d
2)) where R is a color of S ′ and R1, R2 are colors of S such that

ψ(R1) = ψ(R2) = R ; and with n-ary nodes defined as pairs (x, f) where x is a n-ary node in S ′ and f is
an n-ary operation in W[C[S]] necessarily of the form f = (y, 0)− . . .−(y, n), for y the unique n-ary node
of S such that ψ(y) = x, since the map of species ψ : S → S ′ is injective of nodes. The canonical map of
species S → R transports every color R of S to the color (R,ψ(R)u, ψ(R)d) and every n-ary node y of S to
the n-ary node (ψ(y), (y, 0)− . . .−(y, n)) of R. From this follows that the canonical map of species S → R
is injective on colors and bijective on nodes. Moreover, there are no nodes in R whose colors are outside
of the image of S. We conclude that the canonical functor of operads Free S → FreeR is fully faithful.
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