
Electronic Notes in Volume 1

Theoretical Informatics ENTICS Proceedings of

And Computer Science https://entics.episciences.org MFPS 2022

Guarded Kleene Algebra with Tests: Automata Learning

Stefan Zetzschea,1,3 Alexandra Silvab,a,2 Matteo Sammartinoc,a

a University College London
b Cornell University

c Royal Holloway, University of London

Abstract

Guarded Kleene Algebra with Tests (GKAT) is the fragment of Kleene Algebra with Tests (KAT) that arises by replacing the
union and iteration operations of KAT with predicate-guarded variants. GKAT is more efficiently decidable than KAT and
expressive enough to model simple imperative programs, making it attractive for applications to e.g. network verification. In
this paper, we further explore GKAT’s automata theory, and present GL

∗, an algorithm for learning the GKAT automaton
representation of a black-box, by observing its behaviour. A complexity analysis shows that it is more efficient to learn a
representation of a GKAT program with GL

∗ than with Angluin’s existing L
∗ algorithm. We implement GL∗ and L

∗ in OCaml
and compare their performances on example programs.

Keywords: Automata Learning, Kleene Algebra, Angluin, Coalgebra, Minimization, Moore Automata, Black-box, Model
checking, Verification

1 Introduction

As hardware and software systems continue to grow in size and complexity, practical and scalable methods
for verification tasks become increasingly important. Classical model checking approaches to verification
require the existence of a rich model of the system of interest, able to express all its relevant behaviour.
In reality such a model however is rarely available, for instance, when the system comes in the form of a
black-box with no access to the source code, or the system is simply too complex for manual processing.

Automata learning, or regular inference, aims to automatically infer an automata model by observing
the behaviour of the system. The incremental approach has been successfully applied to a wide range
of verification tasks from finding bugs in network protocols [8], reverse engineering smartcard reader for
internet banking [6], and industrial applications [14]. A comprehensive survey of the field can be found
in [35]. The majority of modern learning algorithms is based on Angluin’s L∗ algorithm [3], which learns
the unique minimal deterministic finite automaton (DFA) accepting a given regular language, or more
generally, the unique minimal Moore automaton accepting a weighted language (Algorithm 1). In many

1 The author has been supported by GCHQ via the VeTSS grant “Automated black-box verification of networking
systems” (4207703/RFA 15845) and by the ERC via the Consolidator Grant AutoProbe 101002697.
2 The author has been supported by the ERC via the Consolidator Grant AutoProbe 101002697 and by a Royal
Society Wolfson Fellowship.
3 Email: stefanzetzsche@gmail.com

Published February 15, 2023 Proceedings Available Online at © S. Zetzsche, A. Silva, M Sammartino

10.46298/entics.10505 https://doi.org/10.46298/entics.proceedings.mfps38 cb Creative Commons

https://entics.episciences.org
mailto:stefanzetzsche@gmail.com
https://doi.org/10.46298/entics.10505
https://doi.org/10.46298/entics.proceedings.mfps38
https://creativecommons.org/licenses/by/4.0/

18–2 Guarded Kleene Algebra with Tests: Automata Learning

Algorithm 1 Angluin’s L∗ algorithm for Moore automata with input A and output B

S,E ← {ε}
repeat

while T = (S,E, row : S ∪ S · A→ BE) is not closed do
find t ∈ S · A with row(t) 6= row(s) for all s ∈ S
S ← S ∪ {t}

end while
construct and submit m(T) to the teacher
if the teacher replies no with a counterexample z ∈ A∗ then

E ← E ∪ suf(z)
end if

until the teacher replies yes
return m(T)

situations, however, targeting a DFA is not feasible, due to an explosion in the size of the state-space.
Such cases instead require types of models specifically tailored for their domain-specific purposes.

For instance, modern networking systems can operate on very large data sets, making them very
challenging to model. As a result, controlling, reasoning about, or extending networks can be surprisingly
difficult. One approach to modernise the field that has recently gained popularity is Software Defined
Networking (SDN) [10]. Modern SDN programming languages, notably NetKAT [2], allow operators to
model their network and dynamically fine tune forwarding behaviour in response to events such as traffic
shifts. Globally, NetKAT is based on Kleene Algebra (KA) [19], the sound and complete theory of regular
expressions [18]. Locally, it incorporates Boolean algebra, the theory of predicates. Both logics have been
unified in the well developed theory of Kleene Algebra with Tests (KAT) [20], which subsumes propositional
Hoare logic and can be used to model standard imperative programming constructs. The automata theory
for NetKAT has been introduced in [12].

Verifying properties about realistic networks reduces in NetKAT to deciding the behavioural equivalence
of pairs of automata. Unfortunately, NetKAT’s decision procedure is PSPACE-complete, mainly due its
foundations in KAT. As a consequence, more efficiently decidable fragments of KAT have been considered.
In [33] it was hinted that the guarded fragment of KAT is notably more efficiently decidable than the full
language, while still remaining sufficiently expressive for networking purposes. The idea has been taken
further in [32], which formally introduced Guarded Kleene Algebra with Tests (GKAT), a variation on
KAT that arises by replacing the union and iteration operations from KAT with guarded variants. In
contrast to KAT, the equational theory of GKAT is decidable in (almost) linear time. These properties
make GKAT a promising candidate for the foundations of a SDN programming language that is more
efficiently decidable than NetKAT.

In view of the potential applications of GKAT to the field of verification, this paper further investigates
its automata theory. In detail, the paper makes the following contributions:

• For any GKAT automaton, we define a second automaton, which we call its minimization (Theorem 4.4).
We show that in the class of normal GKAT automata, the minimization of an automaton is the unique
size-minimal normal automaton accepting the same language (Theorem 4.12). We show that the mini-
mization of a normal automaton is isomorphic to the automaton that arises by identifying semantically
equivalent pairs among reachable states (Theorem 4.9), and that the minimizations of two language
equivalent normal automata are isomorphic (Theorem 4.11). Finally, we show that minimizing a nor-
mal GKAT automaton preserves important invariants such as the nesting coequation (Theorem 4.10).

• We present GL∗, an active-learning algorithm (Algorithm 2) that incrementally infers a GKAT automa-
ton from a black-box by querying an oracle (Section 5). We show that if the oracle is instantiated with
the language accepted by a finite normal GKAT automaton, then the algorithm terminates with its
minimization in finite time (Theorem 5.9).

Zetzsche, Silva and Sammartino 18–3

ε

ε 0b+ 0b

bp 0b+ 0b

bq 0b+ 0b

bp 0b+ 0b

bq 1b+ 1b

(a)

ε

ε 0b+ 0b

bq 1b+ 1b

bp 0b+ 0b

bq 0b+ 0b

bp 0b+ 0b

bqbp 0b+ 0b

bqbq 0b+ 0b

bqbp 0b+ 0b

bqbq 0b+ 0b

(b)

row(ε)

⇒ 0b+ 0b

row(bq)

⇒ 1b+ 1bbq

bp, bq, bp

bp, bq, bp, bq

(c)

ε bq bqbq

ε 0b+ 0b 1b+ 1b 0b+ 0b

bq 1b+ 1b 0b+ 0b 0b+ 0b

bp 0b+ 0b 1b+ 1b 0b+ 0b

bq 0b+ 0b 0b+ 0b 0b+ 0b

bp 0b+ 0b 0b+ 0b 0b+ 0b

bqbp 0b+ 0b 0b+ 0b 0b+ 0b

bqbq 0b+ 0b 0b+ 0b 0b+ 0b

bqbp 0b+ 0b 0b+ 0b 0b+ 0b

bqbq 0b+ 0b 0b+ 0b 0b+ 0b

(d)

ε bq bqbq

ε 0b+ 0b 1b+ 1b 0b+ 0b

bq 1b+ 1b 0b+ 0b 0b+ 0b

bq 0b+ 0b 0b+ 0b 0b+ 0b

bp 0b+ 0b 1b+ 1b 0b+ 0b

bp 0b+ 0b 0b+ 0b 0b+ 0b

bqbp 0b+ 0b 0b+ 0b 0b+ 0b

bqbq 0b+ 0b 0b+ 0b 0b+ 0b

bqbp 0b+ 0b 0b+ 0b 0b+ 0b

bqbq 0b+ 0b 0b+ 0b 0b+ 0b

bqbp 0b+ 0b 0b+ 0b 0b+ 0b

bqbq 0b+ 0b 0b+ 0b 0b+ 0b

bqbp 0b+ 0b 0b+ 0b 0b+ 0b

bqbq 0b+ 0b 0b+ 0b 0b+ 0b

(e)

row(ε)

⇒ 0b+ 0b

row(bq) ⇒ 0b+ 0b

row(bq)

⇒ 1b+ 1b

bp

bq

bp, bq, bp, bq

bp, bq, bp, bqbq, bp

(f)

Fig. 1. An example run of Angluin’s L∗ algorithm for the target language J(while b do p); qK.

• We show that the semantics of GKAT automata (2) can be reduced to the well-known semantics 4 of
Moore automata. That is, there exists a language preserving embedding of GKAT automata into Moore
automata (Theorem 6.1), which maps the minimization of a normal GKAT automaton to the language
equivalent minimal Moore automaton (Theorem 6.2). In consequence, GKAT programs could thus, in
principle, be also represented by Moore automata, instead of GKAT automata.

• We present a complexity analysis which shows that for GKAT programs it is more efficient to learn
a GKAT automaton representation with GL

∗ than a Moore automaton representation with Angluin’s
L
∗ algorithm (Theorem 6.3). We implement GL∗ and L

∗ in OCaml and compare their performances on
example programs (Figure 6).

2 Overview of the approach

In this section, we give an overview of this paper through examples. We begin by presenting Algorithm 1,
a slight variation of Angluin’s L

∗ algorithm for finite Moore automata. We exemplify the algorithm by
executing it for the language semantics of a simple GKAT program. We then propose a new algorithm,
which, instead of a Moore automaton, infers a GKAT automaton.

2.1 L
∗ algorithm

Angluin’s L∗ algorithm learns the minimal DFA accepting a given regular language [3]. The algorithm has
since been modified and generalised for a broad class of transition systems. The variation we present here
step-wise infers the minimal Moore automaton accepting a generalised language L : A∗ → B for a finite
input set A and a finite output set B [27]. The algorithm assumes the existence of a teacher (or oracle),
which can respond to two types of queries:

• Membership queries, consisting of a word w ∈ A∗, to which the teacher returns the output L(w) ∈ B;

• Equivalence queries, consisting of a hypothesis Moore automaton H, to which the teacher responds
yes, if H accepts L, and no otherwise, providing a counterexample z ∈ A∗ in the symmetric difference
of L and the language accepted by H.

The algorithm incrementally builds an observation table, which contains partial information about the
language L obtained by performing membership queries. A table consists of two parts: a top part, with
rows indexed by a finite set S ⊆ A∗; and a bottom-part, with rows ranging over S · A. Columns are
indexed by a finite set E ⊆ A∗. For any t ∈ S ∪S ·A and e ∈ E, the entry at row t and column e, denoted

4 In the language of Coalgebra, the semantics is given by the final coalgebra homomorphism for the functor defined
by FX = XA ×B, where A = At ·Σ = {α · p | α ∈ At, p ∈ Σ} and B = 2At, for finite sets Σ and At. The carrier of
the final coalgebra for F is P((At · Σ)∗ ·At), the set of guarded string languages ; the semantics of GKAT automata
is given by the subclass of deterministic guarded string languages.

18–4 Guarded Kleene Algebra with Tests: Automata Learning

by row(t)(e), is given by the output L(te) ∈ B. Note that the sets S and S · A can intersect. In such a
case, elements in the intersection are only shown in the top part. Formally, we refer to a table as a tuple
T = (S,E, row), leaving the language L implicit.

Given a table T , one can construct a Moore automatonm(T) = (X, δ, ε, x), whereX = {row(s) | s ∈ S}
is a finite set of states; the transition function δ : X → XA is given by δ(row(s), a) = row(sa); the output
function ε : X → B satisfies ε(row(s)) = row(s)(ε) (we abuse notation by writing ε both for the empty
string and for the output function); and x = row(ε) is the initial state. For m(T) to be well-defined,
the table T has to satisfy ε ∈ S and ε ∈ E, and two properties called closedness and consistency. An
observation table is closed if for all t ∈ S · A there exists an s ∈ S such that row(t) = row(s). An
observation table is consistent, if whenever s, s′ ∈ S satisfy row(s) = row(s′), then row(sa) = row(s′a)
for all a ∈ A. A table is consistent in particular if the function row is injective.

The algorithm incrementally updates the table to satisfy those properties. If a well-defined hypothesis
m(T) can be constructed, the algorithm poses an equivalence query to the teacher, and either terminates,
or refines the hypothesis with a counterexample z ∈ A∗. Since we respond to a negative equivalence
query by adding the suffixes 5 of a counterexample to the set E (opposed to adding the prefixes of a
counterexample to the set S), rows will always be distinct, rendering consistency trivial 6 . At all times,
the set S is prefix-closed and the set E is suffix-closed 7 .

2.1.1 Example of execution
We now execute Angluin’s L∗ (Algorithm 1) for the target language

L = J(while b do p); qK = {bqb, bqb, bpbqb, bpbqb, ...} ⊆ (At · Σ)∗ ·At, (1)

where At = {b, b} is a finite set of atoms and Σ = {p, q} is a finite set of actions. The language L represents
the semantics of a program that performs the action p while b is true, and otherwise continues with q. It

can be viewed as a generalised language L̂ with input A = (At · Σ) and output B = 2At via currying. We

denote functions f ∈ B as formal sums
∑

α∈At f(α)α. Each query to L̂ requires |At| many queries to L.
Initially, the sets S and E are set to the singleton {ε}. We build the observation table in Figure 1a.

Since the row indexed by bq does not appear in the upper part, i.e. differs from the row indexed by ε, the
table is not closed. To resolve the closedness defect we add bq to S. The observation table (Figure 1b) is
now closed. We derive from it the hypothesis depicted in Figure 1c. Next, we pose an equivalence query,
to which the oracle replies no and informs us that the word z = bqbq has been falsely classified. Indeed,
given z, the language accepted by the hypothesis outputs 1b+1b, whereas (1) produces 0b+0b. To respond
to the counterexample z, we add its suffixes to E. In this case, there are only the two suffixes bq and bqbq.
The next observation table (Figure 1d) again is not closed: the row indexed by e.g. bq does not equal any
of the two upper rows indexed by ε and bq. To resolve the closedness defect we add bq to S, and obtain
the table in Figure 1e. The observation table is now closed. We derive from it the automaton in Figure 1f.
Next, we pose an equivalence query, to which the oracle replies yes.

2.2 GL
∗ algorithm

In this section, we propose a new algorithm (Algorithm 2) for learning GKAT program representations,
which we call GL∗. The new algorithm modifies Algorithm 1 by addressing a number of observations.

First, we note that the Moore automaton in Figure 1f admits multiple transitions to row(bq), a sink-
state, which does not accept any words. Second, we observe that languages induced by GKAT programs
are deterministic 8 . Such languages are naturally represented by GKAT automata, which keep some

5 The set suf(z) of suffixes for z ∈ A∗ is defined by suf(ε) = {ε} and suf(aw) = {aw} ∪ suf(w).
6 This variation of L∗ has been introduced by Maler and Pnueli [25].
7 A set X ⊆ A∗ is called suffix-closed, if suf(z) ⊆ X for all z ∈ X .
8 Deterministic in the sense that, whenever two strings agree on the first n atoms, then they agree on their first n
actions (or lack thereof).

Zetzsche, Silva and Sammartino 18–5

Algorithm 2 The GL
∗ algorithm for GKAT automata

S ← {ε}, E ← At
repeat

while T = (S,E, row : S ∪ S · (At · Σ)→ 2E) is not closed do
find t ∈ S · (At · Σ) with row(t)(e) = 1 for some e ∈ E, but row(t) 6= row(s) for all s ∈ S
S ← S ∪ {t}

end while
construct and submit m(T) to the teacher
if the teacher replies no with a counterexample z ∈ (At · Σ)∗ ·At then

E ← E ∪ suf(z)
end if

until the teacher replies yes
return m(T)

transitions implicit. Third, in some cases 9 the deterministic nature of the target language allows us to
fill-in parts of the observation table without performing any membership queries. Fourth, the cells of the
observation table are labelled by functions, each of which requires two membership queries to (1); as a
consequence, table extensions require an unfeasible amount of queries.

As before, we assume two finite sets, At and Σ, and a deterministic language L ⊆ (At·Σ)∗·At. The oracle
of GL∗ can answer two types of queries: membership queries consist of a word w ∈ (At ·Σ)∗ ·At, to which
the oracle returns the output L(w) ∈ 2; equivalence queries consist of a hypothesis GKAT automaton
H, to which the oracle responds yes, if H accepts L, and no otherwise, providing a counterexample
z ∈ (At · Σ)∗ ·At in the symmetric difference of L and the language accepted by H.

An observation table in GL
∗ consists of two parts: a top part, with rows indexed by a finite set

S ⊆ (At · Σ)∗; and a bottom-part, with rows ranging over S · At · Σ. Columns range over a finite set
E ⊆ (At ·Σ)∗ ·At. The entry of the observation table at row t and column e, denoted by row(t)(e), is given
by L(te) ∈ 2. We refer to a table by T = (S,E, row) and leave the deterministic language L implicit.

Given an observation table T , we construct a GKAT automaton m(T) = (X, δ, x), where X = {row(s) |
s ∈ S} is a finite set of states; x = row(ε) is the initial state; and δ : X → (2 + Σ×X)At is the transition
function which evaluates δ(row(s))(α) to (p, row(sαp)), if there exists an e ∈ E with row(sαp)(e) = 1; to
1, if row(s)(α) = 1; and to 0, otherwise.

Most of the properties a table needs to satisfy such that the hypothesis m(T) is well-defined are
guaranteed by the construction of Algorithm 2, since L is deterministic. We only have to verify that the
table is closed, that is, for all t ∈ S ·At ·Σ with row(t)(e) = 1 for some e ∈ E, there exists some s ∈ S such
that row(t) = row(s). As in the case of L∗, the algorithm incrementally updates the table until closedness
is guaranteed. It then constructs a well-defined hypothesis, and poses an equivalence query to the teacher.
If the oracle replies yes, the algorithm terminates, and if the response is no, it adds the suffixes 10 of a
counterexample z ∈ (At · Σ)∗ ·At to E.

The differences between GL
∗ and L

∗ (instantiated for A = At · Σ and B = 2At) are essentially a
consequence of currying. In the former case, the set E contains elements of type (At · Σ)∗ · At, and the
table is filled with booleans in 2; in the latter case, the set E contains elements of type (At · Σ)∗, and
the table is filled with functions At → 2. This, however, does not mean that GL

∗ is merely a shift in
perspective: its new types induce independent definitions, and termination needs to be established with
novel correctness proofs (Section 5). A thorough comparison with L

∗ is given in Section 6.

2.2.1 Example of execution
We now execute Algorithm 2 for the target language (1). Initially, S = {ε} and E = At. We build the
observation table in Figure 2a. Since the bottom row indexed by bq contains a non-zero entry and differs

9 For instance, the entries of the row indexed by bq in Figure 1d must all be zero, since the row indexed by bp
admits a non-zero entry.
10The set suf(z) of suffixes for z ∈ A∗ ·B is defined by suf(wb) = {vb | v ∈ suf(w)}.

18–6 Guarded Kleene Algebra with Tests: Automata Learning

b b

ε 0 0

bp 0 0

bq 0 0

bp 0 0

bq 1 1

(a)

b b

ε 0 0

bq 1 1

bp 0 0

bq 0 0

bp 0 0

bqbp 0 0

bqbq 0 0

bqbp 0 0

bqbq 0 0

(b)

row(ε)

⇒ b | 0

row(bq)

⇒ b, b | 1

b | q

(c)

b b bpbqb bqb

ε 0 0 1 1

bq 1 1 0 0

bp 0 0 1 1

bq 0 0 0 0

bp 0 0 0 0

bqbp 0 0 0 0

bqbq 0 0 0 0

bqbp 0 0 0 0

bqbq 0 0 0 0

(d)

row(ε) row(bq)

⇒ b, b | 1

b | p

b | q

(e)

Fig. 2. An example run of GL∗ for the target language J(while b do p); qK.

0 ≡ false 1 ≡ true t ≡ t b · c ≡ b and c b+ c ≡ b or c b ≡ not b

p ≡ do p b ≡ assert b e · f ≡ e; f e(b) ≡ while b do e e+b f ≡ if b then e else f

Fig. 3. Identifying GKAT expressions with imperative programs.

from all upper rows (in this case, only the row indexed by ε), the table is not closed. We resolve the
closedness defect by adding bq to S. The observation table (Figure 2b) is now closed. Note that the row
indexed by bq indicates that the words bqb and bqb are accepted. Since we know the target language is
deterministic, the last four rows of the table can be filled with zeroes, without performing any membership
queries. From Figure 2b we derive the hypothesis depicted in Figure 2c. Next, we pose an equivalence
query, to which the oracle replies no and provides us with the counterexample z = bpbqb, which is in the
language (1), but not accepted by the hypothesis. We respond to the counterexample by adding its suffixes
bpbqb, bqb and b to E. The resulting observation table is depicted in Figure 2d. The table is closed, since
the only non-zero bottom row is the one indexed by bp, which coincides with the upper row indexed by ε.
Since the row indexed by bp has a non-zero entry, the row indexed by bq can automatically be filled with
zeroes. We derive from Figure 2d the automaton in Figure 2e. Finally, we pose an equivalence query, to
which the oracle replies yes.

3 Preliminaries

This section introduces the syntax and semantics of GKAT, an abstract imperative programming language
with uninterpreted actions. For most parts, we follow the relevant bits of the original presentation in [32].

3.1 Syntax

The syntax of GKAT is inductively built from disjoint non-empty sets of primitive tests, T , and actions,
Σ. In a first step, one generates from T a set of Boolean expressions, BExp. In a second step, the set is
extended with Σ, to the full set of GKAT expressions, Exp:

b, c, d ∈ BExp ::= 0 | 1 | t ∈ T | b · c | b+ c | b

e, f, g ∈ Exp ::= p ∈ Σ | b ∈ BExp | e · f | e+b f | e
(b)

By a slight abuse of notation, we will sometimes write ef for e ·f and keep parenthesis implicit, e.g. bc+d
should be read as (b · c) + d.

It is natural to view GKAT expressions as uninterpreted imperative programs. Under this view, one
makes the identifications depicted in Figure 3.

Readers familiar with KAT will notice that the grammar for GKAT is similar to the one of KAT. It

Zetzsche, Silva and Sammartino 18–7

x

y z ⇒ b, b | 1

b | p b | q

b | p
b | q

Fig. 4. The Thompson-automaton Xp(b)q for T = {b} and Σ = {p, q}.

differs in that GKAT replaces KAT’s union (+) with the guarded union (+b), and KAT’s iteration (e∗)

with the guarded iteration (e(b)). GKAT’s expressions can be encoded within KAT’s grammar via the

standard embedding that maps a conditional e+b f to be+ bf , and a while-loop e(b) to (be)∗b.

3.2 Semantics: Language Model

In this section, we introduce the language semantics of GKAT, which assigns to a program the traces it
could produce once executed. Intuitively, an execution trace is a string of the shape α0p1α1...pnαn. It can
be thought of as a sequence of states αi a system is in at point i in time, beginning with α0 and ending in
αn, intertwined with actions pi that transition from the state αi−1 to the state αi.

More formally, let ≡BA denote the equivalence relation between Boolean expressions induced by the
Boolean algebra axioms. The quotient BExp/≡BA

, that is, the free Boolean algebra on generators T ,
admits a natural preorder ≤ defined by b ≤ c⇔ b+ c ≡BA c. The minimal nonzero elements with respect
to this order are called atoms, the set of which is denoted by At. If T = {t1, ..., tn} is finite, an atom
α ∈ At is of the form α = c1 · ... · cn with ci ∈ {ti, ti}.

A guarded string is an element of the set GS := At · (Σ ·At)∗, or equivalently, (At ·Σ)∗ ·At. The set of
guarded strings without terminating atom is GS− := (At · Σ)∗.

A guarded string language L ⊆ GS is deterministic [32, Def. 2.2], if, whenever α1p1...αn−1pn−1αnv ∈ L
and α1q1...αn−1qn−1αnw ∈ L, then pi = qi for all 1 ≤ i ≤ n − 1, and either v = w = ε, or v = pnv

′ and
w = qnw

′ with pn = qn. The set of deterministic guarded string languages is denoted by L .
Guarded strings can be partially composed via the fusion product defined by vα ⋄ βw := vαw, if

α = β, and undefined otherwise. The partial product lifts to a total function on guarded languages by
L ⋄K := {v ⋄w | v ∈ L,w ∈ K}. The n-th power of a guarded language is inductively defined by L0 := At
and Ln+1 := Ln ⋄L. For B ⊆ At and B := At\B, the guarded sum and the guarded iteration of languages
are given by

L+B K := (B ⋄ L) ∪ (B ⋄K) L(B) := ∪n≥0(B ⋄ L)
n ⋄B.

The language model of GKAT is given by the semantic function J−K : Exp→P(GS), which is inductively
defined as follows:

JpK := {αpβ | α, β ∈ At} JbK := {α ∈ At | α ≤ b}

Je · fK := JeK ⋄ JfK Je+b fK := JeK +JbK JfK Je(b)K := JeK(JbK).

Equivalently, the language semantics of GKAT can be constructed by post-composing the embedding of
GKAT expressions into KAT expressions with the semantics of KAT.

The guarded string language JeK accepted by a GKAT program e is deterministic.

Example 3.1 Let the sets of primitive tests and actions be defined by T := {b} and Σ := {p, q}, re-
spectively. Then there exist only two atoms, At = {b, b}. The language model assigns to the program

p(b)q ≡ (while b do p); q the guarded deterministic language (1).

3.3 Semantics: Automata Model

In this section, we introduce the automata model of GKAT, the central subject of this paper. As before,
we assume two finite sets of tests T and actions Σ, the former of which induces a finite set of atoms, At.

18–8 Guarded Kleene Algebra with Tests: Automata Learning

Let G be the functor on the category of sets which is defined on objects by GX = (2 + Σ × X)At,
where 2 = {0, 1} is the two-element set, and on morphisms in the usual way. A G-coalgebra consists of a
pair X = (X, δ), where X is a set called state-space and δ : X → GX is a function called transition map.
A G-coalgebra homomorphism f : (X, δX) → (Y, δY) is a function f : X → Y that commutes with the
transition maps, δY ◦ f = Gf ◦ δX . A G-automaton is a G-coalgebra X with a designated initial state
x ∈ X. A homomorphism f : (X , x) → (Y , y) between G-automata is a homomorphism between the
underlying G-coalgebras that maps initial state to initial state, f(x) = y.

For each state x ∈ X, given an input α ∈ At, a G-coalgebra either i) halts and accepts, that is, satisfies
δ(x)(α) = 1; ii) halts and rejects, that is, satisfies δ(x)(α) = 0; or iii) produces an output p and moves
to a new state y, that is, satisfies δ(x)(α) = (p, y). Intuitively, for each state x ∈ X, a guarded string
α0p1α1...pnαn is accepted, if the G-coalgebra in state x produces the output p1...pn, halts and accepts.
Formally, one defines a function J−K : X →P(GS) as follows:

α ∈ JxK :⇔ δ(x)(α) = 1; αpw ∈ JxK :⇔ ∃y ∈ X : δ(x)(α) = (p, y) and w ∈ JyK. (2)

A G-coalgebra is observable, if the function J−K is injective.
A guarded string w ∈ GS is accepted by a state x ∈ X, if w ∈ JxK. The language accepted by a G-

automaton, JX K, is the language accepted by its initial state. Every language accepted by a G-automaton
satisfies the determinacy property [32, Thm. 5.8]. Conversely, one can equip the set of deterministic
languages with a G-coalgebra structure (L , δL) defined by

δL (L)(α) =

(p, (αp)−1L) if (αp)−1L 6= ∅

1 if α ∈ L

0 otherwise

,

where (αp)−1L = {w ∈ GS | αpw ∈ L}. Since JLK = L for any L ∈ L [32, Thm. 5.8], every deterministic
language can thus be recognized by a G-automaton with possibly infinitely many states.

A G-coalgebra (X, δ) is normal, if it only transitions to live states, that is, δ(x)(α) = (p, y) implies
JyK 6= ∅, for all x, y ∈ X. For any G-automaton X one can construct a language equivalent normal

G-automaton X̂ [32, Lem. 5.6]. If X is normal, the function J−K : X →P(GS) is the unique coalgebra
homomorphism J−K : (X, δ)→ (L , δL) [32, Thm. 5.8].

Two states x, y ∈ X of a normal coalgebra accept the same language, JxK = JyK, if and only if they are
bisimilar, x ≃ y, that is, there exists a binary relation R ⊆ X ×X, such that, if xRy, then it holds:

• if δ(x)(α) ∈ 2, then δ(y)(α) = δ(x)(α); and

• if δ(x)(α) = (p, x′), then δ(y)(α) = (p, y′) and x′Ry′ for some y′ ∈ X.

Bisimilarity is a symmetric relation and can be extended to two coalgebras by constructing a coalgebra
that has the disjoint union of their state-spaces as state-space.

Using a construction that is reminiscent of Thompson’s construction for regular expressions [34], it is
possible to efficiently interpret a GKAT expression e as an automaton Xe that accepts the same language
[32]. Alternatively, one can mirror [32] Kozen’s syntactic form of Brzozowski’s derivatives for KAT [22].

Example 3.2 The Thompson-automaton assigned to the expression p(b)q ≡ (while b do p); q is depicted
in Figure 4. It is normal, but not observable, since the states x and y are bisimilar, x ≃ y, thus accept the
same language, JxK = JyK. Moreover, it is language equivalent to the expression by which it is generated,

that is, it satisfies JXp(b)qK = Jp(b)qK.

4 The minimal representation m(X)

The automaton Xe assigned to an expression e by the Thompson construction is not always the most
efficient representation of the language JeK. For instance, as seen in Theorem 3.2, the Thompson-automaton

Zetzsche, Silva and Sammartino 18–9

Xp(b)q in Figure 4 contains redundant structure, since its states x and y exhibit the same behaviour. In

this section, we show that any G-automaton X admits an equivalent minimal representation, m(X).

4.1 Reachability

We begin by formally defining what it means for a state of a G-automaton to be reachable, and show that
restricting an automaton to its reachable states preserves important invariants.

Definition 4.1 Let (X, δ) be a G-coalgebra. We write → ⊆ X × GS− × X for the smallest relation
satisfying:

x
ε
−→ x

δ(x)(α) = (p, y)

x
αp
−→ y

x
α1p1...αn−1pn−1
−−−−−−−−−−→ y , y

αnpn
−−−→ z

x
α1p1...αnpn
−−−−−−−→ z

. (3)

The states reachable from x ∈ X are r(x) := {y ∈ X | ∃w ∈ GS− : x
w
−→ y}, and their witnesses are

R(x) := {w ∈ GS− | ∃xw ∈ X : x
w
−→ xw}.

The following result shows that a state reached by a word is uniquely defined.

Lemma 4.2 If x
w
−→ x1w and x

w
−→ x2w, then x1w = x2w.

It is not hard to see that the subset r(x) of reachable states is δ-invariant, i.e. if y ∈ r(x) and
δ(y)(α) = (p, z), then z ∈ r(x). We denote the well-defined sub-automaton one obtains by restricting
to the states reachable from an initial state as r(X), and call an automaton reachable, if X = r(X).
Following [37, Def. 15], we call a normal, reachable, and observable automaton minimal.

The set R(x) of words witnessing the reachability of states in X = (X, δ, x) can be equipped with a
G-automaton structure R(X) := (R(x), ∂, ε), where ∂(w)(α) = (p,wαp), if δ(xw)(α) = (p, xwαp) for some
xwαp ∈ X, and ∂(w)(α) = δ(xw)(α) otherwise. The automaton r(X) can then be recovered as the image
of the automata homomorphism f : R(X) → X defined by f(w) = xw. In other words, there exists an
epi-mono factorization R(X) ։ r(X) →֒X .

We conclude with a list of important properties preserved by restricting an automaton to its reachable
states. Well-nestedness and coequations, in particular, the nesting coequation, have been introduced in [32]
and [31], respectively. We refer the reader to the original papers for formal definitions, and to Section 8
for a high-level comparison.

Proposition 4.3 Let X be a G-automaton, then r(X) is well-nested, normal, or satisfies the nesting
coequation, whenever X does. Moreover, r(X) accepts the same language as X .

4.2 Minimality

Recall that the state-space of the minimal DFA for a regular language consists of the equivalence classes
of the so-called Myhill-Nerode equivalence relation [28].

Similarly, we define the state-space of the minimization of a GKAT automaton X as the equivalence
classes of the equivalence relation ≡JX K on GS− defined for any guarded string language L ⊆ GS by:

v ≡L w :⇔ ∀u ∈ GS : vu ∈ L if(f) wu ∈ L. (4)

Let v−1L = {u ∈ GS | vu ∈ L}, then two words v,w are equivalent with respect to ≡L if(f) their derivatives
v−1L and w−1L coincide.

18–10 Guarded Kleene Algebra with Tests: Automata Learning

Definition 4.4 The minimization of a G-automaton X = (X, δ, x) is m(X) := ({w−1JX K | w ∈
R(x)}, ∂, JX K) with

∂(L)(α) :=

(p, (αp)−1L) if (αp)−1L 6= ∅

1 if α ∈ L

0 otherwise

, (5)

for L ∈ {w−1JX K | w ∈ R(x)}.

A few remarks on the well-definedness of above definition are in order. The language accepted by a
G-automaton is deterministic, and taking the derivative of a language preserves its deterministic nature.
Thus only one of the three cases in (5) occurs. Since ε ∈ R(x) and ε−1L = L, the initial state of the
minimization is well-defined. Transitioning to a new state is well-defined since v−1(w−1L) = (wv)−1L.

It is not hard to see that on a high-level the minimization can be recovered as the image of the final
automata homomorphism J−K : R(X)→ L, which, as one verifies, satisfies JwKR(X) = w−1JX K. In other
words, there exists an epi-mono factorization R(X) ։ m(X) →֒ L.

4.2.1 Properties of m(X)
In this section we prove properties of m(X), which one would expect to hold by a minimization construc-
tion. We begin by showing that minimizing a normal automaton results in a reachable acceptor.

Lemma 4.5 Let X be a normal G-automaton with initial state x ∈ X. Then JX K
w
−→ w−1JX K in m(X)

for all w ∈ R(x). In particular, m(X) is reachable.

The next result proves that minimizing an automaton preserves its language semantics.

Lemma 4.6 Let X be a G-automaton, then JLK = L for all L in m(X). In particular, Jm(X)K = JX K.

An immediate consequence of above statement is that the states of the minimization can be dis-
tinguished by their observable behaviour, that is, different states accept different languages. Another
implication of Theorem 4.6 is the normality of the minimization: all states are live.

Corollary 4.7 Let X be a G-automaton, then m(X) is normal and observable.

Since m(X) is normal, reachable, and observable, if X is normal, it is, by our definition, minimal (cf.
[37, Def. 15]). Its size-minimality among normal automata language equivalent to X can be derived from
the abstract definition, cf. Theorem 4.12.

4.2.2 Identifying m(X)
In this section, we identify the minimization of a normal G-automaton with an alternative, but equivalent,
construction. In consequence, we are able to derive that the minimization of a normal automaton is size-
minimal among language equivalent normal automata and preserves the nesting coequation. We begin by
observing its universality in the following sense.

Proposition 4.8 Let X and Y be normal G-automata with JX K = JY K, and y ∈ Y the initial state

of Y . Then π : r(Y) → m(X) with π(z) = w−1
z JX K, for y

wz−→ z in Y , is a (surjective) G-automata
homomorphism, uniquely defined.

The next result shows that the minimization of a normal G-automaton is isomorphic to the automaton
that arises by identifying semantically equivalent pairs among reachable states.

Lemma 4.9 Let X be a normal G-automaton with initial state x ∈ X and π : r(X) ։ m(X) as in
Theorem 4.8, then y ≃ z if(f) π(y) = π(z) for all y, z ∈ r(x). Consequently, m(X) is isomorphic to
r(X)/ ≃.

Zetzsche, Silva and Sammartino 18–11

R(X) r(X)

X

m(X) L

π

(a) The morphism π as unique diagonal.

e f

Xe Xe

X̂e X̂f

m(X̂e) m(X̂f)
∼=

(b) JeK = JfK if(f) m(X̂e) and m(X̂f) are isomorphic.

Fig. 5. A high-level view of the notions introduced in Section 4.2.2.

On a high level, the automata homomorphism π can be recovered as the unique (surjective) diagonal
making the diagram in Figure 5a commute.

In Theorem 4.3 it was noted that the reachable subautomaton r(X) satisfies the nesting coequation,
whenever X does. By Theorem 4.8 there exists an epimorphism π : r(X) ։ m(X), if X is normal. Since
coalgebras satisfying a coequation form a covariety, which is closed under homomorphic images [7,31], we
thus can deduce the following result.

Corollary 4.10 Let X be a normal G-automaton, then m(X) satisfies the nesting coequation, whenever
X does.

We continue with the observation that two normal G-automata are language equivalent if and only
if their minimizations are isomorphic. As depicted in Figure 5b, this implies that two expressions e and
f are language equivalent if and only if the minimizations of their normalized Thompson automata are
isomorphic. A similar idea occurs in Kozen’s completeness proof for Kleene Algebra [19, Theorem 19].

Corollary 4.11 Let X and Y be normal G-automata, then JX K = JY K if(f) m(X) ∼= m(Y).

We conclude with the size-minimality of the minimization of a normal automaton among language
equivalent normal automata.

Corollary 4.12 Let X and Y be normal G-automata with JX K = JY K. Then |m(X)| ≤ |Y |, where
|m(X)| = |Y | if(f) m(X) ∼= Y .

5 Learning m(X)

In this section we formally investigate the correctness of GL∗ (Algorithm 2). Our main result is Theorem 5.9,
which shows that if the oracle is instantiated with a deterministic language accepted by a finite normal
G-automaton X , then GL

∗ terminates with a hypothesis isomorphic to m(X).
For calculations, it will be convenient to use the following definition of an observation table. One

can show that if the oracle is instantiated with a finite normal G-automaton, then one has a well-defined
observation table at every step.

Definition 5.1 An observation table T = (S,E, row) consists of subsets S ⊆ GS−, E ⊆ GS and a function
row : S ∪ S · (At · Σ)→ 2E , such that:

• ε ∈ S and At ⊆ E

• αpe ∈ E implies e ∈ E (suffix-closed)

• sαp ∈ S implies s ∈ S (prefix-closed)

• s 6= t implies row(s) 6= row(t) for s, t ∈ S

• ε 6= s ∈ S implies row(s)(e) = 1 for some e ∈ E

• row(sαp)(e) = row(s)(αpe), if αpe ∈ E

Not every table induces a well-defined G-automaton. To ensure correctness, we have to restrict ourselves
to a subclass of tables that satisfies two important properties. We call an observation table deterministic

18–12 Guarded Kleene Algebra with Tests: Automata Learning

if the guarded string language row(s) ⊆ GS is deterministic for all s ∈ S. An observation table is closed, if
for all t ∈ S · (At ·Σ) with row(t)(e) = 1 for some e ∈ E, there exists an s ∈ S such that row(s) = row(t).

Definition 5.2 Given a closed deterministic observation table T = (S,E, row), let m(T) := ({row(s) |
s ∈ S}, δ, row(ε)) be the G-automaton with

δ(L)(α) =

(p, (αp)−1L) if (αp)−1L 6= ∅

1 if α ∈ L

0 otherwise

, (6)

where L ∈ {row(s) | s ∈ S} and (αp)−1row(s) = row(sαp).

A few remarks on the well-definedness of above definition are in order. By Theorem 5.1 the upper-rows
of an observation table are disjoint. Since T is deterministic, precisely one of the three cases in (6) occurs.
If (αp)−1row(s) is non-empty, there exists, because T is closed, some t ∈ S with (αp)−1row(s) = row(t).
This shows that m(T) is closed under transitions.

5.1 Properties of m(T)

In what follows, let T be a closed deterministic observation table, unless states otherwise. We will establish
a few basic properties of m(T). First, we observe its reachability, which is implied by a stronger statement.

Lemma 5.3 It holds row(s)
t
−→ row(st) in m(T) for all s ∈ S and t ∈ GS−, such that st ∈ S. In

particular, m(T) is reachable.

We call a G-automaton (Y , y) consistent with T , if S ⊆ R(y) and JysK(e) = row(s)(e) for all s ∈ S,

e ∈ E, and ys ∈ Y with y
s
−→ ys. By Theorem 5.3, the automaton m(T) is consistent with T if and only if

Jrow(s)K(e) = row(s)(e) for all s ∈ S and e ∈ E. The consistency of m(T) with T should not be confused
with the consistency of T itself. Both terminologies appear frequently in the literature [3]. We show
that m(T) is not only consistent with T , but has in fact the fewest number of states among all automata
consistent with T .

Lemma 5.4 m(T) is size-minimal among automata consistent with T .

From the consistency of m(T) with T it is straightforward to derive its normality and observability.

Lemma 5.5 m(T) is normal and observable.

5.2 Relationship between m(T) and m(X)

We will next deduce the correctness of GL∗, that is, its termination with an automaton isomorphic to
m(X), if the teacher is instantiated with the language accepted by a finite normal automaton X .

In a first step we establish that any hypothesis admits an injective function from its state-space into
the state-space of m(X). The result below does not necessarily require the observation table to be
deterministic or closed.

Lemma 5.6 Let T = (S,E, row) be an observation table with row(t)(e) = JX K(te) for all t ∈ S ∪ S ·
(At · Σ), e ∈ E, and let x ∈ X be the initial state of X . Then π : {row(s) | s ∈ S} → {w−1JX K | w ∈
R(x)}, row(s) 7→ s−1JX K is a well-defined injective function.

If the algorithm terminates with a hypothesis m(T), the latter is, by definition, language equivalent to
X , and thus to the minimization m(X), by Theorem 4.6. The next result implies a stronger statement:
in case of termination, the hypothesis m(T) is isomorphic to m(X), via the function π of Theorem 5.6.

Zetzsche, Silva and Sammartino 18–13

Proposition 5.7 Let T = (S,E, row) be a closed deterministic observation table with row(t)(e) = JX K(te)
for all t ∈ S ∪ S · (At · Σ), e ∈ E. Let π be the injection of Theorem 5.6, and X normal. The following
are equivalent:

(i) π : m(T) ≃ m(X) is a G-automata isomorphism;

(ii) Jm(T)K = Jm(X)K.

The main argument in the proof of Theorem 5.9 is the result below. It shows that if the oracle replies
no to an equivalence query and provides us with a counterexample z, then the table extended with the
suffixes of z can immediately be closed only if it is the first time such a situation occurs.

Proposition 5.8 Let T = (S,E, row) be a closed deterministic observation table with row(t)(e) = JX K(te)
for all t ∈ S∪S ·(At ·Σ), e ∈ E. Let Jm(T)K(z) 6= JX K(z) for some z ∈ GS, and T ′ = (S,E∪suf(z), row′)
with row′(t)(e) = JX K(te). If T ′ is closed, then row′(ε)(e) = 0 for all e ∈ E, but row′(ε)(z′) = 1 for some
z′ ∈ suf(z).

In consequence, an infinite chain of negative equivalence queries and immediately closed extended
tables is impossible. Since fixing a closedness defect increases the size of m(T), which by Theorem 5.6 is
bounded by the finite number of states in m(X), we can deduce the correctness of Algorithm 2.

Theorem 5.9 If Algorithm 2 is instantiated with the language accepted by a finite normal automaton
X , then it terminates with a hypothesis isomorphic to m(X).

6 Comparison with Moore automata

How are the minimal GKAT automaton (Figure 2e) and the minimal Moore automaton (Figure 1f) rep-
resenting the language (1) related? Why should we learn the former, and not the latter? Are there
optimizations for L∗ that we could adapt for GL∗? Those are the questions this section seeks to answer.

6.1 Embedding of GKAT automata

Comparing the GKAT automaton in Figure 2e with the Moore automaton (with input At · Σ and output
2At, short M -automaton) in Figure 1f suggests that the latter can be recovered from the former by adding
a sink-state with which halting transitions can be made explicit. The result below formalises this idea.
The language semantics of Moore automata is defined as usual.

Lemma 6.1 Given a G-automaton X = (X, δ, x), let f(X) := (X + {⋆}, 〈∂, ε〉, x) be the M -automaton
with

∂(x)(αp) :=

{
y if x ∈ X, δ(x)(α) = (p, y)

⋆ otherwise
ε(x)(α) :=

{
1 if x ∈ X, δ(x)(α) = 1

0 otherwise
.

Then JxKX = JxKf(X) for all x ∈ X, and J⋆Kf(X) = ∅. In particular, Jf(X)Kf(X) = JX KX .

As one would hope for, above construction maps, up to isomorphism, the minimal GKAT automaton
m(X) to the minimal Moore automaton accepting the same language as X .

Corollary 6.2 Let X be a normal G-automaton, then f(m(X)) ∼= m(f(X)) as M -automata.

6.2 Complexity analysis

We now compare the worst-case complexities of L
∗ (Algorithm 1) and GL

∗ (Algorithm 2) for learning
automata representations of GKAT programs e. We are mainly interested in a bound to the number of
membership queries to JeK. The example runs in Figure 1 and Figure 2 seem to indicate that with respect
to this aspect, GL∗ performs better than L

∗. The result below confirms this intuition.

18–14 Guarded Kleene Algebra with Tests: Automata Learning

Proposition 6.3 Algorithm 1 requires at most O(a∗ (|At| ∗b)) many membership queries to JeK for learn-
ing a M -automaton representation of e, whereas Algorithm 2 requires at most O(a ∗ (|At| + b)) many
membership queries to JeK for learning a G-automaton representation of e, for some 11 integers a, b ∈ N.

One can show that for all integers x, y greater than 2, the product x∗y is strictly greater than the sum
x+ y. Moreover, the difference between x ∗ y and x+ y increases with the sizes of x and y. The advantage
of GL∗ over L

∗ for learning deterministic guarded string languages in terms of membership queries thus
increases with the size of the set At, which is exponential in the number of primitive tests, At ∼= 2T .
In applications to network verification, the number of tests, thus atoms, is typically quite large [2]. The
difference between GL

∗ and L
∗ described in Theorem 6.3 is mainly due to a subtle play with the table

indices, based on currying. It can be further increased by avoiding querying certain rows all together,
taking into account the deterministic nature of the target language, as indicated in Section 2.2.1.

6.3 Optimized counterexamples

In this section we present an optimization of GL∗ that is based on a subtle refinement of Theorem 5.8.
We show that, while Algorithm 2 reacts to a negative equivalence query with counterexample z ∈ GS
by adding columns for all suffixes in suf(z), it is in fact enough to add columns for a smaller subset
of suffixes suf(z′) ⊆ suf(z), for some z′ ∈ suf(z) of minimal length. Our approach is inspired by the
optimized counterexample handling method of Rivest and Schapire for L∗ [30].

Lemma 6.4 Let T = (S,E, row) be a closed deterministic observation table with row(t)(e) = JX K(te)
for all t ∈ S ∪ S · (At · Σ), e ∈ E. Let Jm(T)K(z) 6= JX K(z) for some z ∈ GS, and z′ := min(Az)

12 . If
T ′ = (S,E ∪ suf(z′), row′) with row′(t)(e) = JX K(te) is closed, then row′(ε)(e) = 0 for all e ∈ E, but
row′(ε)(z′) = 1.

Let z0 be the shortest suffix of z and zi the suffix of z of length |zi−1| + 1. The suffix min(Az) can
easily be computed in at most |suf(z)| − 1 steps: verify whether zi ∈ Az, beginning with z0; if positive,
break and set min(Az) := zi, otherwise loop with zi+1.

For example, if T is the closed table in Figure 2b with the corresponding hypothesis m(T) in Figure 2c
and counterexample z = bpbqb, then z′ = min(Az) = bqb, since b 6∈ Az. Theorem 6.4 shows that, instead of
adding columns for the two non-present suffixes bpbqb and bqb of z, it is sufficient to add only one column
for the single non-present suffix bqb of z′. In this case, the counterexample z is relatively short, thus the
number of avoided columns small; in general, however, the advantage can be more significant.

7 Implementation

We have implemented both GL
∗ and L

∗ in OCaml; the code is available on GitHub 13 . The implementation
allows one to compare, for any GKAT expression e ∈ ExpΣ,T , the number of membership queries to JeK
required by GL

∗ for learning a G-automaton representation of e, with the number of membership queries
to JeK required by L

∗ for learning a M -automaton representation of e. For each run, we output, for both
algorithms, a trace of the involved hypotheses as tables in the .csv format and graphs in the .dot format,
as well as an overview of the numbers of involved queries in the .csv format.

In Figure 6a we present the results for the expression e = if t1 then do p1 else do p2, the primitive
actions Σ = {p1, p2, p3}, and primitive tests T = {t1, ..., tn} parametric in n = 1, ..., 9. We find that GL

∗

outperforms L
∗ for all choices of n. The difference in the number of membership queries increases with

the size of n, as suggested by Theorem 6.3. For n = 9 the number of atoms is 29, resulting in an already
relatively large number of queries for both algorithms. The picture is similar in Figure 6b, where we

11 Let m be the maximum length of a counterexample and n the size of the minimal Moore automaton accepting
JeK, then a = n ∗ |At| ∗ |Σ| and b = m ∗ n. As Figure 6 shows, GL∗ can be more efficient than L

∗ even for small |At|.
12Az := {z′ ∈ suf(z) | z = vαpz′, row(ε)

v
−→ row(sv), x

sv−→ xsv , Jrow(sv)K(αpz
′) 6= Jxsv K(αpz′)}

13 https://github.com/zetzschest/gkat-automata-learning

https://github.com/zetzschest/gkat-automata-learning

Zetzsche, Silva and Sammartino 18–15

1 2 3 4 5 6 7 8 9

0.5
1

2.5

5

8
·106

|T | = |{t1, ..., tn}|

M
em

b
er
sh
ip

q
u
er
ie
s
to

Je
K L

∗

GL
∗

|T | GL
∗

L
∗

1 26 114

2 100 444

3 392 1.752

4 1.552 6.960

5 6.176 27.744

6 24.640 110.784

7 98.432 442.752

8 393.472 1.770.240

9 1.573.376 7.079.424

(a) e = if t1 then do p1 else do p2

1 2 3 4 5 6 7 8 9

0.5
1

2.5

5

8
·106

|T | = |{t1, ..., tn}|

M
em

b
er
sh
ip

q
u
er
ie
s
to

Je
K L

∗

GL
∗

|T | GL
∗

L
∗

1 36 78

2 102 300

3 330 1.176

4 1.170 4.656

5 4.386 18.528

6 16.962 73.920

7 66.690 295.296

8 264.450 1.180.416

9 1.053.186 4.720.128

(b) e = (while t1 do p1); do p2

Fig. 6. A comparison between GL
∗ and L

∗ with respect to membership queries.

choose the expression e = (while t1 do p1); do p2, the primitive actions Σ = {p1, p2}, and primitive tests
T = {t1, ..., tn} parametric in n = 1, ..., 9. Again, GL∗ requires significantly less queries in all cases of n,
and the difference increases with the size of n.

Our implementation generates an oracle for L∗ from a GKAT expression e in the following way. First,
we interpret e as a KAT expression ι(e) via the standard embedding of GKAT into KAT. Next, we
generate from the latter a Moore automaton Xι(e) accepting JeK, by using Kozen’s syntactic Brzozowksi
derivatives for KAT [22]. Finally, we answer an equivalence query from a Moore automaton Y by running
a bisimulation between Xι(e) and Y , similarly to [29, Fig. 1], and a membership query from wα ∈ GS by
returning the value of α at the output of the state in Xι(e) reached by w, that is, JeK(wα). A membership

query from w ∈ GS− is answered by querying wα ∈ GS for all α ∈ At.
With the oracle for L∗, we can derive an oracle for GL∗ as follows. Membership queries wα ∈ GS are

delegated and answered by the oracle for L
∗ as explained above. An equivalence query from a GKAT

automaton Y is answered by posing an equivalence query to the oracle for L∗ with the Moore automaton
f(Y) obtained via the embedding defined in Theorem 6.1. If the oracle for L∗ replies with a counterexample
z ∈ GS−, we extend z with an α ∈ At such that JY K(zα) 6= JeK(zα).

8 Related work

GKAT is a variation on KAT [23] that one obtains by restricting the union and iteration operations from
KAT to guarded versions. While GKAT is less expressive than KAT, term equivalence is notably more
efficiently decidable [32,23], making it a candidate for the foundations of network-programming [33,2,12]

GKAT automata appear in the literature already prior to [32], e.g. in the work of Kozen [24] under
the name strictly deterministic automata. In the latter, Kozen states that GKAT automata correspond
to a limited class of automata with guarded strings (AGS) [21], for which he gives determinization and
minimization constructions. In a different paper [22] Kozen introduces a second definition of (deterministic)
AGS as Moore automata, and states the difference to the definition of AGS in [21] is inessential.

Recently, a new perspective on the semantics and coalgebraic theory of GKAT has been given in terms
of coequations [31,7]. Using the Thompson construction, it is possible to construct for every expression e
a language equivalent automaton Xe. In [24] it was shown that the inverse does generally not hold: there
exists a GKAT automaton that is inequivalent to Xe for all expressions e. In consequence, [32] proposed
a subclass of well-nested automata and showed that every finite well-nested automaton is bisimilar to Xe

for some e. In [31] it was shown that well-nestedness is in fact too restrictive: there exists an automaton
that is bisimilar to Xe for some e, but not well-nested. To capture the full class of automata exhibiting
the behaviour of expressions, one has to extend the class of well-nested automata to the class of automata
satisfying the nesting coequation, which forms a covariety [7].

Active automata learning is a technique used for deriving a model from a black-box by interacting
with it via observations. The seminal algorithm L

∗[3] learns deterministic finite automata, but since then
has been extended to other classes of automata [4,1,26], including Moore automata. Typically, algorithms
such as L∗ are designed to output for a given language a unique minimal acceptor. Not all classes admit

18–16 Guarded Kleene Algebra with Tests: Automata Learning

a canonical minimal acceptor, for instance, learning non-deterministic models is a challenge [9,5,39,38].

9 Discussion and future work

We have presented GL
∗, an algorithm for learning the GKAT automaton representation of a black-box, by

observing its behaviour via queries to an oracle. We have shown that for every normal GKAT automaton
there exists a unique size-minimal normal automaton, accepting the same language: its minimization.
We have identified the minimization with an alternative but equivalent construction, and derived its
preservation of the nesting coequation. A central result showed that if the oracle in GL

∗ is instantiated
with the language accepted by a finite normal automaton, then GL

∗ terminates with its minimization. A
complexity analysis showed the advantage of GL∗ over L∗ for learning automata representations of GKAT
programs in terms of membership queries. We discussed additional optimizations, and implemented GL

∗

and L
∗ in OCaml to compare their performances on example programs.

There are numerous directions in which the present work could be further explored. In Section 6.3 we
introduced an optimization for GL

∗ which is inspired by Rivest and Schapire’s counterexample handling
method for L

∗ [30]. The oberservation pack algorithm for L
∗ [15] has successfully combined Rivest and

Schapire’s method with an efficient discrimination tree data structure [17]. The state-of-the-art TTT -
algorithm [16] for L

∗ extends the former with discriminator finalization techniques. It thus is natural to
ask whether for GL∗ there exist similarly efficient data structures, potentially exploiting the deterministic
nature of the languages accepted by GKAT automata.

While L
∗ has seen major improvements over the years and has inspired numerous variations for dif-

ferent types of transition systems, all approaches remain in common their focus on the equivalence of
observations. The recently presented L

♯ algorithm [36] takes a different perspective: it instead focuses on

apartness, a constructive form of inequality. L♯ does not require data-structures such as observation tables
or discrimination trees, instead operating directly on tree-shaped automata. It remains open whether a
similar shift in perspective is feasible for GL∗.

There exist various domain-specific extensions of KAT (e.g. KAT+B! [13], NetKAT [2], ProbNetKAT
[11]), and similar directions have been proposed for GKAT. In particular, it has been noted that GKAT
is better fit for probabilistic domains than KAT, as it avoids mixing non-determinism with probabilities
[33]. We expect that in the future, for such extensions of GKAT, there will be interest in developing the
corresponding automata (learning) theories.

References

[1] Aarts, F. and F. Vaandrager, Learning i/o automata, in: International Conference on Concurrency Theory, Springer,
2010, pp. 71–85.
https://doi.org/10.1007/978-3-642-15375-4_6

[2] Anderson, C. J., N. Foster, A. Guha, J.-B. Jeannin, D. Kozen, C. Schlesinger and D. Walker, Netkat: Semantic foundations
for networks, ACM Sigplan Notices 49 (2014), pp. 113–126.
https://doi.org/10.1145/2578855.2535862

[3] Angluin, D., Learning regular sets from queries and counterexamples, Information and computation 75 (1987), pp. 87–106.
https://doi.org/10.1016/0890-5401(87)90052-6

[4] Angluin, D. and M. Csűrös, Learning markov chains with variable memory length from noisy output, in: Proceedings of
the tenth annual conference on Computational learning theory, 1997, pp. 298–308.
https://doi.org/10.1145/267460.267517

[5] Bollig, B., P. Habermehl, C. Kern and M. Leucker, Angluin-style learning of nfa, in: Twenty-First International Joint
Conference on Artificial Intelligence, 2009.
https://dl.acm.org/doi/10.5555/1661445.1661605

[6] Chalupar, G., S. Peherstorfer, E. Poll and J. De Ruiter, Automated reverse engineering using lego®, in: 8th {USENIX}
Workshop on Offensive Technologies ({WOOT} 14), 2014.
https://www.usenix.org/conference/woot14/workshop-program/presentation/chalupar

https://doi.org/10.1007/978-3-642-15375-4_6
https://doi.org/10.1145/2578855.2535862
https://doi.org/10.1016/0890-5401(87)90052-6
https://doi.org/10.1145/267460.267517
https://dl.acm.org/doi/10.5555/1661445.1661605
https://www.usenix.org/conference/woot14/workshop-program/presentation/chalupar

Zetzsche, Silva and Sammartino 18–17

[7] Dahlqvist, F. and T. Schmid, How to write a coequation ((co) algebraic pearls), in: 9th Conference on Algebra and
Coalgebra in Computer Science (CALCO 2021), Schloss Dagstuhl-Leibniz-Zentrum für Informatik, 2021.
https://doi.org/10.4230/LIPIcs.CALCO.2021.13

[8] De Ruiter, J. and E. Poll, Protocol state fuzzing of {TLS} implementations, in: 24th USENIX Security Symposium
(USENIX Security 15), 2015, pp. 193–206.
https://dl.acm.org/doi/10.5555/2831143.2831156

[9] Denis, F., A. Lemay and A. Terlutte, Residual finite state automata, in: Annual Symposium on Theoretical Aspects of
Computer Science, Springer, 2001, pp. 144–157.
https://link.springer.com/chapter/10.1007/3-540-44693-1_13

[10] Feamster, N., J. Rexford and E. Zegura, The road to sdn: an intellectual history of programmable networks, ACM
SIGCOMM Computer Communication Review 44 (2014), pp. 87–98.
https://doi.org/10.1145/2602204.2602219

[11] Foster, N., D. Kozen, K. Mamouras, M. Reitblatt and A. Silva, Probabilistic netkat, in: European Symposium on
Programming, Springer, 2016, pp. 282–309.
https://link.springer.com/chapter/10.1007/978-3-662-49498-1_12

[12] Foster, N., D. Kozen, M. Milano, A. Silva and L. Thompson, A coalgebraic decision procedure for netkat, in: Proceedings
of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2015, pp. 343–355.
https://doi.org/10.1145/2676726.2677011

[13] Grathwohl, N. B. B., D. Kozen and K. Mamouras, Kat+ b!, in: Proceedings of the joint meeting of the twenty-third EASCL
annual conference on Computer Science Logic (CSL) and the twenty-ninth annual ACM/IEEE Symposium on Logic in
Computer Science (LiCS), 2014, pp. 1–10.
https://doi.org/10.1145/2603088.2603095

[14] Hagerer, A., H. Hungar, O. Niese and B. Steffen, Model generation by moderated regular extrapolation, in: International
Conference on Fundamental Approaches to Software Engineering, Springer, 2002, pp. 80–95.
https://link.springer.com/chapter/10.1007/3-540-45923-5_6

[15] Howar, F., “Active learning of interface programs.” Ph.D. thesis, Dortmund University of Technology (2012).
http://doi.org/10.17877/DE290R-4817

[16] Isberner, M., F. Howar and B. Steffen, The TTT algorithm: a redundancy-free approach to active automata learning, in:
International Conference on Runtime Verification, Springer, 2014, pp. 307–322.
https://link.springer.com/chapter/10.1007/978-3-319-11164-3_26

[17] Kearns, M. J., U. V. Vazirani and U. Vazirani, “An introduction to computational learning theory,” MIT press, 1994.
ISBN 9780262111935.

[18] Kleene, S., Representation of events in nerve nets and finite automata, Automata studies 3 (1951), p. 41.
https://doi.org/10.1515/9781400882618-002

[19] Kozen, D., A completeness theorem for Kleene algebras and the algebra of regular events, Information and computation
110 (1994), pp. 366–390.
https://doi.org/10.1006/inco.1994.1037

[20] Kozen, D., Kleene algebra with tests, ACM Transactions on Programming Languages and Systems (TOPLAS) 19 (1997),
pp. 427–443.
https://doi.org/10.1145/256167.256195

[21] Kozen, D., Automata on guarded strings and applications, Technical report, Cornell University (2001).
https://www.cs.cornell.edu/~kozen/Papers/ags.pdf

[22] Kozen, D., On the coalgebraic theory of kleene algebra with tests, in: Rohit Parikh on Logic, Language and Society, Springer,
2017 pp. 279–298.
https://doi.org/10.1007/978-3-319-47843-2_15

[23] Kozen, D. and F. Smith, Kleene algebra with tests: Completeness and decidability, in: International Workshop on Computer
Science Logic, Springer, 1996, pp. 244–259.
https://link.springer.com/chapter/10.1007/3-540-63172-0_43

[24] Kozen, D. and W.-L. D. Tseng, The Böhm–Jacopini theorem is false, propositionally, in: International Conference on
Mathematics of Program Construction, Springer, 2008, pp. 177–192.
https://doi.org/10.1007/978-3-540-70594-9_11

https://doi.org/10.4230/LIPIcs.CALCO.2021.13
https://dl.acm.org/doi/10.5555/2831143.2831156
https://link.springer.com/chapter/10.1007/3-540-44693-1_13
https://doi.org/10.1145/2602204.2602219
https://link.springer.com/chapter/10.1007/978-3-662-49498-1_12
https://doi.org/10.1145/2603088.2603095
https://link.springer.com/chapter/10.1007/3-540-45923-5_6
http://doi.org/10.17877/DE290R-4817
https://link.springer.com/chapter/10.1007/978-3-319-11164-3_26
https://doi.org/10.1515/9781400882618-002
https://doi.org/10.1006/inco.1994.1037
https://doi.org/10.1145/256167.256195
https://www.cs.cornell.edu/~kozen/Papers/ags.pdf
https://doi.org/10.1007/978-3-319-47843-2_15
https://link.springer.com/chapter/10.1007/3-540-63172-0_43
https://doi.org/10.1007/978-3-540-70594-9_11

18–18 Guarded Kleene Algebra with Tests: Automata Learning

[25] Maler, O. and A. Pnueli, On the learnability of infinitary regular sets, Information and Computation 118 (1995), pp. 316–
326.
https://doi.org/10.1006/inco.1995.1070

[26] Moerman, J., M. Sammartino, A. Silva, B. Klin and M. Szynwelski, Learning nominal automata, in: Proceedings of the
44th ACM SIGPLAN Symposium on Principles of Programming Languages, 2017, pp. 613–625.
https://doi.org/10.1006/inco.1995.1070

[27] Moore, T., Gedanken–experiments on Sequential Machines, in: Sequential Machines, Automata Studies, Annals of
Mathematical Studies, no. 34, Citeseer, 1956.
https://doi.org/10.1515/9781400882618-006

[28] Nerode, A., Linear automaton transformations, Proceedings of the American Mathematical Society 9 (1958), pp. 541–544.
https://doi.org/10.2307/2033204

[29] Pous, D., Symbolic algorithms for language equivalence and kleene algebra with tests, in: Proceedings of the 42nd Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages, 2015, pp. 357–368.
https://doi.org/10.1145/2775051.2677007

[30] Rivest, R. L. and R. E. Schapire, Inference of finite automata using homing sequences, Information and Computation
103 (1993), pp. 299–347.
https://doi.org/10.1006/inco.1993.1021

[31] Schmid, T., T. Kappé, D. Kozen and A. Silva, Guarded kleene algebra with tests: Coequations, coinduction, and
completeness, arXiv preprint (2021).
https://doi.org/10.48550/arXiv.2102.08286

[32] Smolka, S., N. Foster, J. Hsu, T. Kappé, D. Kozen and A. Silva, Guarded kleene algebra with tests: verification of
uninterpreted programs in nearly linear time, Proceedings of the ACM on Programming Languages 4 (2019), pp. 1–28.
https://doi.org/10.1145/3371129

[33] Smolka, S., P. Kumar, D. M. Kahn, N. Foster, J. Hsu, D. Kozen and A. Silva, Scalable verification of probabilistic networks,
in: Proceedings of the 40th ACM SIGPLAN Conference on Programming Language Design and Implementation, 2019, pp.
190–203.
https://doi.org/10.1145/3314221.3314639

[34] Thompson, K., Programming techniques: Regular expression search algorithm, Communications of the ACM 11 (1968),
pp. 419–422.
https://doi.org/10.1145/363347.363387

[35] Vaandrager, F., Model learning, Communications of the ACM 60 (2017), pp. 86–95.
https://doi.org/10.1145/2967606

[36] Vaandrager, F., B. Garhewal, J. Rot and T. Wißmann, A new approach for active automata learning based on apartness,
arXiv preprint arXiv:2107.05419 (2021).
https://doi.org/10.48550/arXiv.2107.05419

[37] van Heerdt, G., M. Sammartino and A. Silva, Calf: Categorical automata learning framework, Computer Science Logic
2017 (2017).
https://drops.dagstuhl.de/opus/volltexte/2017/7695/pdf/LIPIcs-CSL-2017-29.pdf

[38] van Heerdt, G., M. Sammartino and A. Silva, Learning automata with side-effects, in: International Workshop on
Coalgebraic Methods in Computer Science, Springer, 2020, pp. 68–89.
https://link.springer.com/chapter/10.1007/978-3-030-57201-3_5

[39] Zetzsche, S., G. van Heerdt, M. Sammartino and A. Silva, Canonical automata via distributive law homomorphisms,
Electronic Proceedings in Theoretical Computer Science 351 (2021), p. 296–313.
http://doi.org/10.4204/EPTCS.351.18

https://doi.org/10.1006/inco.1995.1070
https://doi.org/10.1006/inco.1995.1070
https://doi.org/10.1515/9781400882618-006
https://doi.org/10.2307/2033204
https://doi.org/10.1145/2775051.2677007
https://doi.org/10.1006/inco.1993.1021
https://doi.org/10.48550/arXiv.2102.08286
https://doi.org/10.1145/3371129
https://doi.org/10.1145/3314221.3314639
https://doi.org/10.1145/363347.363387
https://doi.org/10.1145/2967606
https://doi.org/10.48550/arXiv.2107.05419
https://drops.dagstuhl.de/opus/volltexte/2017/7695/pdf/LIPIcs-CSL-2017-29.pdf
https://link.springer.com/chapter/10.1007/978-3-030-57201-3_5
http://doi.org/10.4204/EPTCS.351.18

	1 Introduction
	2 Overview of the approach
	2.1 L* algorithm
	2.2 GL* algorithm

	3 Preliminaries
	3.1 Syntax
	3.2 Semantics: Language Model
	3.3 Semantics: Automata Model

	4 The minimal representation m(X)
	4.1 Reachability
	4.2 Minimality

	5 Learning m(X)
	5.1 Properties of m(T)
	5.2 Relationship between m(T) and m(X)

	6 Comparison with Moore automata
	6.1 Embedding of GKAT automata
	6.2 Complexity analysis
	6.3 Optimized counterexamples

	7 Implementation
	8 Related work
	9 Discussion and future work
	References

