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Abstract

Delimited control operator shift0 exhibits versatile capabilities: it can express layered monadic effects, or equivalently,
algebraic effects. Little did we know it can express lambda calculus too! We present Λ$, a call-by-value lambda calculus
extended with shift0 and control delimiter $ with carefully crafted reduction theory, such that the lambda calculus with beta
and eta reductions can be isomorphically embedded into Λ$ via a right inverse of a continuation-passing style translation.
While call-by-name reductions of lambda calculus can trivially simulate its call-by-value version, we show that addition of
shift0 and $ is the golden mean of expressive power that suffices to simulate beta and eta reductions while still admitting a
simulation back. As a corollary, calculi Λµv , λ$, Λ$ and λ all correspond equationally.
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1 Introduction

Delimited control [5,3] is a computational effect capable of expressing any monadic effect in direct style [6,7].
Moreover, delimited continuations are closely related to algebraic effects [15,16], as it has been shown that
delimited control, in the form of shift0 and $, are mutually macro expressible with algebraic effects with
deep handlers [8,14]. It is as strong as an infinite hierarchy of shifts [13]. Finally, shift0 can recursively
express control0 in direct style [19].

It is a basic observation that operational semantics of call-by-value lambda calculus can be simulated
by call-by-name lambda calculus. Every βv (ηv) reduction step can be simulated by a β (η) step on the
same term. The latter simulation is mediated by identity relation on terms. In this paper we show that
there exists a relation (i.e. CPS translation ∗ : Λ$ → λ) between call-by-value lambda terms extended
with delimited control operators and vanilla, call-by-name lambda terms that admits a simulation in both
ways, hence a bisimulation. We do not prove the bisimulation directly. Instead, we show that a stronger
relationship between these calculi exists, namely a reflection.
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In our previous, related works we followed the programme of Sabry and Wadler [18]: to seek a Galois
connection (or even better, a reflection or isomophism) between reduction theories instead of equational
correspondences whenever possible, as a Galois connection is a stronger relationship between calculi that
already implies an equational correspondence. In [1] we developed such relationship between shift and
its CPS, while in [2] we have done that for shift0. This paper improves upon the latter of these and
upon undirected axiomatisation of [11], as we prove a reflection where the image of CPS is closed under
βη reduction, hence a ”directed axiomatisation”. However, in the particular case of CPS translation for
shift0-style delimited control it turns out that the reduction-closed image is not a proper subcalculus
but the entire λ, hence every λ-term is, in fact, in continuation-composing style. A translation back (aka.
direct style translation) from λ to Λ$ exists which allows to perfectly embed lambda calculus: image of
the direct style translation is a subcalculus of Λ$ isomorphic with λ-calculus.

This paper has two goals.

(i) to bring about the definitive, fine-grained operational semantics for shift0 that can provide, a ”di-
rected axiomatisation” of delimited control.

(ii) to show that call-by-value with delimited control in the form of shift0 is the same thing as call-by-
name purely functional programming on the level of operational semantics.

The second point cannot be stressed enough. Call-by-name reduction is exactly like call-by-value with
shift0-style delimited control. It is not the case with abortive control nor shift of Danvy and Filinski [3],
which can be deduced from previous axiomatisation efforts [17,9], whose CPS translations reach proper
subsets of λ-terms. This puts shift0 control operator in a unique spot and as far as we know, it has not
been acknowledged yet.

1.1 Outline

In Section 2 a new calculus of control is presented, named Λ$, with its syntax and semantics. In Section 3
we show mutual macro-expressibility (and equational correspondence) of Λ$ and λ$, an established calculus
with shift0 and $, to support our claim that Λ$ is a call-by-value calculus with shift0-style delimited
control. In Section 4 we prove theorems that justify the title of this paper: λ can be reflected into Λ$. As
a corollary, calculi Λµv [4], λ$ [11], Λ$ and λ all correspond equationally. We conclude and discuss related
and future work in Section 5.

1.2 Conventions

In this paper, ≡ means syntactic equality modulo renaming of bound variables, while = means term
equivalence up to rewrite rules in a calculus; calculus is either implied by the usage or specified directly
in the subscript. Given relation r, r? is (≡) ∪ r, i.e. reflexive closure of r. Rewrites may occur in
arbitrary contexts, including variable-binding contexts; these contexts may capture variables of a term
that is plugged into. Terms are not required to be closed; it is perflectly fine for them to be open. Some
classes of contexts (i.e. bindable and pure contexts) that we define may look a lot like evaluation contexts
but that is not their purpose here. We are not concerned with standard reduction nor evaluation strategy,
only with general reduction on open terms that may and will often be nondeterministic.

Atomic terms include variables x, parenthesised terms (M), unary shift0 S0(M) (we call it thaw)
and unary $ $(M) (we call it freeze). Parentheses in these unary operators are mandatory and there is
no space between operator and parenthesis. Plugging term in a context C[M ] and postfix translations
M∗,M †,M#,M ♮ 5 are left-associative and have the highest precedence. Application M N has the next
precedence and is left-associative, followed by right-associative binary $ (known as plug [10] or dollar [13] 6 )
M $N . We disambiguate M $(N) as M ($(N)), and M $ (N) as M $N by different spacing. Syntaxes

5 We follow the translation naming convention of Sabry and Wadler [18].
6 The word plug is somewhat justified, but we feel like it is already taken (to plug a term in a context), so we tend
to pronouce this operator dollar. It’s arguably a bad name but there is a precedent of its use.
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let x = M inN , λx .N and S0 x .N are right-associative, bind variable x in term N and have the lowest
precedence.

1.3 Theory of preorders – Galois connections and reflections

A calculus equipped with a reduction relation can be seen as a preordered set (proset, a set with a reflexive
and transitive relation).

Definition 1.1 Assume (A,։A) and (B,։B) are prosets. A function f : A→ B is monotone iff for all
x1, x2 ∈ A, x1 ։A x2 implies f(x1) ։B f(x2).

Definition 1.2 Monotone functions f : A → B and g : B → A form a Galois connection if, and only if
for all a ∈ A and b ∈ B, a ։A g(b)⇐⇒ f(a) ։B b.

It may be helpful to think about a Galois connection as a compiler ∗ from source language S to
target language T coupled with a decompiler #. Laws of Galois connection guarantee that compiling and
decompiling are harmonised: it does not matter whether simplification is performed on source or target,
or on both ends. As an equivalence, a Galois connection allows two modes of reasoning:

• Soundness. Every multi-step reduction in the source is valid in the target: ifM ։S N#, thenM∗
։T N .

• Completeness. Every multi-step reduction in the target is valid in the source: if M∗
։T N , then

M ։S N#.

A reader familiar with (bi)simulations may notice that if a function f is monotone, then f is a similarity
relation. When (f, g) is a Galois connection, then f is a bisimilarity relation. A reader somewhat familiar
with category theory may recognise that preordered set is the same thing as a thin category. Monotone
functions are functors between those categories. Galois connection is a pair of adjoint functors. A Galois
connection between symmetric preorders (better known as equivalence relations) is simply an equational
correspondence.

There is an alternative characterisation of a Galois connection.

Theorem 1.3 (Equivalent definition of Galois connection) Monotone functions f : A → B and
g : B → A form a Galois connection if, and only if

• a ։A g(f(a)) and

• f(g(b)) ։B b.

A reflection is a bit tighter kind of a Galois connection.

Definition 1.4 A Galois connection (f : A → B, g : B → A) is a reflection if, and only if for all b ∈ B,
f(g(b)) ≡ b.

When (f : A → B, g : B → A) is a reflection we say that B can be reflected into A. A subcalculus
(g[B], (։A) ∩ (g[B]× g[B])) is then isomorphic to B.

Definition 1.5 A reflection (f : A → B, g : B → A) is an isomorphism if, and only if for all a ∈ A,
a ≡ g(f(a)).

1.4 Background: Materzok’s λ$

In this introductory subsection, we present syntax, reductions, axioms (Figure 1.4) and CPS translation
(Figure 2) of λ$, as defined by Materzok [11]. It features a variable-binding control operator shift0 and
binary operator $ that delimits continuation captured by shift0 in the right hand side. CPS translation
to lambda calculus provides denotational semantics. The axioms were proven by Materzok to be sound
and complete with respect to CPS translation. λ$ also has small-step operational semantics, which are
sound (but not complete) with respect to axioms and CPS. These semantics allow shift0 to capture an
arbitrarily long context in a single reduction step.
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term e ::= v | e e′ | S0 x . e | e $ e
′

value v ::= x |λx .M

pure context E ::= [ ] |E e | v E |E $ e

(λ x . e) v →βv
e[v/x]

v $ v′ →$v v v′

v $E[S0 x . e] →$/S0
e[λ y . v $E[y]/x] if y is fresh wrt. v,E

(λ x . e) v =βv
e[v/x]

λx . v x =ηv v ifx is fresh wrt. v

v $ v′ =$v v v′

v $E[e] =$E (λ y . v $E[y]) $ e

v $S0 x . e =β$
e[v/x]

S0 x . x $ e =η$ e ifx is fresh wrt. e

Fig. 1. Syntax, reductions and axioms of λ$ [11].

CJ·K : λ$ → λ

CJvK :≡λk . k CvJvK

CJe e′K :≡λk . CJeK (λ x . CJe′K (λ y . x y k))

CJS0 x . eK :≡λx . CJeK

CJe $ e′K :≡λk . CJeK (λ x . CJe′Kx k)

CvJxK :≡x

CvJλx . eK :≡λx . CJeK

S0(e) :≡ (λx .S0 k . x k) e

$(e) :≡ λx . x $ e

Fig. 2. Semantics of λ$, described by CPS translation [11] and macro-definitions of unary variants of control operators.

Example 1.6 Here’s an evaluation example. Let I ≡ λ x . x.

I $ I (S0 f . f (fz))→$/S0
(f (f z))[λ x . I $ I x/f ] ≡ (λx . I $ I x) ((λ x . I $ I x) z)

→βv
(λx . I $ I x) (I $ I z)→βv

(λx . I $ I x) (I $ z)→$v (λ x . I $ I x) (I z)

→βv
(λ x . I $ I x) z →βv

I $ I z →βv
I $ z →$v I z →βv

z

Example 1.7 Terms in CPS get lengthy even for very small examples: CJIK ≡ λk1 . k1 (λ x . λ k2 . k2 x).

2 Syntax and semantics of Λ$

Reductions in Materzok’s λ$ were clearly lacking. What we wanted was a set of reductions that would
also stand as a complete axiomatisation of shift0. Our goal was to improve upon a sound but incomplete
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reduction theory of λc$ [2]. To reach completeness, we took the range of that previous CPS translation
and closed this set under βη-reduction (in a similar vein to Sabry and Felleisen [17]). To our surprise, all
quirks of the grammar disappeared and the entire λ showed up. To double check, we also closed CPS of λ$
under reduction: entire λ again. It was now a matter of time to find an improved calculus, CPS and DS
(direct style) translation. Our choice to use unary operators may be considered arbitrary by some but this
choice provided us with a beautiful duality of values and terms mediated by freeze and thaw and an actual,
working reflection. Old semantics had to be modified anyway and syntax could use some refreshment too.
Our method was to have only one binding construct and use only local reductions to keep things as simple
as possible.

We define syntax and small-step operational semantics of Λ$ in Figure 3. Figure also includes some
syntactic sugar to make some idioms (like let-expressions) easier on the eye.

Indeed, let-expressions with both β and η rule are macro-definable. It is easy to check that let x =
V inM ։Λ$

M [V/x], let x = M inx ։Λ$
M and also (λx .N)M ։Λ$

let x = M inN . Associativity of
let-expressions holds, but it is undirected: if y is fresh wrt.N , then

let x = let y = L inM inN =Λ$
let y = L in let x = M inN.

Initially we aimed for a calculus with a separate let construct whose CPS is diffrent than that of a
β-redex, like in λc [18], λcS [1] and λc$ [2]. However, associativity kept derailing our theorems. We were
stuck, so we got rid of the let construct and replaced its uses with a pattern S0 k .(λ x . k $N) $M that
behaves just like let-expressions. Due to its ubiquity in the proofs, we needed a shorthand notation; a
let-expression syntax was an obvious choice.

One can think of unary $ as reifying or freezing a computation as a value. Such a value can be then
reflected or thawed by unary shift0 (if given a nonvalue, it waits until its argument becomes a value).
These operations are invertible using $S0 and S0 $ reductions. Reductions $v and pure tell us that a value
V freezes to λ x . x V and can be recovered from it by thawing. The job of bind rule is to gives names to
subcomputations and make sure contexts are managed properly. Notice that due to syntactic restriction
that requires bind-redex to be of the form J [P ], there is at most one legal way to bind-contract:

• S0(P )bind let x = P inS0(x) is a legal bind-contraction,

• S0(V )bind let x = V inS0(x), V W bind let x = W inV x and V W bind let x = V inxW are illegal,

• V P bind let x = P inV x is legal while V P bind let x = V inxP is not,

• P M bind let x = P inxM is legal while P Qbind let x = Q inP x is not,

To enable further developments, Figure 2 introduces continuation-passing style translation ∗ : Λ$ → λ,
which provides alternative, denotational semantics of Λ$. However, one does not need to worry about a
mismatch of semantics – theorems of Section 4 are more than enough to ensure that ∗ is a sound and
complete translation (M =Λ$

N iff M∗ =λ N∗). λ-calculus that we target has both β and η reductions
(Figure 6).

To lift the spirit even higher, confluence of Λ$ is proven below using definitions (translation # : λ→ Λ$)
and theorems of Section 4 but the proof is straightforward enough that it may be understandable right here.
It gives us a taste of usefullness of reflections and Galois connections in general: one can transfer confluence
from one calculus to another. Confluence is provided here as a sanity check of a newly introduced calculus;
to avoid circular reasoning, we do not use it in proofs.

Theorem 2.1 (Confluence) Reduction in Λ$ is confluent.

Proof. For concise presentation, we chain relations and flip arguments: M և N iff N ։ M .

(i) Assume M1 և M ։ M2.

(ii) Apply monotonicity of translation ∗: M∗
1 և M∗

։ M∗
2 .

(iii) Apply confluence in λ (Church-Rosser theorem): there is N ∈ λ such that M∗
1 ։ N և M∗

2 .

(iv) Apply monotonicity of translation #: M∗#
1 ։ N#

և M∗#
2 .
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term L,M,N ::= V |P

value V,W ::= x |λx .M | $(M)

nonvalue P,Q ::= M N | S0(M)

bindable context J ::= [ ]M |V [ ] | S0([ ])

pure context K ::= [ ] | J [K]

reduction context C ::= [ ] |λx . C |CM |M C | S0(C) | $(C)

S0 x .M :≡ S0(λ x .M)

M $N :≡ $(N)M

let x = M inN :≡ S0 k .(λx . k $N) $M

7→ :≡βv ∪ ηv ∪ $v ∪ $S0 ∪ S0 $ ∪ pure ∪ bind

(λ x .M)V βv M [V/x]

λx . V x ηv V ifx is fresh wrt.V

$(V ) $v λ x . x V ifx is fresh wrt.V

$(S0(V )) $S0 V

S0($(M)) S0 $ M

S0 x . x V pure V ifx is fresh wrt.V

J [P ] bind let x = P in J [x] ifx is fresh wrt.J

C[M ] → C[N ] ifM 7→ N

M ։ N ifM →n N,n ≥ 0

M = N ifM(→ ∪ ←)nN,n ≥ 0

Fig. 3. Direct style calculus Λ$.

∗ : Λ$ → λ

V ∗ :≡λ k . k V †

J [P ]∗ :≡λ k . P ∗ (λx . J [x]∗ k)

(V W )∗ :≡V †W †

S0(V )∗ :≡V †

x† :≡x

(λ x .M)† :≡λx .M∗

$(M)† :≡M∗

Fig. 4. Translation from Λ$ to continuation-passing style.

(v) Apply left post-inverse theorem twice: M1 ։ M∗#
1 ։ N#

և M∗#
2 և M2.

(vi) Apply transitivity of ։Λ$
twice: M1 ։ N#

և M2.
✷

The following lemma is quite handy in equational reasoning about Λ$ terms.

Lemma 2.2 (Generalised =bind) If x is fresh wrt. J , then J [M ] =Λ$
let x = M inJ [x].
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ι : λ$ → Λ$

ι(x) :≡x

ι(λ x . e) :≡λx . ι(e)

ι(e e′) :≡ ι(e) ι(e′)

ι(S0 x . e) :≡S0(λ x . ι(e))

ι(e $ e′) :≡ $(ι(e′)) ι(e)

π : Λ$ → λ$

π(x) :≡x

π(λx .M) :≡λx . π(M)

π($(M)) :≡λx . x $π(M)

π(M N) :≡π(M)π(N)

π(S0(M)) :≡(λ x .S0 k . x k)π(M)

Fig. 5. Embedding ι and its inverse π, with macros unfolded.

Proof. By a chain of rewrites.

J [M ]

←S0 $ J [S0($(M))]

→bind let x = S0($(M)) in J [x]

→S0 $ let x = M in J [x]

✷

3 Equational correspondence with λ$

In this section, we defend the thesis that Λ$ is a calculus of delimited control and its control primitives
behave like control operator shift0 and delimiter $. To meet these ends, we show that there exists an
equational correspondence with λ$ of Materzok [11] expressed with macro-translations. As we mentioned
already, λ$ has small-step operational semantics, which are sound (but not complete) with respect to
axioms and CPS. These semantics allow shift0 to capture an arbitrarily long context in a single reduction
step. Equational correspondence that we prove in this section shows that this traditional approach can
also be used in equational reasoning about Λ$ terms.

One might wonder, why we only prove equational correspondence and not a Galois connection? We
clearly cannot connect directed։Λ$

with =λ$
because such a connection would transfer symmetry property

from =λ$
to ։Λ$

, a contradiction: I I → I 6 →I I. We cannot connect ։Λ$
with ։λ$

using macros: every
macro-translation would necessarily transfer λ y . x y ։ x verbatim which is provably true in Λ$ and false
in λ$. Our equational correspondence crucially uses Materzok’s $E axiom in both directions, so it is unclear
how these axioms could be turned into directed reduction rules that would admit a Galois connection. We
did not investigate translations that are not based on macros: such translation would weaken our claim
that Λ$ is a calculus with shift0-style delimited control.

Basic reductions of Λ$ can be seen as set of axioms. It is later shown in Section 4 as corollary that for
such axioms CPS translation ∗ is sound and complete (M =Λ$

N iff M∗ =λ N∗), which is an improvement
upon λ$, whose reductions induce an equivalence relation on λ$ that is a proper subset of =λ$

, hence
incomplete. These stronger properties make Λ$ a contender for the title of the definitive calculus of
shift0-style delimited control.

To mediate the correspondence, we need translations to (ι) and from (π) Λ$. Translations (with
unfolded macros) are presented in Figure 5. With folded macro-definitions they would look like an identity
function. To translate from λ$ to Λ$, we use macros from Figure 3. To translate from Λ$ to λ$, we use
macros from Figure 2.

Lemma 3.1 (Embedding ι is invertible) The following equalities hold:

• Left inverse property. For all e ∈ λ$, π(ι(e)) = e.

• Right inverse property. For all M ∈ Λ$, ι(π(M)) = M .



14–8 Call-By-Name is Just Call-By-Value with Delimited Control

Proof. Both propositions are separately proven by structural induction.

• Case e ≡ x. π(ι(x)) ≡ π(x) ≡ x.

• Case e ≡ λx . e1. π(ι(λ x . e1)) ≡ π(λ x . ι(e1)) ≡ λx . π(ι(e1)) =IH λx . e1.

• Case e ≡ e1 e2. π(ι(e1 e2)) ≡ π(ι(e1) ι(e2)) ≡ π(ι(e1))π(ι(e2)) =IH e1 e2.

• Case e ≡ S0 x . e1.

π(ι(S0 k . e1))

≡ π(S0 k . ι(e1))

≡ (λ x .S0 k . x k)π(λ k . ι(e1))

≡ (λ x .S0 k . x k) λ k . π(ι(e1))

=IH (λx .S0 k . x k) λk . e1
=βv

S0 k .(λ k . e1) k

=βv
S0 k . e1

• Case e ≡ e1 $ e2.

π(ι(e1 $ e2))

≡ π(ι(e1) $ ι(e2))

≡ π($(ι(e2)))π(ι(e1))

≡ (λx . x $π(ι(e2)))π(ι(e1))

=IH (λx . x $ e2) e1
=η$ S0 k . k $ (λx . x $ e2) e1
=$E S0 k .(λx . k $ (λx . x $ e2)x) $ e1
=βv

S0 k .(λ x . k $x $ e2) $ e1
=$E S0 k . k $ e1 $ e2
=η$ e1 $ e2

• Case M ≡ x. ι(π(x)) ≡ ι(x) ≡ x.

• Case M ≡ λx .M1. ι(π(λ x .M1)) ≡ ι(λ x . π(M1)) ≡ λx . ι(π(M1)) =IH λx .M1.

• Case M ≡ $(M1). ι(π($(M1))) ≡ ι(λx . x $π(M1)) ≡ λx . ι(x $π(M1)) ≡ λ x . ι(x) $ ι(π(M1)) ≡
λx . x $ ι(π(M1)) =IH λx . x $M1 =ηv $(M1).

• Case M ≡M1M2. ι(π(M1 M2)) ≡ ι(π(M1)π(M2)) ≡ ι(π(M1)) ι(π(M2)) =IH M1 M2.

• Case M ≡ S0(M1).

ι(π(S0(M1)))

≡ ι((λ x .S0 k . x k)π(M1))

≡ ι((λ x .S0 k . x k)) ι(π(M1))

≡ (λx . ι(S0 k . x k)) ι(π(M1))

≡ (λx .S0 k . ι(x k)) ι(π(M1))

≡ (λx .S0 k . ι(x) ι(k)) ι(π(M1))

≡ (λx .S0 k . x k) ι(π(M1))
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=IH (λ x .S0 k . x k)M1

=ηv (λx .S0(x))M1

=bind let x = M1 in (λ x .S0(x))x

=βv
let x = M1 inS0(x)

=bind S0(M1)
✷

Lemma 3.2 Equality V $J [M ] = (λ x . V $J [x]) $M holds in Λ$.

Proof. By a chain of rewrites.

V $J [M ]

=bind V $S0 k .(λ y . k $J [y]) $M

=$S0
(λk .(λ y . k $ J [y]) $M)V

=βv
(λ y . V $J [y]) $M

✷

Lemma 3.3 Equality V $K[M ] = Λ$(λ x . V $K[x]) $M holds if x is fresh wrt. V andK.

Proof. By induction on K. In the context of this proof, we use the rules of Λ$ (Fig. 3).

• Base case. V $M =ηv (λx . V x) $M =βv
(λx .(λ y . y x)V ) $M =$v (λ x . V $x) $M .

• Inductive case. Use of an inductive hypothesis is marked by ”IH”.

V $J [K[M ]]

=Lemma 3.2 (λ x . V $J [x]) $K[M ]

=IH (λ y .(λ x . V $J [x]) $K[y]) $M

=Lemma 3.2 (λ y . V $J [K[y]]) $M

✷

Theorem 3.4 (Soundness of ι) The following propositions hold:

• For all e, e′ ∈ λ$, if e =λ$
e′, then ι(e) =Λ$

ι(e′).

• For all M,M ′ ∈ Λ$, if π(M) =λ$
π(M ′), then M =Λ$

M ′.

Proof. To prove the first proposition it suffices to show that all axioms of λ$ are also valid equalities in
Λ$.

• Axiom βv follows immediately by rule βv.

• Axiom ηv follows immediately by rule ηv.

• Axiom $v. V $W →$v (λ k . kW )V →βv
V W .

• Axiom $E follows by Lemma 3.3.

• Axiom β$. V $S0 x .M →$S0
(λ x .M)V →βv

M [V/x].

• Axiom η$. S0 x . x $M →ηv S0($(M))→S0 $ M .

To prove the second proposition, apply the first proposition on assumption π(M) = π(M ′) to get ι(π(M)) =
ι(π(M ′)) and rewrite by the right inverse property of ι to infer M = M ′. ✷

Having the soundness of ι secured, we move on to completeness. In order to prove it, we show that CPS
translation of Materzok is equivalent to ours. Syntax and small-step operational semantics of λ-calculus
are provided for reference in Figure 6.
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term M,N ::= x |λx .M |M N

reduction context C ::= [ ] |λx .C |CM |M C

(λx .M)N β M [N/x]

λx .M x η M ifx is fresh wrt.M

M 7→ N ifMβN or MηN

C[M ] → C[N ] ifM 7→ N

M ։ N ifM →n N,n ≥ 0

M = N ifM(→ ∪ ←)nN,n ≥ 0

Fig. 6. Lambda calculus λ, the image of CPS translation.

Lemma 3.5 Equality (M N)∗ = λk .M∗ (λx .N∗ (λ y . x y k)) holds in λ.

Proof. In the appendix. ✷

Lemma 3.6 (βη-equivalence of CPS transforms) For all e ∈ λ$, ι(e)
∗ =λ CJeK.

Proof. By structural induction.

• Case e ≡ x. ι(x)∗ ≡ x∗ ≡ λk . k x† ≡ λk . k x ≡ CJxK.

• Case e ≡ λx . e1.

ι(λx . e1)
∗ ≡ (λ x . ι(e1))

∗ ≡ λk . k (λ x . ι(e1))
† ≡ λk . k λ x . ι(e1)

∗

=IH λk . k λ x . CJe1K ≡ λk . k CvJλx . e1K ≡ CJλ x . e1K

• Case e ≡ e1 e2.

ι(e1 e2)
∗ ≡ (ι(e1) ι(e2))

∗ =Lemma 3.5 λk . ι(e1)
∗ (λ x . ι(e2)

∗ (λ y . x y k))

=IH λ k . CJe1K (λ x . CJe2K (λ y . x y k)) ≡ CJe1 e2K

• Case e ≡ S0 x . e1.

ι(S0 x . e1)
∗

≡ λ x . ι(e1)
∗

=IH λx . CJe1K

≡ CJS0 x . e1K

• Case e ≡ e1 $ e2.

ι(e1 $ e2)
∗

≡ (ι(e1) $ ι(e2))
∗

≡ ($(ι(e2)) ι(e1))
∗

=Lemma 3.5 λk . $(ι(e2))
∗ (λ x . ι(e1)

∗ (λ y . x y k))

=β λk .(λ x . ι(e1)
∗ (λ y . x y k)) $(ι(e2))

†
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# : λ→ Λ$

x# :≡S0(x)

(λx . xN)# :≡N ♮ ifx is fresh wrt.N

(λx .M)# :≡S0 x .M
# otherwise

(M N)# :≡M ♮N ♮

x♮ :≡x

(λx .M)♮ :≡λx .M#

(MN)♮ :≡ $(M ♮ N ♮)

Fig. 7. Conversion from λ back to direct style Λ$.

=β λ k . ι(e1)
∗ (λ y . $(ι(e2))

† y k)

≡ λk . ι(e1)
∗ (λ y . ι(e2)

∗ y k)

=IH λk . CJe1K (λ y . CJe2K y k)

≡ CJe1 $ e2K

✷

We strike the final nail in the coffin of doubt with the completeness theorem.

Theorem 3.7 (Completeness of ι) The following propositions hold:

• For all e, e′ ∈ λ$, if ι(e) =Λ$
ι(e′), then e =λ$

e′.

• For all M,M ′ ∈ Λ$, if M =Λ$
M ′, then π(M) =λ$

π(M ′).

Proof. To prove the first proposition, apply monotonicity of ∗ (Theorem 4.8) on assumption ι(e) = ι(e′)
to get ι(e)∗ = ι(e′)∗. Rewrite using equivalence of CPS translations to get CJeK = CJe′K and finally apply
completeness of CJ·K to conclude that e = e′. To prove the second proposition, rewrite assumption M = M ′

with left inverse property of ι to get ι(π(M)) = ι(π(M)). Apply the first proposition to finally arrive at
π(M) = π(M ′). ✷

It follows that calculi Λ$ and λ$ correspond equationally via macro-definitions, hence our Λ$ is truly a
calculus of shift0-style delimited control.

4 Reflection of lambda calculus into Λ$

We move on to the main result of this paper: the relationship between Λ$ and λ. It will be shown that
λ reflects into Λ$. Syntax and small-step operational semantics of λ-calculus are provided for reference in
Figure 6. Following in the footsteps of Sabry and Wadler [18] we intended to define a backwards, direct
style translation # from the range of ∗, just like in [1] and [2]. We took the range of the old CPS and closed
it under reduction, following the recipe by Sabry and Felleisen [17]. What we’ve got was the entire set of
lambda terms. A question arised: was there a better CPS that would explicitly hit every possible lambda
term? The answer is positive. In other words, for every term M ∈ λ, there exists a term M# ∈ Λ$, such
that M#∗ ≡M . Every lambda term is in Continuation-Passing Style, it seems!

Translation # has one oddity: special treatment of λx . xN when x is fresh wrt.N . One may notice
that it is the shape of a value translated to CPS. This is not essential for the right inverse theorem to hold
but it is a necessary adjustment for the left post-inverse theorem.

When it comes to discovery of those translations, it was mostly trial and error, working within confines
of a reflection, fine-tuning simultaneously the translations and the calculus. Just as CPS translations come
in a pair: one on value, one on general terms, both had to be inverted and therefore we have in fact two
different embeddings of lambda terms: one embeds into values of Λ$ and the other into general terms of
Λ$. They need each other to compute DS translation just like the two CPS translations interleave to bring
a CPS term.
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Example 4.1 Let’s take the CPS term from the previous example and reflect it into Λ$.

(λ k1 . k1 (λ x k2 . k2 x))
# ≡ (λx k2 . k2 x)

♮ ≡ λx .(λ k2 . k2 x)
# ≡ λ x . x♮ ≡ λx . x.

Theorem 4.2 (Right inverse of ∗) For all M ∈ λ, M#∗ ≡M and M ♮† ≡M .

Proof. Structural induction on M .

• Case M ≡ x. x#∗ ≡ S0(x)
∗ ≡ x† ≡ x and x♮† ≡ x† ≡ x.

• Case M ≡ λx .M1. First identity has two subcases.

· Case M1 ≡ xM2 and x is fresh wrt.M2. (λ x . xM2)
#∗ ≡M ♮∗

2 ≡ λx . xM ♮†
2 ≡IH λ x . xM2.

· Opposite case. (λ x .M1)
#∗ ≡ (S0 x .M

#
1 )∗ ≡ (λ x .M#

1 )† ≡ λ x .M#∗
1 ≡IH λx .M1.

Second identity: (λ x .M1)
♮† ≡ (λ x .M#

1 )† ≡ λ x .M#∗
1 ≡IH λx .M1.

• Case M ≡ M1 M2. (M1 M2)
#∗ ≡ (M ♮

1 M
♮
2)

∗ ≡ M ♮†
1 M ♮†

2 ≡IH M1 M2, (M1 M2)
♮† ≡ $(M ♮

1 M
♮
2)

† ≡

(M ♮
1 M

♮
2)

∗ ≡M ♮†
1 M ♮†

2 ≡IH M1M2.
✷

4.1 Monotonicity of CPS and DS translation

In this subsection we establish that both ∗ and # are monotone. A few lemmas are needed for these to
work, notably substitution lemmas. Some lemmas could be proven by structural induction, but it is more
concise and natural for them to follow recursion pattern of the definition of ∗. For this reason, we prove
these lemmas by induction on the size of M . Since we have a grammar of valid terms, we simply define
the size of a term as the number of nodes in a parse tree of that term. Crucially, variables are smaller in
this sense than nonvalues, hence J [x] is always smaller than J [P ].

Lemma 4.3 (Values reduce to values) If V →Λ$
N , then for some W , N ≡W .

Proof. By definition of →, there exist M ′, N ′ and C, such that, M ′ 7→ N ′, V ≡ C[M ′] and N ≡ C[N ′].
We proceed by cases on V and C.

• Case V ≡ x. Necessarily C ≡ [ ]. There is no possible reduction, proposition holds vacuously.

• Case V ≡ λx .M1.
· Subcase C ≡ [ ]. Necessarily V (ηv)N . By definition of ηv, V ≡ λx . xW and N ≡W for some W .
· Subcase C ≡ λx .C ′. N ≡ C[N ′] ≡ λ x .C ′[N ′].

• Case V ≡ $(M1).
· Subcase C ≡ [ ] and V ($v)N . By definition of $v, V ≡ $(W ) and N ≡ λx . xW for some W .
· Subcase C ≡ [ ] and V ($S0)N . By definition of $S0, V ≡ $(S0(W )) and N ≡W for some W .
· Subcase C ≡ $(C ′). N ≡ C[N ′] ≡ $(C ′[N ′]).

✷

Lemma 4.4 • If V ∗ →λ W ∗, then V † →λ W †.

Proof. Assume V ∗ → W ∗. Unfolding the definition of ∗ gives λk . k V † → λ k . kW †. By definition of →
(in λ), there exist M , N and C, such that, M(β ∪ η)N , λk . k V † ≡ C[M ] and λk . kW † ≡ C[N ]. We
proceed by cases on C.

• Case C ≡ [ ] or C ≡ λk .[ ]. There is no possible reduction, proposition holds vacuously.

• Case C ≡ λk . k C ′. Given that M(β ∪ η)N , V † ≡ C ′[M ] and W † ≡ C ′[N ], we infer V † →W †.
✷

Lemma 4.5 (Substitution lemma for ∗ and †) For every M and V ,

• M∗[V †/x] ≡M [V/x]∗ and
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• if M is a value, then M †[V †/x] ≡M [V/x]†.

Proof. By induction on the size of M . We prove the second conjunct below.

• Case M ≡ x. x†[V †/x] ≡ x[V †/x] ≡ V † ≡ x[V/x]†

• Case M ≡ y. y†[V †/x] ≡ y[V †/x] ≡ y ≡ y† ≡ y[V/x]†.

• Case M ≡ λ y .M1. (λ y .M1)
†[V †/x] ≡ λ y .M∗

1 [V
†/x] ≡IH λ y .M1[V/x]

∗ ≡ (λ y .M1)[V/x]
†.

• Case M ≡ $(M1). $(M1)
†[V †/x] ≡M∗

1 [V
†/x] ≡IH M1[V/x]

∗ ≡ $(M1)[V/x]
†.

We now prove the first conjunct.

• Case M ≡ J [P ].

J [P ]∗[V †/x] ≡ λk . P ∗[V †/x] (λ y . J [y]∗[V †/x] k) ≡IH λk . P [V/x]∗ (λ y . J [y][V/x]∗ k) ≡ J [P ][V/x]∗

• Case M ≡ V1 V2. (V1 V2)
∗[V †/x] ≡ V †

1 [V
†/x]V †

2 [V
†/x] ≡IH V1[V/x]

† V2[V/x]
† ≡ (V1 V2)[V/x]

∗

• Case M ≡ S0(V1). S0(V1)
∗[V †/x] ≡ V †

1 [V
†/x] ≡IH V1[V/x]

† ≡ S0(V1)[V/x]
∗

• Case M ≡ W . For brevity, we consider all values at once and reuse the proofs of the second conjunct.
W ∗[V †/x] ≡ λk . kW †[V †/x] ≡the second conjunct λk . kW [V/x]† ≡W [V/x]∗.

✷

Lemma 4.6 If M1 7→Λ$
M2, then M∗

1 →
?
λ M∗

2 .

Proof.

• Case βv . ((λ x .M)V )∗ ≡ (λx .M∗)V † →M∗[V †/x] ≡Lemma 4.5 M [V/x]∗.

• Case ηv. (λ x . V x)∗ ≡ λk . k (λx . V † x)→η λ k . k V † ≡ V ∗.

• Case $v . $(V )∗ ≡ λ k . k $(V )† ≡ λk . k V ∗ ≡ λk . k (λ x . x V †) ≡ λk . k (λ x . x V )† ≡ (λx . x V )∗.

• Case $S0. $(S0(V ))∗ ≡ λ k . k $(S0(V ))† ≡ λk . k S0(V )∗ ≡ λk . k V † ≡ V ∗.

• Case S0 $. S0($(M))∗ ≡ $(M)† ≡M∗.

• Case pure. (S0 x . x V )∗ ≡ λx .(xV )∗ ≡ λ x . x V † ≡ V ∗.

• Case bind.

J [P ]∗ ≡ λk . P ∗ (λ x . J [x]∗ k) ≡ λk . $(P )† (λ x . $(J [x])† k) ≡ λk . $(P )† (λ x . k $ J [x])†

≡ (λk .(λx . k $ J [x]) $P )† ≡ (S0 k .(λ x . k $J [x]) $P )∗ ≡ (let x = P in J [x])∗

✷

Lemma 4.7 (Single-step reduction preservation by ∗) If M →Λ$
N , then M∗ →?

λ N∗.

Proof. By structural induction on M . We unfold the definition of → (in Λ$): there exist M ′, N ′ and C,
such that, M ′ 7→ N ′, M ≡ C[M ′] and N ≡ C[N ′]. If M is a variable, then there is no possible reduction
and the proposition holds vacuously. If C ≡ [ ], then apply Lemma 4.6. Otherwise, we proceed by cases on
M and (nonempty) C. In each case below we consider some proper subcontext C ′ of C. Because C ′[M ′] is
a proper subterm of M , then from inductive hypothesis and C ′[M ′]→ C ′[N ′] we infer C ′[M ′]∗ →? C ′[N ′]∗.
When C ′[M ′] is a value, it reduces to a value C ′[N ′], so C ′[N ′]† is well-defined and Lemma 4.4 gives us
C ′[M ′]† →? C ′[N ′]†.

• Case M ≡ λx .M1 and C ≡ λx . C ′. (λx .M1)
∗ ≡ λk . k (λx .M∗

1 ) ≡ λk . k (λ x . C ′[M ′]∗) →?
IH

λk . k (λ x .C ′[N ′]∗) ≡ (λx . C ′[N ′])∗ ≡ N∗.

• Case M ≡ $(M1) and C ≡ $(C ′). $(M1)
∗ ≡ λ k . kM∗

1 ) ≡ λk . k C ′[M ′]∗ →?
IH λ k . k C ′[N ′]∗ ≡

($(C ′[N ′]))∗ ≡ N∗.
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• Case M ≡ S0(V ) and C ≡ S0(C
′). S0(V )∗ ≡ V † ≡ C ′[M ′]† →?

IH C ′[N ′]† ≡ S0(C
′[N ′])∗ ≡ N∗.

• Case M ≡ J [P ] and C ≡ J [C ′]. J [P ]∗ ≡ λk . P ∗ (λ x . J [x]∗ k) ≡ λk . C ′[M ′]∗ (λ x . J [x]∗ k) →?
IH

λk . C ′[N ′]∗ (λx . J [x]∗ k) ≡ J [C ′[N ′]]∗ ≡ N∗.

• Case M ≡ V1 V2 and C ≡ C ′ V2. (V1 V2)
∗ ≡ V †

1 V †
2 ≡ C ′[M ′]† V †

2 →
?
IH C ′[N ′]† V †

2 ≡ (C ′[N ′]V2)
∗ ≡ N∗.

• Case M ≡ V1 V2 and C ≡ V1C
′. (V1 V2)

∗ ≡ V †
1 V †

2 ≡ V †
1 C ′[M ′]† →?

IH V †
1 C ′[N ′]† ≡ (V1 C

′[N ′])∗ ≡ N∗.

• Case M ≡ V1 P2 and C ≡ C ′ P2. (V1 P2)
∗ ≡ λ k . P ∗

2 (λx . V †
1 x k) ≡ λk . P ∗

2 (λ x .C ′[M ′]† x k) →?
IH

λk . P ∗
2 (λ x .C ′[N ′]† x k) ≡ (C ′[N ′]P2)

∗ ≡ N∗.

• Case M ≡ P1 V2 and C ≡ P1 C
′. (P1 V2)

∗ ≡ λ k . P ∗
1 (λx . x V †

2 k) ≡ λk . P ∗
1 (λ x . xC ′[M ′]† k) →?

IH

λk . P ∗
1 (λ x . xC ′[N ′]† k) ≡ (P1 C

′[N ′])∗ ≡ N∗.

• Case M ≡ P1 P2 and C ≡ P1 C
′.

(P1 P2)
∗ ≡ λk . P ∗

1 (λ x . λ k . P ∗
2 (λ y . x y k) k) ≡ λk . P ∗

1 (λx . λ k . C ′[M ′]∗ (λ y . x y k) k)

→?
IH λ k . P ∗

1 (λx . λ k . C ′[N ′]∗ (λ y . x y k) k) ≡ (P1 C
′[N ′])∗ ≡ N∗

✷

Theorem 4.8 (Monotonicity of ∗) For all M,N ∈ Λ$, M ։Λ$
N implies M∗

։λ N∗.

Proof. By induction on the number n of reduction steps in M ։ N .

• Case n = 0, M ≡ N . M∗
։ N∗ in 0 steps.

• Case n > 0, M →n−1 L→ N for some L. M∗
։IH L∗ →?

Lemma 4.7 N
∗.

✷

Lemma 4.9 For all M ∈ λ, S0(M
♮)→?

Λ$
M#.

Proof. By cases on M .

• Case M ≡ x. S0(x
♮) ≡ S0(x) ≡ x#.

• Case M ≡ λx .M1.

· Case M1 ≡ xM2 and x is fresh wrt.M2. S0((λx . xM2)
♮) ≡ S0 x . xM

♮
2 →pure M ♮

2 ≡ (λx . xM2)
#.

· Opposite case. S0((λ x .M1)
♮) ≡ S0 x .M

#
1 ≡ (λx .M1)

#.

• Case M ≡M1 M2. S0((M1 M2)
♮) ≡ S0($(M

♮
1 M

♮
2))→S0 $ M

♮
1 M

♮
2 ≡ (M1 M2)

#.
✷

Lemma 4.10 For all M ∈ λ, $(M#)→?
Λ$

M ♮.

Proof. By cases on M .

• Case M ≡ x. $(x#) ≡ $(S0(x))→$S0
x ≡ x♮.

• Case M ≡ λx .M1.

· Case M1 ≡ xM2 and x is fresh wrt.M2. $((λx . xM2)
#) ≡ $(M ♮

2)→$v λ x . xM ♮
2 ≡ (λ x . xM2)

♮.

· Opposite case. $((λx .M1)
#) ≡ $(S0 x .M

#
1 )→$S0

λx .M#
1 ≡ (λx .M1)

♮.

• Case M ≡M1 M2. $((M1 M2)
#) ≡ $(M ♮

1 M
♮
2) ≡ (M1 M2)

♮.
✷

Lemma 4.11 M#[N ♮/x] ։Λ$
M [N/x]# and M ♮[N ♮/x] ։Λ$

M [N/x]♮ hold.

Proof. In the appendix. ✷

Lemma 4.12 If MβN or MηN , then

• M#
։Λ$

N# and
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• M ♮
։Λ$

N ♮.

Proof.

• Case β.
· ((λ x .M)N)# ≡ (λ x .M#)N ♮ →βv

M#[N ♮/x]→Lemma 4.11 M [N/x]#.

· ((λ x .M)N)♮ ≡ $((λ x .M#)N ♮)→βv
$(M#[N ♮/x])→Lemma 4.11 $(M [N/x]#)→?

Lemma 4.10 M [N/x]♮.

• Case η.
· (λ x .M x)# ≡ S0(λx .M

♮ x)→ηv S0(M
♮)→?

Lemma 4.9 M
#.

· (λ x .M x)♮ ≡ λx .M ♮ x→ηv M ♮.
✷

Lemma 4.13 (Single-step reduction preservation by # and ♮) If M →λ N , then

• M#
։Λ$

N# and

• M ♮
։Λ$

N ♮.

Proof. By structural induction on M . We unfold the definition of → (in λ): there exist M ′, N ′ and C,
such that, M ′ 7→ N ′, M ≡ C[M ′] and N ≡ C[N ′]. If M is a variable, then there is no possible reduction
and the proposition holds vacuously. If C ≡ [ ], then apply Lemma 4.12. Otherwise, we proceed by cases on
M and (nonempty) C. In each case below we consider some proper subcontext C ′ of C. Because C ′[M ′] is
a proper subterm of M , then from inductive hypothesis and C ′[M ′]→ C ′[N ′] we infer C ′[M ′]# ։ C ′[N ′]#

and C ′[M ′]♮ ։ C ′[N ′]♮.

• Case M ≡M1 M2 and C ≡ C ′M2.

· (M1 M2)
# ≡M ♮

1 M
♮
2 ≡ C ′[M ′]♮M ♮

2 ։IH C ′[N ′]♮M ♮
2 ≡ (C ′[N ′]M2)

# ≡ N#.

· (M1 M2)
♮ ≡ $(M ♮

1 M
♮
2) ≡ $(C ′[M ′]♮M ♮

2) ։IH $(C ′[N ′]♮M ♮
2) ≡ (C ′[N ′]M2)

♮ ≡ N ♮.

• Case M ≡M1 M2 and C ≡M1 C
′.

· (M1 M2)
# ≡M ♮

1 M
♮
2 ≡M ♮

1 C
′[M ′]♮ ։IH M ♮

1 C
′[N ′]♮ ≡ (M1 C

′[N ′])# ≡ N#.

· (M1 M2)
♮ ≡ $(M ♮

1 M
♮
2) ≡ $(M ♮

1 C
′[M ′]♮) ։IH $(M ♮

1 C
′[N ′]♮) ≡ (M1 C

′[N ′])♮ ≡ N ♮.

• Case M ≡ λx .M1 and C ≡ λx . C ′, second conjunct. (λx .M1)
♮ ≡ λx .M#

1 ≡ λx . C ′[M ′]# ։IH

λx .C ′[N ′]# ≡ (λ x .C ′[N ′])♮ ≡ N ♮.

• Case M ≡ λx .M1, first conjunct.

· Case M1 ≡ xM2, x is fresh wrt.M2 and C ≡ λx . xC ′. (λx . xM2)
# ≡ M ♮

2 ≡ C ′[M ′]♮ ։IH C ′[N ′]♮ ≡
(λ x . xC ′[N ′])# ≡ N#.
· Opposite case, C ≡ λx .C ′.

(λx .M1)
# ≡ S0 x .M

#
1 ≡ S0 x . C

′[M ′]# ։IH S0 x .C
′[N ′]#

≡ S0((λx . C
′[N ′])♮)→?

Lemma 4.9 (λ x .C ′[N ′])#

✷

Theorem 4.14 (Monotonicity of #) For all M,N ∈ λ, if M ։ N , then M#
։ N#.

Proof. By induction on the number n of reduction steps in M ։ N .

• Case n = 0, M ≡ N . M∗
։ N∗ in 0 steps.

• Case n > 0, M →n−1 L→ N for some L. M∗
։IH L∗

։Lemma 4.13 N
∗.

✷
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4.2 The reflection theorem and the kernel calculus

The last missing ingredient of reflection is the left post-inverse theorem. Inspection of the proof reveals
that neither βv nor ηv is used while every other rule is used in some instance.

Theorem 4.15 (Left post-inverse of ∗) For all M ∈ Λ$,

• M ։ M∗# and

• if M is a value, then M ։ M †♮.

Proof. By induction on the size of M . We prove the second conjunct below.

• Case M ≡ x. x ≡ x♮ ≡ x†♮.

• Case M ≡ λx .M1. λx .M1 ։IH λx .M∗#
1 ≡ (λ x .M∗

1 )
♮ ≡ (λx .M1)

†♮.

• Case M ≡ $(M1). $(M1) ։IH $(M∗#
1 )→?

Lemma 4.10 M
∗♮
1 ≡ $(M1)

†♮.

We now prove the first conjunct.

• Case M ≡ J [P ].

J [P ]→bind let x = P inJ [x] ։IH let x = P ∗# in J [x]∗# ≡ S0 k . $(P
∗#) (λ x . $(J [x]∗#) k)

→?
Lemma 4.10 S0 k . P

∗♮ (λx . J [x]∗♮ k) ≡ (λ k . P ∗ (λx . J [x]∗ k))# ≡ J [P ]∗#

• Case M ≡ V1 V2. V1 V2 ։IH V †♮
1 V †♮

2 ≡ (V †
1 V †

2 )
# ≡ (V1 V2)

∗#.

• Case M ≡ S0(V1). S0(V1) ։IH S0(V
†♮
1 )→?

Lemma 4.9 V
†#
1 ≡ S0(V1)

∗#.

• Case M ≡ W . For brevity, we consider all values at once and reuse the proofs of the second conjunct.
W ։the second conjunct W

†♮ ≡ (λ k . kW †)# ≡W ∗#.
✷

Example 4.16 The CPS translation of S-combinator λx y z . x z (y z) is

S∗ ≡ λk1 . k1 (λ x k2 . k2 (λ y k3 . k3 (λ z k4 . x y (λ f .(λk5 . y z (λa . f a k5)) k4)))).

Reflection of this CPS term back to Λ$ is S∗# ≡ λx y z .S0 k4 .(λ f .(λk5 .(λ a . k5 $ f a) $ y z) k4) $x y. One
can see that S ։bind λx y z . let f = x y in let a = y z in f a→$S0

S∗#, in accordance with Theorem 4.15.

Theorem 4.17 ((∗,#) form a Galois connection) For any M ∈ Λ$ and N ∈ λ we have M ։Λ$
N#

if and only if M∗
։λ N .

Proof. The left-to-right implication follows from the monotonicity of ∗ (Theorem 4.8) and the right inverse
property (Theorem 4.2). The right-to-left implication follows from the monotonicity of # (Theorem 4.14).
and the left post-inverse property (Theorem 4.15). ✷

Corollary 4.18 (Reflection) Since # is a right inverse of ∗, the Galois connection is indeed a reflection.

The range of # translation (from now on, the kernel, or λ#) has an induced preorder

։λ#=
{

(M,N) ∈ λ# × λ#
∣

∣

∣
M ։Λ$

N
}

.

The kernel can be considered a calculus in its own right and it turns out we know this calculus very well:
it is preorder-isomorphic to λ via ∗ restricted to kernel and its inverse #. What that means is that the
kernel is a fragment of Λ$ which behaves exactly like λ-calculus (M ։λ# N iff M∗

։λ N∗) except that
terms look different and ∗ allows to decode these to familiar λ-terms. We believe that reductions in kernel
calculus could be fully characterized, in similar fashion to [18,1,2], but we did not investigate that yet.
Experience suggest that these reductions would be quite verbose.
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Corollary 4.19 Calculi Λµv [4], λ$ [11], Λ$ and λ are in equational correspondence.

Proof. Calculus Λµv is a calculus created by relaxing some syntactic restrictions of λµv. Λµv was defined
and proven to correspond equationally with λ$ in [4]. Calculus λ$ was defined by Materzok in [11]. We
proved its correspondence with Λ$ in Section 3. In this section we proved that λ can be reflected into Λ$.
This fact can be weakened to equational correspondence. All of Λµv, λ$, Λ$ and λ correspond equationally
because equational correspondences are composable. ✷

5 Conclusion

We developed a novel calculus of delimited control Λ$ whose confluent reduction theory induces an ax-
iomatisation that is both sound and complete with respect to denotational semantics provided by CPS
translation. We have shown a close relationship (i.e. reflection) between reduction theories of pure lambda
calculus and calculus Λ$, which justifies the assertion that shift0-style delimited control and call-by-name
are diffent means of expressing the same computation.

Sabry and Felleisen [17] found an undirected axiomatisation of pure call-by-value lambda calculus and
also of call/cc-style abortive control. Due to lack of interest in directedness, they amalgamated some rules
of opposite direction into βΩ axiom. Kameyama and Hasegawa [9] found an undirected axiomatisation of
shift-style delimited control, while Materzok [11] axiomatised shift0. Our paper spells out the directed
axiomatisation for the latter. Our rules are not only directed but also local (or fine-grained) which means
that no recursive family of contexts is needed to express them.

Developments in this paper are untyped. We conjecture that it should be possible to adapt existing
type systems for shift0 [12,11,14]. We are advancing in the process of axiomatising algebraic effects with
deep handlers, which are a related [8,14] approach to computational effects.
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Proof. By cases (value/nonvalue) on M and N .

• Case M ≡ V , N ≡W .

(V W )∗ ≡ V †W † =η λk . V †W † k =β λk .(λ x . xW † k)V † =β λk . V ∗ (λ x . xW † k)

=β λk . V ∗ (λx .(λ y . x y k)W †) =β λk . V ∗ (λ x .W ∗ (λ y . x y k))

• Case M ≡ V , N ≡ Q.

(V Q)∗ ≡ λ k .Q∗ (λ y . V † y k) =β λk .(λ x .Q∗ (λ y . x y k))V † =β λk . V ∗ (λx .Q∗ (λ y . x y k))

• Case M ≡ P , N ≡W .

(P W )∗ ≡ λk . P ∗ (λ x . xW † k) =β λk . P ∗ (λ x .(λ y . x y k)W †) =β λ k . P ∗ (λ x .W ∗ (λ y . x y k))

• Case M ≡ P , N ≡ Q.

(P Q)∗ ≡ λ k . P ∗ (λx .(xQ)∗ k) ≡ λk . P ∗ (λ x .(λ k .Q∗ (λ y . x y k)) k) =β λk . P ∗ (λ x .Q∗ (λ y . x y k))
✷

Lemma A.2 (4.11) M#[N ♮/x] ։Λ$
M [N/x]# and M ♮[N ♮/x] ։Λ$

M [N/x]♮ hold.

Proof. By structural induction on M . We prove the first conjunct below.

• Case M ≡ x. x#[N ♮/x] ≡ S0(x)[N
♮/x] ≡ S0(N

♮)→?
Lemma 4.9 N

# ≡ x[N/x]#.

• Case M ≡ y. y#[N ♮/x] ≡ S0(y)[N
♮/x] ≡ S0(y) ≡ y# ≡ y[N/x]#.

• Case M ≡M1 M2.

(M1 M2)
#[N ♮/x] ≡M ♮

1[N
♮/x]M ♮

2[N
♮/x] ։IH M1[N/x]♮ M2[N/x]♮ ≡ (M1 M2)[N/x]#

• Case M ≡ λ y .M1. If M1 ≡ yM2 and y is fresh wrt.M2, then

(λ y . yM2)
#[N ♮/x] ≡M ♮

2[N
♮/x] ։IH M2[N/x]♮ ≡ (λ y . yM2)[N/x]#.

Otherwise, (λ y .M1)
#[N ♮/x] ≡ S0 y .M

#
1 [N ♮/x] ։IH S0 y .M1[N/x]♮ →?

Lemma 4.9 (λ y .M1[N/x])# ≡

(λ y .M1)[N/x]#.

We now prove the second conjunct.

• Case M ≡ x. x♮[N ♮/x] ≡ x[N ♮/x] ≡ N ♮ ≡ x[N/x]♮.

• Case M ≡ y. y♮[N ♮/x] ≡ y[N ♮/x] ≡ y ≡ y♮ ≡ y[N/x]♮.

• Case M ≡M1 M2.

(M1 M2)
♮[N ♮/x] ≡ $(M ♮

1[N
♮/x]M ♮

2 [N
♮/x]) ։IH $(M1[N/x]♮ M2[N/x]♮) ≡ (M1 M2)[N/x]♮

• Case M ≡ λ y .M1. (λ y .M1)
♮[N ♮/x] ≡ λ y .M#

1 [N ♮/x] ։IH λ y .M1[N/x]# ≡ (λ y .M1)[N/x]♮.
✷
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