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Abstract

A recurring problem in game semantics is to enforce uniformity in strategies. Informally, a strategy is uniform when the
Player’s behaviour does not depend on the particular indexing of moves chosen by the Opponent. In game semantics,
uniformity is used to define a resource modality !, that can be exploited for the semantics of programming languages.
In this paper we give a new account of uniformity for strategies on event structures. This work is inspired by an older idea
by Melliès, that uniformity should be expressed as “bi-invariance” with respect to two interacting group actions. We explore
the algebraic foundations of bi-invariance, adapt this idea to the language of event structures and define a general notion of
uniform strategy in this context. Finally we revisit the existing approach to uniformity, and show how this arises as a special
case of our constructions.
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1 Introduction

This paper is about the foundations of game semantics, and in particular the notion of uniformity for
strategies. Informally, uniformity is the property that a strategy does not depend on the particular
indexing of moves by the Opponent. This is a key component in various kinds of game semantics [1,5,13],
necessary to obtain a cartesian closed model and thus validate basic soundness properties.

In this paper we explore an algebraic description of uniformity, inspired by an unpublished manuscript
by Melliès ([11], 2003). Melliès argues for a treatment of uniformity as “bi-invariance” under two interacting
group actions. We take this idea further:

• we give an abstract definition of bi-invariance in categorical terms;

• we propose a new, general notion of uniform strategy based on event structures; and

• we formally relate this to the state-of-the-art approach to uniformity in concurrent games [7], shedding
new light on existing definitions of uniformity.

In §1.1 we give an informal introduction to uniformity, using some examples of uniform and non-uniform
strategies for a simple concrete game. Then we introduce event structures, games and strategies (§1.2),
and we formally motivate uniformity and bi-invariance (§1.3).
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1.1 Uniform and non-uniform strategies

Consider a two-player game where the only possible action for each player is to put tokens down on the
table. Each player has access to an infinite supply of tokens; tokens can be put down at any time and in
any order; and the tokens are indistinguishable. So the game consists of

0 1 2

. . .

0 1 2

. . . (1)

where Blue and Red are the two players and their respective tokens are indexed by N. We want to reason
about strategies for Blue (regardless of winning conditions for the game). Here are three possible strategies:

(i) “Put a token down every time Red puts a token down.”

(ii) “Never put down any tokens.”

(iii) “Put a token down without waiting for Red, and two more every time Red puts down a token.”

And here is a possible graphical representation for each of them:
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Arrows specify the dependency of Blue actions on Red actions. The absence of an arrow between two
moves means that they may happen in any order or at the same time. This is true in particular for Red
moves: Blue does not know which specific tokens Red will choose to play.

For Blue, the choice of which token to put down at a given point is arbitrary: tokens are indistinguish-
able. Strategy (i) does not explicitly require that Blue plays the same token number as Red, and Blue’s
choice does not affect the course of the game.

But if the choice of token does not matter, then our representation should not allow for the following
strategies:

(iv) “Put a token down only if Red puts down token number 2.”

(v) “Put n tokens down after Red plays token number n.”

0

1

2 2

(iv)

...

0

1

2

3

5

6

(v)

...

We say that these strategies are non-uniform, because the behaviour of Blue is dependent on the token
that Red chooses to play. In more general games, uniformity is difficult to express and reason about.

1.2 Concurrent games

We are interested in a particular mathematical theory of games and strategies, based on event structures,
initially developed by Rideau and Winskel [16]. These games are often called “concurrent games” because
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of the possibility for players to perform multiple actions at the same time, as in strategy (iii) above.
Concurrent games can be presented in a clear way as a double category (e.g. [10]), with components:

• objects: event structures.

• vertical morphisms A→ B: maps of event structures.

• horizontal morphisms A +→ B: strategies from A to B.

• 2-cells: maps of strategies.

We define each component in turn.

Event structures.
An event structure is a partial order (A,≤) in which each a ∈ A has a finite number of predecessors,

equipped with a polarity function A→ {−,+}, and an irreflexive and symmetric conflict relation # which
is hereditary: if a ≤ a′ and a # b then a′ # b. The operational intuition is that elements of A are the
possible moves in a game, with the polarity function assigning each move to one of the two players. Moves
can only be played when their predecessors in ≤ have been played, and moves related by # cannot occur
in the same play.

Therefore the possible states of the game A are the finite subsets x ⊆ A which are down-closed and
contain no two moves in conflict; these are called configurations. The set of configurations is written
C(A). For example, the game in (1) is an event structure where both ≤ and # are trivial. (Note: we
simply call event structure what is typically called an event structure with polarity.)

Maps of event structures.
A map of event structures (A,≤,#) −→ (B,≤,#) is a function f : A → B such that for every

x ∈ C(A), fx ∈ C(B) and moreover f is injective when restricted to x. The idea is that any execution of
A can be faithfully simulated in B. Maps also have to preserve polarity.

Strategies.
A strategy from A to B consists of an event structure σ together with a map of event structures

σ A⊥ ‖ B
pσ

where the operation −⊥ flips the polarity of every event, and ‖ is a monoidal product representing the
parallel composition of event structures. The idea is that every execution allowed by the strategy σ must
correspond to a play of the game. Strategies must satisfy a technical condition which we omit for now and
explain below (Definition 3.1).

An important special case is when A is the empty game. Then we say that σ is a strategy on the game
B. For example, all the strategies described in §1.1 are strategies on the game described in (1), where the
arrows _ correspond to ≤.

Maps of strategies.
Let σ and τ be strategies from A to B and from C to D, respectively. Suppose that α : σ → τ makes

the following diagram commute, for maps of event structures f and g:

σ τ

A⊥ ‖ B C⊥ ‖ D

α

pσ pτ

f⊥‖g
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Then we say α is a map of strategies from σ to τ , with boundary f and g. These are the 2-cells of the
double category. This double category is weak (or pseudo), because the composition of strategies is not
strictly associative or unital, only up to invertible 2-cells.

Remark 1.1 The specific details of double categories are not important for this paper. Most of this work
is only concerned with strategies over a fixed game A, their internal symmetries, and notions of maps
between strategies over A. We only mention the categorical framework in this introduction because it
explains the need for uniformity, as we describe next.

1.3 Duplication of moves and uniformity

The monoidal structure given by parallel composition ‖ is not cartesian: this is a linear model. This is not
surprising because game semantics is closely tied to linear logic. In many applications, for example to give
semantics to a higher-order programming language, we resolve this by constructing a resource modality,
typically a (pseudo-)comonad !. Briefly, !A is a duplicated version of A in which every move is available in
countably many copies. For example, the game in (1) is of the form !A, where A is a game with a single
move for each player.

But when defining ! naively we run into issues of uniformity. The difficulty is to properly account for
the symmetries that arise in the manipulation of copies, as we explain now.

For an event structure A, the object !A is an infinitary parallel composition:

!A =
n

i∈ω

A.

From any bijection α : ω → ω2, it is possible to construct a family of “co-multiplication” strategies
δA : !A +→ !!A. Unfortunately, for fixed α the associativity law

!A !!A

!!A !!!A

|
δA

|δA

| δ!A

|

!δA

(2)

does not hold. We need a way to indicate that the different copies of A in !A (and !!A, etc.) are
exchangeable. This does not make the diagram commute strictly, but it does up to a notion of permutation
of moves.

Permuting moves gives an equivalence relation on strategies. For soundness, this relation must be
stable under composition. This requires uniformity: for example, in the non-uniform strategy (iv) in §1.1,
the result of the game is not the same when the opponent Red plays token 1 or token 2.

On the other hand, consider the uniform strategy (i). If Red decides to update from token 1 to token 2,
then the result is the same, although Blue must also permute tokens, to follow the strategy. This is what
is called bi-invariance in the work of Melliès [11]: for every Opponent permutation, there is a response
Player permutation under which the strategy is invariant.

1.4 Context and related work

Uniformity in concurrent games.
Castellan, Clairambault and Winskel have shown how to address the uniformity problem in concur-

rent games by upgrading to event structures with symmetry, a generalisation introduced by Winskel [20]
precisely to handle constructions such as !A. Adding symmetry to concurrent games is challenging and
there are several approaches ([5,6]), but a consensus has been reached around a framework known as thin
concurrent games [7]. Applications of thin concurrent games are already far-reaching [8,15].
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While successful, this construction is technical. Symmetry is often described as a “proof-relevant
equivalence relation”, which indicates which moves are copies of each other via a so-called isomorphism
family, i.e. a family of bijections between configurations. This means that the construction of the model
must account for these families of bijections, both in games and strategies, and this requires additional
conditions relating them.

We will see how uniform strategies on thin concurrent games arise as a special case of our more general
notion of uniform strategies. In particular, we move away from event structures with symmetry and
isomorphism families, although we show how they can be recovered (§6).

Uniformity in game semantics in general.
The need for uniformity arises in any game model which makes duplication explicit. For instance, the

pioneering game semantics of Abramsky, Jagadeesan, and Malacaria [1] enforce uniformity via a partial
equivalence relation on strategies. This method is too restrictive for the concurrent strategies we consider.

Many models are based on plays with pointers, following Hyland and Ong [9]. The uniformity problem
does not arise there, because with pointers one can avoid explicit duplication. One drawback is that the
underlying linear structure is harder to see. Melliès explains this phenomenon in [11], motivating his work
on asynchronous games; another explanation is given by Castellan and Clairambault in the preprint [4],
which also connects with thin concurrent games.

There is a well-known intersection of ideas between asynchronous games and thin concurrent games,
but an important difference is in the treatment of uniformity. These two lines of research are brought
closer together as a by-product of this paper.

Outline of the paper.

In §2 we study symmetry in games in terms of two compatible groups actions. This is based on existing
ideas [11,7], but the presentation in terms of distributive laws is new to this paper. In §3, we explain how
to reindex moves in strategies using so-called weak maps between them. Then, in §4 we introduce uniform
strategies, after developing some algebraic principles for bi-invariance. In §5 we focus on the copycat
strategy, a cornerstone of game semantics, and show that it is uniform. Finally, in §6, we make a formal
connection between the contributions of this paper and the established theory of thin concurrent games.

2 Games and permutations

Our first step is to consider games (i.e. event structures) equipped with algebraic structure encoding the
symmetries. Our presentation uses the definition of a group as a set G equipped with maps

1
e
−→ G G×G

m
−→ G G

inv
−−→ G

satisfying unit, associativity, and inverse laws. We will also use a basic fact about groups:

Lemma 2.1 For any group G, the functor G× (−) : Set → Set has a canonical monad structure, induced
by the maps m and e. An algebra over this monad is a set with a left action of G.

More concretely, a left action of G on a set A is a map act : G×A→ A such that the diagrams

1×A

G×A A
act

e×A
∼=

(G×G)×A G×A

G× (G×A) G×A A

m×A

act∼=

G×act act

commute. Every group element g ∈ G induces an automorphism act(g,−) of the set A. Indeed an action
is equivalently defined as a group homomorphism G→ Aut(A), where Aut(A) is the automorphism group
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of A. This definition makes sense for A an object of any category. The action is called faithful if distinct
elements induce distinct automorphisms, and in this case the group G can be identified with a subgroup
of Aut(A).

2.1 Positive and negative automorphisms

We will consider group actions on games. If A is a game, an automorphism of event structures θ : A→ A
describes a way to permute moves while preserving the dependency and conflict structure.

Two configurations of A are considered symmetric when the action of group element substitutes one
with the other. A game can have different symmetry structures, and so we can interpret the same game
in different ways. For example, there are exactly two automorphisms of the game A below: the identity
map, and the map swapping the left and right columns.

(3)

If the swapping bijection is allowed, then this game is understood as consisting of two exchangeable copies
of the same game. Otherwise, A is just a game of the form B ‖ B.

In this paper, the symmetry structure on a game A will consist of two groupsNA and PA, both acting on
A on the left. The idea is that elements of NA represent permutations of negative (Red, Opponent) moves,
and elements of PA are permutations of positive (Blue, Player) moves. Formally the situation is more
subtle: since automorphisms of A must preserve the causal structure, in general negative automorphisms
have a non-trivial action on positive moves, and vice-versa.

For configurations x, y of an event structure A, we write x ⊆+ y if x ⊆ y and all moves in y \ x are
positive; ⊆− is defined similarly.

Definition 2.2 Let A be an event structure with polarity. An automorphism α ∈ Aut(A) is negative if
it satisfies the following condition: for every x ∈ C(A), if α fixes x, and x ⊆+ y, then α fixes y. Similarly,
α is positive if, whenever α fixes x, and x ⊆− y, then α fixes y.

An action of a group G on A is negative (resp. positive) if every group element induces a negative
(resp. positive) automorphism.

Example 2.3 The swapping bijection for the game in (3) is negative, but not positive: it fixes the empty
configuration ∅, but extensions ∅ ⊆− x are not fixed. Note that the Player moves are swapped too, but
intuitively this is forced by Opponent.

Next we define games. The purpose of the definition is to axiomatize the interaction between positive
and negative symmetries in the game.

2.2 Games equipped with group actions

Definition 2.4 A game is an event structure A equipped with:

• a group N and a negative group action actN : N ×A→ A,

• a group P and a positive group action actP : P ×A→ A,

• and a distributive law λ : N ×P → P ×N between the monads N × (−) and P × (−) on Set,
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such that the actions are permuted by λ, as in the diagram below:

(N ×P)×A (P ×N )×A

N × (P ×A) P × (N ×A)

N ×A A P ×A.

N×actP

λ×A

∼=

P×actN

actN actP

∼=

Distributive laws between groups
We make some comments about this definition. A distributive law between monads S and T is usually

defined as a natural transformation λX : ST (X) → TS(X), compatible with the monad structures as
specified by four axioms [3].

A natural transformation N × (P × X) → P × (N × X) is determined by its component at X = 1,
and so it can be presented as a combinator λ : N × P → P ×N , as we have done in the definition. The
axioms for a distributive law can then be given directly in terms of the group structure in N and P:

1× P P × 1 N × 1 1×N

N × P P ×N N × P P ×N

∼=

e×P P×e

λ

∼=

N×e

λ

e×N

N × (P ×N )

N × (N ×P) (N ×P) ×N

(N ×N )×P (P ×N )×N

P × (N ×N )

N ×P P ×N

N×λ

λ

λ×N

∼=

P×m

∼=

m×P

∼=

(P ×N )× P

(N ×P)× P P × (N ×P)

N × (P × P) P × (P ×N )

(P × P)×N

N × P P ×N

λ×P

λ

P×λ

∼=

m×N

∼=

N×m

∼=

A combinator λ of this kind is also known as a Zappa-Szép product of the groups N and P [19].

Permuting subgroups and factorization.
When N and P are subgroups of the same group, for example if the actions on A are faithful and N ,P

are seen as subgroups of Aut(A), then the combinator λ is uniquely determined provided N and P are
permuting subgroups:

for every α ∈ N and β ∈ P, there exist α′ ∈ N and β′ ∈ P such that αβ = β′α′. (4)

In this case, α′ and β′ are unique since N and P have trivial intersection, and so we must have λ(α, β) =
(β′, α′). All games of interest in semantics seem to have this property, maybe because in practice many
group actions are faithful.

The property (4) arises in thin concurrent games as a factorization property [7]. There is a tight rela-
tionship between distributive laws, Zappa-Szép products, and strict factorization systems, which explains
this [17]. It is useful in this paper to have an explicit combinator λ, as part of the structure of a game.
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Any event structure can be seen as a game with trivial symmetry. In this case none of the moves in A
are exchangeable. More interesting games arise from the constructions we describe next.

Dual games.
Any game A has a dual game A⊥. The underlying event structure is the same, with polarity reversed.

The symmetry structure on A⊥ is defined by noticing that for any game the combinator λ : N×P → P×N
gives rise to a combinator P × N −→ N × P in a canonical way. We will call isw : P × N → N ×P the
invert-and-swap mapping (α, β) 7→ (inv(β), inv (α)).

Lemma 2.5 For a game A, the event structure A⊥ equipped with NA⊥ = PA, PA⊥ = NA, and the
combinator

λA⊥ = PA ×NA NA × PA PA ×NA NA ×PA,
isw λ isw

is a game known as the dual of A.

Parallel composition: a tensor product of games.
Two games A and B can be combined using the parallel composition of event structures:

Definition 2.6 For event structures A and B, the parallel composition A ‖ B is the event structure
with events A ⊎B, and with ≤, #, and pol inherited from A and B.

Since there is no conflict between events of A and B, every configuration of A ‖ B is of the form
xA ‖ xB , and so there is a canonical isomorphism C(A ‖ B) ∼= C(A) × C(B). We use this to define the
symmetry structure in A ‖ B.

Lemma 2.7 Define the parallel composition of games A and B as the event structure A ‖ B, equipped
with groups NA‖B = NA×NB and PA‖B = PA×PB having the product action on C(A ‖ B) ∼= C(A)×C(B).
The combinator λA‖B is given by

NA‖B × PA‖B
∼=
−→ (NA × PA)× (NB ×PB)

λA×λB−−−−−→ (PA ×NA)× (PB ×NB)
∼=
−→ PA‖B ×NA‖B .

This satisfies the axioms for a game.

A resource modality.
In game semantics, types are interpreted as games whose initial moves all have the same polarity, and

depending on this polarity we call games of this kind either negative or positive. The idea is that, for a
negative game A, the copies of A in !A can be permuted only by elements of N!A.

Lemma 2.8 For a negative game A, the event structure !A =
f

i∈ω A is equipped with groups

N!A = {(π, (αi)i∈ω) | π is a permutation of ω, and αi ∈ NA for all i ∈ ω}

P!A = {(αi)i∈ω | αi ∈ PA for all i ∈ ω}

under componentwise multiplication, with action on !A defined by

actN ((π, (αi)i∈ω), (i, a)) = (π(i), αi(a))

actP((αi)i∈ω, (i, a)) = (i, αi(a))

and distributive law

λ!A : N!A × P!A −→ P!A ×N!A

((π, (αi)i∈ω), (βi)i∈ω) 7−→
((

β′π−1(i)

)

i∈ω
, (π, (α′

i)i∈ω)
)
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where for every i ∈ ω, (β′i, α
′
i) = λA(αi, βi). This satisfies the axioms for a game.

Other important constructions are involved in applications of game semantics, including a cartesian
product A & B and a linear function space A ⊸ B (e.g. [7]). We omit them here, because the focus is
on algebraic foundations rather than applications, and these constructions do not interfere with the group
actions.

Global and local reindexing maps

We discuss a point of notation. The group actions associated to a game A induce automorphisms of the
game. For α ∈ N , we will write α : A → A for the induced automorphism. This is an abuse of notation
but should cause no confusion. Such a map α is a global reindexing of the moves of A.

We often also need to discuss the local reindexing of a specific configuration, and so for x ∈ C(A) we
will write α : x→ y to mean the restriction of α to x, where y = αx is the image of x. We will do this for
any map of event structures. Note that the local restriction is always a bijection, because maps of event
structures must be locally injective.

3 Strategies and permutations

We consider strategies on a fixed game A. The definition is due to Rideau and Winskel [16]:

Definition 3.1 A strategy on a game A consists in an event structure σ, together with a projection map
pσ : σ → A such that, for every x ∈ C(σ),

• if pσx ⊆− z, there is a unique y ∈ C(σ) such that x ⊆ y and pσy = z, and

• if z ⊆+ pσx, there is a (necessarily unique) y ∈ C(σ) such that y ⊆ x and pσy = z.

We write σ : A to mean that σ is a strategy on A.

These axioms do not play a major role in this paper: informally they say that a strategy (for Player)
should not restrict the behaviour of Opponent or the order in which Opponent processes the Player moves.
Next we define a basic notion of maps between strategies [16]:

Definition 3.2 A strict map of strategies from σ : A to τ : A is a map of event structures f : σ −→ τ
which commutes with the projection maps:

σ τ

A

pσ

f

pτ

We will now give a more general notion of map. With a strict map as above, we have that pσx = pτfx
for every configuration x ∈ C(σ). Since our games now have symmetry, we can relax this equality and
allow for a local reindexing of Player moves via a positive bijection f [x].

Definition 3.3 A weak map of strategies from σ : A to τ : A consists of a map f : σ −→ τ together
with, for every x ∈ C(σ), a positive automorphism f [x] ∈ P such that the following diagram commutes:

x fx

pσx pτfx.

f

pσ pτ

f [x]
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This gives a generalized notion of maps, with strict maps as a special case. Importantly, two strategies
are now isomorphic when the underlying event structures are isomorphic and the projections agree up to
a Player permutation. (This would allow us to define an associativity 2-cell filling the diagram (2).)

Example 3.4 The simplest examples of non-strict weak maps of strategies are those f : σ → τ for which
f [x] = f [y] for every x, y ∈ C(σ). This means that the Player reindexing is global, and we then have
pσ = β ◦ pτ ◦ f for some β ∈ P. (Conversely, if the latter is true, then f is a weak map of strategies with
every f [x] = β.)

We write Strat(A) for the category of strategies on A and weak maps between them, with identities and
composition defined in terms of those in P. The next lemma is an easy observation that will be important
for the next section.

Lemma 3.5 There is a functor Strat(A) −→ SetP×(−), where SetP×(−) is the Kleisli category for the

monad P × (−), that sends a strategy σ to the set C(σ) and a weak map f : σ → τ to the Kleisli function

C(σ) −→ P × C(τ)

x 7−→ (f [x], fx).

This functor is faithful, although not injective on objects.

4 Uniform strategies

We introduce our notion of uniformity. The approach is guided by the suggestion ([11]) that uniformity
can be understood as a group-theoretic property. Informally, a uniform strategy should be invariant under
any permutation of Opponent moves, up to a permutation of Player moves. We show how to express this
formally.

4.1 Permutations of Opponent moves

Let σ : A be a strategy. For every α ∈ N , we can build a new strategy, that has the same underlying
event structure σ but with projection map

σ
pσ
−→ A

α
−→ A.

This is a version of σ in which moves have been permuted according to α. This operation forms a left
action of N on the set of strategies on A. This new strategy (the result of α acting on σ) is denoted α · σ.

The goal of uniformity is to ensure that this action leaves the strategy unchanged, except for a rela-
belling of Player moves as permitted by P. One challenge is that the Player response to some Opponent
permutation α ∈ N may not be consistent across the strategy, and so we need to reason locally.

To enforce uniformity, we will ask for a weak map of strategies φα : α · σ → σ, for every α ∈ N . Each
φα determines a map

C(σ) −→ P × C(σ) (5)

which records the image of every configuration and a suitable local response to α. (As a consequence, the
action of N on strategies extends to a functorial operation on weak maps. This is not true for weak maps
between non-uniform strategies.)

4.2 Algebras for bi-invariance

We discuss an algebraic formalization of bi-invariance with respect to two groups and a distributive law
between them. For this section, assume N ,P and λ are fixed and arbitrary.

Recall (§2) that sets with a left action of the group N are precisely algebras for the monad N × (−) on
Set. To account for the Player response in (5), the key idea is to move to the Kleisli category SetP×(−).

We recall the following basic fact about distributive laws ([3]):
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Lemma 4.1 If P and N are groups with a distributive law λ : N ×P → P ×N , the monad N × (−) on
Set lifts to a monad on the Kleisli category SetP×(−).

An algebra over the lifted monad consists of a set X together with a map N ×X → P ×X. This is
what we take as a basic model for the bi-invariance of X with respect to N and P.

The functor part of this monad takes a set X to N ×X, and a Kleisli map X
f
−→ P × Y to the map

N ×X → P× (N ×Y ) obtained by post-composing N ×f with λ×Y , modulo associativity isomorphisms.
Rather than explaining the full monad structure, we give the axioms for its algebras:

Lemma 4.2 A pair (X, N ×X
h
−→ P ×X) is an algebra over the monad N × (−) on SetP×(−) whenever

the following equations hold in Set, writing (µP , ηP ) and (µN , ηN ) for the canonical monad structures:

N × (N ×X) N × (P ×X) P × (N ×X)

P × (P ×X)

N ×X P ×X

µN
X

N×h λX

P×h

µP
X

h

X

N ×X P ×X

ηN
X

ηP
X

h

Next we use this algebraic structure to define uniform strategies.

4.3 Uniform strategies

Definition 4.3 A uniform strategy on a game A is a strategy σ equipped with a weak map φα : α·σ → σ
for every α ∈ N , such that the induced map

φ : N × C(σ) −→ P × C(σ)

defined by φ(α, x) = (φα[x], φαx) makes (C(σ), φ) an algebra over the monad N × (−) on SetP×(−).

Since φ determines the family of weak maps (φα)α∈N , we denote a uniform strategy by a pair (σ, φ).
It is helpful to unfold the definition. For any α ∈ N and x ∈ C(σ), we have a diagram

x y

pσx αpσx pσyα

φα

φα[x]

which must commute because φα is a weak map. To unfold the composition axiom, consider α,α′ ∈ N .
We apply the distributive law, to get (γ, β) = λ(α′, φα[x]), and the overall situation is depicted as

x y z

px αpx py βpy pz

α′αpx

α

φα

φα[x]

φβ

β

α′ γ

φα′α

φβ [y]

φα′α[x]α′α

λ
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where the top component of the diagram must commute, and γ ◦φβ[y] = φα′α[x], so that the bottom-right
triangle commutes.

We now ensure that weak maps are compatible with the uniformity structure.

Definition 4.4 A weak map of uniform strategies from (σ, φ) to (τ, ψ) is a weak map f : σ → τ such
that the induced map C(σ) → P × C(τ) is an algebra homomorphism (C(σ), φ) → (C(τ), ψ).

Algebra homomorphisms are closed under composition, and so there is a category UStrat(A) of uniform
strategies over a game A, and a functor into the category of algebras. Summarizing, we have

UStrat(A) Set
N×(−)
P×(−)

Strat(A) SetP×(−)

C(−)

C(−)

(cf. 3.5)

where the vertical arrows are forgetful functors.

5 The copycat strategy: definition and applications

The copycat strategy is the identity morphism on a game A. It is a strategy A→ A, so a strategy on the
game A⊥ ‖ A. The idea is to play a positive move on one side as soon as the corresponding negative move
has been played on the other [16]:

Definition 5.1 The event structure ccA has the same events as A⊥ ‖ A, and the same polarity and
conflict relation, but ≤ccA is the transitive closure of the relation ≤A⊥‖A ∪ {((0, a), (1, a)) | polA(a) =

+} ∪ {((1, a), (0, a)) | polA(a) = −}.

The copycat strategy on A is the event structure ccA equipped with the map pccA : ccA → A⊥ ‖ A
with identity action on events.

The cc construction extends to a functorial operation: for every map of event structures f : A → B,
the map f⊥ ‖ f : A⊥ ‖ A→ B⊥ ‖ B can also be seen as a map ccf : ccA → ccB .

5.1 The uniform copycat strategy

We equip the copycat strategy on A with a map

φ : NA⊥‖A × C(ccA) −→ PA⊥‖A × C(ccA)

as required for uniformity. The construction of φ is straightforward using the axioms for a game. Let
(β, α) ∈ NA⊥‖A = PA × NA. The key observation is that β and α can be made to agree using the

distributive law: if (γ−1, δ) = λ(α, β−1), then (regarding group elements as automorphisms) the diagram

A
A A

A

δβ

α γ

commutes. We can set ε := δ ◦ β = γ ◦ α, so that the diagram below commutes:

ccA ccA

A⊥ ‖ A A⊥ ‖ A A⊥ ‖ A

ccε

p p

β‖α δ‖γ
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By the discussion in Example 3.4, ccε is a weak map (β, α) · ccA → ccA. We set φ(β,α) := ccε.

Lemma 5.2 The pair (ccA, φ), as defined in the preceding discussion, defines a uniform strategy.

5.2 Lifting maps of event structures to strategies

Copycat has other applications beyond providing identity morphisms. For certain well-behaved maps of
event structures f : A→ B, we can use copycat to lift f to a strategy f̂ : A +→ B ([23,14,22]). This is often
used to lift basic structural morphisms such as the symmetry of parallel composition A ‖ B → B ‖ A, or
a co-multiplication !A→ !!A.

Definition 5.3 Let f : A → B be a map of event structures which satisfies the conditions for A to be a
strategy on B, with projection map f . Then the strategy f̂ : A +→ B is defined as the event structure ccA
with projection map

ccA
pccA−−→ A⊥ ‖ A

A⊥‖f
−−−→ A⊥ ‖ B.

The purpose of this section is to identify sufficient conditions on f under which f̂ can be made uniform.
The basic requirement is that f should reflect the negative group action and preserve the positive group
action, in a functorial and coherent way.

Lemma 5.4 Let f : A → B be a map of event structures as in Definition 5.3, such that there are group
homomorphisms L : NB → NA and M : PA → PB such that for every α ∈ NB and β ∈ PA,

A A

B B

f

L(α)

f

α

A A

B B

f

β

f

M(β)

and additionally the following coherence property holds:

NB × PB PB ×NB

NB × PA PB ×NA

NA × PA PA ×NA

NB×M
λB

PB×L

L×PA
λA

M×NA

Then, the strategy f̂ can be made uniform with φ
f̂
defined as the composite

NA⊥‖B ×C(ccA)
(N

A⊥×L)×C(ccA)
−−−−−−−−−−−→ NA⊥‖A ×C(ccA)

φccA−−−→ PA⊥‖A ×C(ccA)
(P

A⊥×M)×C(ccA)
−−−−−−−−−−−−→ PA⊥‖B ×C(ccA).

Remark 5.5 The lifting construction has a co-lifting counterpart: in some cases, for a map f : A → B,
the composite

ccA
pccA−−→ A⊥ ‖ A

f⊥‖A
−−−→ B⊥ ‖ A.

gives a strategy from B to A, which can be made uniform providing f is compatible with symmetry in a
way that is essentially dual to Lemma 5.4.

A key application of these results is in the definition of a comonad structure for !. For example the
counit !A +→ A is obtained by co-lifting the injection A → !A. Liftings and co-liftings of this kind have
a universal property [18] (see also [14]), which provides canonical constructions for 2-cells between lifted
maps, as required for (2). We do not develop this further, as this paper focuses on the study of uniformity.
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6 Thin concurrent games

We explore the connection between the algebraic development in this paper and the established theory of
thin concurrent games. We recall the main definitions of games, strategies, and maps of strategies from
[7,6], and explain how they arise within our setting.

6.1 Symmetry in event structures and games

First we focus on the games. Permutation of moves in thin concurrent games is described using isomorphism
families [20]:

Definition 6.1 Let E be an event structure. An isomorphism family on E is a set S(E) of polarity-
preserving bijections between configurations of E, containing identities and closed under composition and
taking inverses, such that for every (θ : x ∼= y) ∈ S(E):

(restriction) if x′ ⊆ x, then the restriction of θ to x′ is in S(E); and

(extension) if x ⊆ x′, then there exists some θ′ : x′ ∼= y′ in S(E) such that θ is the restriction of θ′ to x.

The pair (E,S(E)) is then called an event structure with symmetry. Maps of event structures with
symmetry are also required to preserve symmetry.

Castellan, Clairambault and Winskel define a notion of game with symmetry [7]:

Definition 6.2 A thin concurrent game is an event structure A equipped with three isomorphism
families S(A),S+(A), and S−(A) such that S+(A),S−(A) ⊆ S(A), and:

• if θ ∈ S+(A) ∩ S−(A), then θ = idx for some x ∈ C(A);

• if θ ∈ S+(A) and θ ⊆
+ θ′ ∈ S(A), then θ′ ∈ S+(A); and

• if θ ∈ S−(A) and θ ⊆
− θ′ ∈ S(A), then θ′ ∈ S−(A).

With the next result we begin to explain the connection with the work in this paper.

Lemma 6.3 (i) Let G be a group acting on an event structure E. Then the set

SG(E) = {θ : x ∼= y | θ is the restriction to x of some E
g
−→ E, g ∈ G}

defines an isomorphism family on E.

(ii) Let A be a game in the sense of Definition 2.4. Then the structure of A defines a thin concurrent
game A, where S−(A) = SN (A), S+(A) = SP (A), and S(A) is the closure of S−(A) ∪ S+(A) under
composition.

We have shown that our games give rise to thin concurrent games. It seems that all useful thin concur-
rent games arise in this way, although there are pathological examples, which arise because isomorphism
families provide bisimulations rather than automorphisms.

6.2 Symmetry in strategies

In thin concurrent games, strategies are also equipped with isomorphism families.

Definition 6.4 Let A be a thin concurrent game. A∼-strategy on A is an event structure with symmetry
σ, together with a map (σ,S(σ)) → (A,S(A)) whose underlying map is a strategy, satisfying a further two
axioms:

(thinness) If x ∈ C(σ), and idx ⊆+ θ ∈ S(σ), then θ = idx′ for some x′ ∈ C(σ).

(∼-receptivity) If x ⊆− y, z ∈ C(σ), and there exists some (θ : py ∼= pz) ∈ S(A) such that idpx ⊆ θ,
then there exists χ ∈ S(σ) such that idx ⊆ χ and pχ = θ.
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As we will see below (Proposition 6.7), we can explain these axioms by imposing a locality requirement
on the uniformity. To achieve this, we connect our uniform strategies to ∼-strategies. In the next lemma,
we show that for every uniform strategy σ : A, it is possible to recover an isomorphism family on σ.

Lemma 6.5 Let (σ, φ) be a uniform strategy on a game A. Then

Sφ(σ) = {θ : x ∼= y | θ is the restriction to x of φα, for some α ∈ N}

is an isomorphism family on the event structure σ, and the map pσ : σ → A is a map of event structures
with symmetry (σ,Sφ(σ)) → (A,S(A)).

Unfortunately, thinness and ∼-receptivity do not hold in general, as the next example shows.

Example 6.6 Consider the simple game A given by the event structure

0 1 0 1

where N = {α, id} and P = {β, id} are the symmetry groups for the negative and positive events,
respectively, with the canonical action, and trivial distributive law.

Consider the strategy σ = A where pσ is the identity map. We construct a bi-invariance structure φ.
By the axioms, φid must be the identity map on σ. Define φα = β ◦ α, so that swapping the Opponent
moves also triggers a swap of the Player moves. This satisfies the axioms for a uniform strategy, since
both α and β ◦ α are their own inverse.

But the family Sφ(σ), obtained by restricting φα and φid to individual configurations, contains a
bijection

0

∼=
1

(6)

which breaks thinness, as a non-identity positive extension of the identity on ∅. (It is also not ∼-receptive,
taking x to contain the positive moves, and y, z the two one-event negative extensions of x.)

We give an informal analysis of the problem: by providing only a local account of symmetry, the
isomorphism family Sφ(σ) fails to record that the bijection (6) comes from φα, and forgets that it is only
valid when the Opponent moves are swapped too. In this local view, it looks as though the two positive
moves are swapped for no reason. This is resolved by the next result.

Proposition 6.7 Let (σ, φ) be a uniform strategy on A such that φ satisfies the following property:

(uniformity is local.) For all x ∈ C(σ) and α ∈ N , if α fixes pσx, then φα fixes x.

Then, (σ,Sφ(σ)) is a ∼-strategy on A, written σφ.

In particular, uniformity in Example 6.6 is not local. This way, we have identified the strategies on
thin concurrent games with a restricted, well-behaved class of uniform strategies, in which all uniformity
information is accessible locally. We note that it is not the case that every uniform strategy can be assigned
a modified φ for which uniformity is local. Thus we have a proper generalization.

6.3 Weak maps of strategies

Definition 6.8 Let A be a thin concurrent game and let σ, τ be ∼-strategies. A weak map of ∼-
strategies [7] is a map f : σ → τ of event structures with symmetry, such that for every x ∈ C(σ)
there exists a (necessarily unique) bijection (θ : pσx ∼= pτfx) ∈ S+(A) such that the following diagram
commutes:

x fx

pσx pτfx

pτ

f

pτ

θ

(7)
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As expected, we obtain this by restricting the weak maps between uniform strategies.

Lemma 6.9 Let (σ, φ) and (τ, ψ) be uniform strategies on a game A, and let f : σ → τ be a map of
uniform strategies between them. Then:

(i) f is a map of event structures with symmetry (σ,Sφ(σ)) → (τ,Sψ(τ)); and

(ii) for every x ∈ C(σ) there exists θ ∈ SP (A) such that the diagram in (7) commutes.

As an immediate corollary, we obtain that if uniformity is local in (σ, φ) and (τ, ψ), a weak map f of
uniform strategies induces a weak map f : σφ → τψ between ∼-strategies on the thin concurrent game A.

7 Concluding remarks

We have defined a new general notion of uniform strategies on event structures. Our presentation has
made explicit the algebraic structures and coherence laws underlying the usual treatment of uniformity in
game semantics. The work is specific to concurrent games, but the algebraic perspective could facilitate
the transfer of ideas to other kinds of games, e.g. [12].

Within the landscape of concurrent games, this development will combine smoothly with weights or
annotations on event structures, as required to model other kinds of programming (e.g. [21,2]): it suffices
to require that each φα preserves the weights.

This work should be seen as a preliminary investigation. It remains to determine how far we can take
the uniform strategies in this paper, in full generality. In particular, adapting the current methods for
composing strategies will require some work, as these rely strongly on the local perspective [7]. This is an
important challenge, because the main purpose of uniformity (cf. §1.3) is to ensure that permutations of
copies interact well with the composition of strategies.
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