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Abstract

The context of this work is that of partial frames; these are meet-semilattices where not all subsets need have joins. A selection
function, S , specifies, for all meet-semilattices, certain subsets under consideration, which we call the “designated” ones; an
S-frame then must have joins of (at least) all such subsets and binary meet must distribute over these. A small collection
of axioms suffices to specify our selection functions; these axioms are sufficiently general to include as examples of partial
frames, bounded distributive lattices, σ-frames, κ-frames and frames.
We consider right and left adjoints of S-frame maps, as a prelude to the introduction of closed and open maps.
Then we look at what might be an appropriate notion of Booleanness for partial frames. The obvious candidate is the
condition that every element be complemented; this concept is indeed of interest, but we pose three further conditions which,
in the frame setting, are all equivalent to it. However, in the context of partial frames, the four conditions are distinct. In
investigating these, we make essential use of the free frame over a partial frame and the congruence frame of a partial frame.
We compare congruences of a partial frame, technically called S-congruences, with the frame congruences of its free frame.
We provide a natural transformation for the situation and also consider right adjoints of the frame maps in question. We
characterize the case where the two congruence frames are isomorphic and provide examples which illuminate the possible
different behaviour of the two.
We conclude with a characterization of closedness and openness for the embedding of a partial frame into its free fame, and
into its congruence frame.

Keywords: frame, partial frame, S-frame, κ-frame, σ-frame, free frame over partial frame, congruence frame, Boolean
algebra, closed map, open map

1 Introduction

Partial frames are meet-semilattices where, in contrast with frames, not all subsets need have joins. A
selection function, S, specifies, for all meet-semilattices, certain subsets under consideration, which we call
the “designated” ones; an S-frame then must have joins of (at least) all such subsets and binary meet must
distribute over these. A small collection of axioms suffices to specify our selection functions; these axioms
are sufficiently general to include as examples of partial frames, bounded distributive lattices, σ-frames,
κ-frames and frames.
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We consider the classical notions of right and left adjoints, for S-frame maps. Unlike the situation for
full frames, such maps need not have right adjoints. This is a prelude to the introduction of closed and
open maps, and a discussion of their properties.

What is an appropriate notion of Booleanness for partial frames? The obvious answer is that the
partial frame should have every element complemented; this concept is indeed of interest, but we pose
three further conditions which, in the frame setting, are all equivalent to it. However, in the context of
partial frames, the four conditions are distinct. In investigating these, we make essential use of the free
frame over a partial frame and the congruence frame of a partial frame.

We compare congruences of a partial frame, technically called S-congruences, with the frame congru-
ences of its free frame. We provide a natural transformation for the situation and also consider right
adjoints of the frame maps in question. We characterize the case where the two congruence frames are
isomorphic and provide examples which illuminate the possible different behaviour of the two.

We conclude with a characterization of closedness and openness for the embedding of a partial frame
into its free fame, and into its congruence frame.

Since this document is intended as an extended abstract, proofs are omitted.

2 Background

This background section is taken largely from [16]. See [22] and [17] as references for frame theory; see [3]
and [2] for σ-frames; see [19] and [20] for κ-frames; see [18] and [1] for general category theory.

The basics of our approach to partial frames can be found in [4], [5] and [7]. Our papers with a more
topological flavour are [6], [8], [10], [13] and [14]. Our papers with a more algebraic flavour are [9], [11]
and [12]. Crucial for this paper is [15]. We are indebted to earlier work by other authors in this field: see
[21], [24], [25] and [23]. For those interested in a comparison of the various approaches, see [5].

A meet-semilattice is a partially ordered set in which all finite subsets have a meet. In particular, we
regard the empty set as finite, so a meet-semilattice comes equipped with a top element, which we denote
by 1. We do not insist that a meet-semilattice should have a bottom element, which, if it exists, we denote
by 0. A function between meet-semilattices f : L → M is a meet-semilattice map if it preserves finite
meets, as well as the top element. A sub meet-semilattice is a subset for which the inclusion map is a
meet-semilattice map.

The essential idea for a partial frame is that it should be “frame-like” but that not all joins need exist;
only certain joins have guaranteed existence and binary meets should distribute over these joins. The
guaranteed joins are specified in a global way on the category of meet-semilattices by specifying what is
called a selection function; the details are given below.

Definition 2.1 A selection function is a rule, which we usually denote by S, which assigns to each
meet-semilattice A a collection SA of subsets of A, such that the following conditions hold (for all meet-
semilattices A and B):

(S1) For all x ∈ A, {x} ∈ SA.
(S2) If G,H ∈ SA then {x ∧ y : x ∈ G, y ∈ H} ∈ SA.
(S2)′ If G,H ∈ SA then {x ∨ y : x ∈ G, y ∈ H} ∈ SA.
(S3) If G ∈ SA and, for all x ∈ G, x =

∨
Hx for some Hx ∈ SA, then

⋃

x∈G

Hx ∈ SA.

(S4) For any meet-semilattice map f : A → B,

S(f [A]) = {f [G] : G ∈ SA} ⊆ SB.

(SSub) For any sub meet-semilattice B of meet-semilattice A, if G ⊆ B and G ∈ SA, then G ∈ SB.
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(SFin) If F is a finite subset of A, then F ∈ SA.
(SCov) If G ⊆ H and H ∈ SA with

∨
H = 1 then G ∈ SA. (Such H are called S-covers.)

(SRef) Let X,Y ⊆ A. If X ≤ Y with X ∈ SA there is a C ∈ SA such that X ≤ C ⊆ Y . (By X ≤ Y we
mean, as usual, that for each x ∈ X there exists y ∈ Y such that x ≤ y.)

Of course (SFin) implies (S1) but there are situations where we do not impose (SFin) but insist on
(S1). Note that we always have ∅ ∈ SA. Once a selection function, S, has been fixed, we speak informally
of the members of SA as the designated subsets of A.

Definition 2.2 An S-frame L is a meet-semilattice in which every designated subset has a join and for
any such designated subset B of L and any a ∈ L,

a ∧
∨

B =
∨

b∈B

a ∧ b.

Of course such an S-frame has both a top and a bottom element which we denote by 1 and 0 respectively.
A meet-semilattice map f : L → M , where L and M are S-frames, is an S-frame map if f(

∨
B) =

∨
b∈B

f(b)

for any designated subset B of L. In particular such an f preserves the top and bottom element.
A sub S-frame T of an S-frame L is a subset of L such that the inclusion map i : T → L is an S-frame
map.
The category SFrm has objects S-frames and arrows S-frame maps.

We use the terms “partial frame” and “S-frame” interchangeably, especially if no confusion about the
selection function is likely. We also use the term full frame in situations where we wish to emphasize that
all joins exist.

Note 1 Here are some examples of different selection functions and their corresponding S-frames.

1. In the case that all joins are specified, we are of course considering the notion of a frame.

2. In the case that (at most) countable joins are specified, we have the notion of a σ-frame.

3. In the case that joins of subsets with cardinality less than some (regular) cardinal κ are specified, we
have the notion of a κ-frame.

4. In the case that only finite joins are specified, we have the notion of a bounded distributive lattice.

The remainder of this section gives a lot of information about HSL, the free frame over the S-frame
L, as well as CSL, the frame of S-congruences of L, and the relationship between the two. These results
come from [7] on HSL, [9] and [11] on CSL.

In the definition below, L is an S-frame.

Definition 2.3 (a) A subset J of an L is an S-ideal of L if J is a non-empty downset closed under
designated joins (the latter meaning that if X ⊆ J , for X a designated subset of L, then

∨
X ∈ J).

(b) The collection of all S-ideals of L will be denoted HSL, and called the S-ideal frame of L. It is in
fact the free frame over L.

(c) For I ∈ HSL, t ∈ (↓x) ∨ I ⇐⇒ t ≤ x ∨ s, for some s ∈ I.

(d) We call θ ⊆ L× L an S-congruence on L if it satisfies the following:
(C1) θ is an equivalence relation on L.
(C2) (a, b), (c, d) ∈ θ implies that (a ∧ c, b ∧ d) ∈ θ.
(C3) If {(aα, bα) : α ∈ A} ⊆ θ and {aα : α ∈ A} and {bα : α ∈ A} are designated subsets of L, then
(
∨

α∈A

aα,
∨

α∈A

bα) ∈ θ.

(e) The collection of all S-congruences on L is denoted by CSL; it is in fact a (full) frame with meet given
by intersection.
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(f) (i) Let A ⊆ L×L. We use the notation 〈A〉 to denote the smallest S-congruence containing A. This
exists by completeness of CSL.

(ii) We define ∇a = {(x, y) : x∨ a = y ∨ a} and ∆a = {(x, y) : x∧ a = y ∧ a}; these are S-congruences
on L.

(iii) It is easily seen that ∇a =
⋂
{θ : θ ∈ CSL and (0, a) ∈ θ} = 〈(0, a)〉 and that ∆a =

⋂
{θ : θ ∈

CSL and (a, 1) ∈ θ} = 〈(a, 1)〉.
(iv) For a ≤ b, it follows that ∆a ∩ ∇b = 〈(a, b)〉.
(v) The congruence ∇1 = L× L is the top element and ∇0 = {(x, x) : x ∈ L} (called the diagonal)

is the bottom element of CSL.

(g) The following hold in CSL.
(i) For any θ ∈ CSL, θ =

∨
{∇b ∧∆a : (a, b) ∈ θ, a ≤ b}.

(ii) ∇a ∨ θ = {(x, y) : (x ∨ a, y ∨ a) ∈ θ}.
(iii) ∆a ∨ θ = {(x, y) : (x ∧ a, y ∧ a) ∈ θ}.
(iv) For any I ∈ HSL,

∨
x∈I

∇x =
⋃
x∈I

∇x.

(h) The function ∇ : L → CSL given by ∇(a) = ∇a is an S-frame embedding. It has the universal
property that if f : L → M is an S-frame map into a frame M with complemented image, then there
exists a frame map f̄ : CSL → M such that f = f̄ ◦ ∇.

(i) We also note that for frame maps f and g with domain CSL, if f ◦ ∇ = g ◦ ∇ then f = g.

(j) A useful congruence for our purposes is the Madden congruence, denoted πL below:
(i) For x ∈ L, set Px = {t ∈ L : t ∧ x = 0}.
(ii) For x ∈ L, Px is an S-ideal, and in HSL, Px = (↓x)∗, the pseudocomplement of ↓x.
(iii) Let πL = {(x, y) : Px = Py}; πL is an S-congruence.
(iv) The quotient map induced by the Madden congruence, p : L → L/πL is dense, onto and the

universal such. We refer to this as the Madden quotient of L. (See [11].)

Definition 2.4 For any S-frame L, define eL : HSL → CSL to be the unique frame map such that
eL(↓ a) = ∇a for all a ∈ L; that is, making the following diagram commute:

L HSL

CSL

∇

↓

eL

That this map eL exists follows from the freeness of HSL as a frame over L. See [7].

Note 2 For any S-frame L, HSL is isomorphic to a subframe of CSL; that is, the free frame over L is
isomorphic to a subframe of the frame of S-congruences of L.

3 Right and left adjoints

We use the following standard terminology:

Definition 3.1 Let h : L → M be an S-frame map.
A function r : M → L is a right adjoint of h if

h(x) ≤ m ⇐⇒ x ≤ r(m) for all x ∈ L,m ∈ M.

A function l : M → L is a left adjoint of h if

l(m) ≤ x ⇐⇒ m ≤ h(x) for all x ∈ L,m ∈ M.
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We make no claim that all S-frame maps have right (or left) adjoints; this is false (see Example 3.3).
However, clearly if an S-frame map has a right or left adjoint, such is unique.

Lemma 3.2 Let h : L → M be an S-frame map.

(i) If h has a right adjoint r, then for all m ∈ M ,

r(m) =
∨

{x ∈ L : h(x) ≤ m}.

(ii) If h has a left adjoint ℓ, then for all m ∈ M ,

l(m) =
∧

{x ∈ L : m ≤ h(x)}.

We note that the existence of the above joins and meets has to be established since an S-frame need
not be complete.

Example 3.3 This is an example of an S-frame map which has neither a right nor a left adjoint.
Let L be the σ-frame consisting of all countable and cocountable subsets of R, and 2 denote the 2-

element chain. Define h : L → 2 by h(C) = 0 if C is countable and h(D) = 1 if D is cocountable. Then h
is a σ-frame map. However it has no right adjoint since there is no largest A ∈ L with h(A) = 0. Similarly
it has no left adjoint.

Proposition 3.4 Let h : L → M be an S-frame map.

(i) Suppose that h has a right adjoint, r. Then h preserves all existing joins and r preserves all existing
meets.

(ii) Suppose that h has a left adjoint L. Then h preserves all existing meets and ℓ preserves all existing
joins.

4 Closed and open maps

Definition 4.1 Let h : L → M be an S-frame map.
We call h closed if, for all m ∈ M , there exists x ∈ L with (h× h)−1(∇m) = ∇x.
We call h open if, for all m ∈ M , there exists x ∈ L with (h× h)−1(∆m) = ∆x.

We know that (see [11]) that CS is a functor from S-frames to frames which is natural in the sense
that for any S-frame h : L → M we have a frame map CSh : CSL → CSM making the following diagram
commute:

M

L CSL

CSM

h

∇L

∇M

CSh

Now (h × h)−1 is the right adjoint of CSh, because, for θ ∈ CSL, CSh(θ) is the S-congruence of M
generated by (h× h)[θ], so for all θ ∈ CSL, φ ∈ CSM ,

CSh(θ) ⊆ φ ⇐⇒ θ ⊆ (h× h)−1(φ).

Theorem 4.2 Let h : L → M be an S-frame map.
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(a) The map h is closed iff h has a right adjoint, r, and for all x ∈ L,m ∈ M ,

r(h(x) ∨m) = x ∨ r(m).

(b) The map h is open iff h has a left adjoint, l, and for all x ∈ L,m ∈ M ,

l(h(x) ∧m) = x ∧ l(m).

Theorem 4.3 Let L be an S-frame and θ an S-congruence on L.
(a) The quotient map q : L → L/θ is closed if and only if θ is a closed S-congruence; i.e. θ = ∇a for some
a ∈ L.
(b) The quotient map q : L → L/θ is open if and only if θ is an open S-congruence; that is, θ = ∆a for
some a ∈ L.

Definition 4.4 Let h : L → M be an S-frame map. We say that h is dense (resp., codense) if for all
a ∈ L, h(a) = 0 (resp., h(a) = 1) implies that a = 0 (resp., a = 1).

Lemma 4.5 Let h : L → M be an S-frame map.

(a) If h is dense and closed, then h is one-one. If h is dense, closed and onto, then h is an isomorphism.

(b) If h is codense and open, then h is one-one. If h is codense, open and onto, then h is an isomorphism.

Lemma 4.6 Suppose that f : L → M and g : M → N are S-frame maps.

(a) (i) If f and g are both closed, then g ◦ f is closed.
(ii) If g ◦ f is closed and g is one-one, then f is closed.
(iii) If g ◦ f is closed and f is onto, then g is closed.

(b) As above but replace “closed” by “open”.

5 Boolean properties for partial frames

The material in this section comes from [16].
We begin by recalling how matters stand in the case of full frames. A Boolean frame is simply a frame

that is also a Boolean algebra, that is, every element has a complement. However, Booleanness can also
be characterized in a different way. For any frame M , let M∗∗ = {x∗∗ : x ∈ M} where x∗ =

∨
{z ∈ M :

z ∧ x = 0}, the pseudocomplement of x. The frame map p : M → M∗∗ given by p(x) = x∗∗ is called the
Booleanization of M . It is the least dense quotient of M , but is also the unique dense Boolean quotient of
M . A frame is then Boolean if and only if it is isomorphic to its Booleanization.

Following Madden’s lead in [19], in [11] we constructed a least dense quotient for partial frames. The
codomain need not be Boolean, however, as Madden already noted in the case of κ-frames. We use his
terminology, “d-reduced”, to refer to those partial frames isomorphic to their least dense quotients. We
refer the reader to Definition 2.3(l) for our notation and terminology in this regard.

The next result characterizes those S-frames, L, that are Boolean algebras, in several ways. These
involve the free frame over L, the congruence frame of L and the the relationship between these two
entities.

Proposition 5.1 Let L be an S-frame. The following are equivalent:

(i) L is Boolean; that is, every element of L is complemented.

(ii) All principal S-ideals in HSL are complemented.

(iii) The embedding e : HSL → CSL is an isomorphism.

(iv) Every S-congruence θ of L is an arbitrary join of S-congruences of the form ∇a, for some a ∈ L.

In our experience with partial frames, it has often proved useful to compare properties for a partial
frame with the analogous properties for the corresponding free frame. We do this now for Booleanness.

We recall that, if M is a frame and x ∈ M , we call x a dense element of M if x∗ = 0.
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Proposition 5.2 Let L be an S-frame. The following are equivalent:

(i) The frame HSL is Boolean.

(ii) ↓ 1 is the only dense element of HSL.

(iii) The S-frame embedding ∇ : L → CSL is an isomorphism.

(iv) Every θ ∈ CSL has the form θ = ∇a, for some a ∈ L.

We now provide four provably distinct conditions akin to Booleanness for partial frames. In the setting
of (full) frames they all amount to every element being complemented.

Theorem 5.3 Let L be an S-frame. In the following list of conditions, each one implies the succeeding
one, but not conversely.

(i) HSL is a Boolean frame.

(ii) L is a Boolean frame.

(iii) L is a Boolean S-frame.

(iv) L is a d-reduced S-frame.

Proof. (a)⇒(b): (6⇐) See Example 5.5.
(b)⇒(c): (6⇐): See Example 5.6.
(c)⇒(d): (6⇐): See Example 5.4.

Example 5.4 Let S designate countable subsets, and consider the σ-frame L = PC(R), which consists
of all countable subsets of R together with R as the top element. Countable join is union, binary meet is
intersection.
Here (X,Y ) ∈ χ0 if and only if, for any countable subset U , U ∩ X = ∅ ⇐⇒ U ∩ Y = ∅, which makes
X = Y . So χ0 = ∆, which makes PC(R) d-reduced. However, PC(R) is clearly not Boolean.

Example 5.5 Let S designate countable subsets, and let L consist of all subsets of R. Clearly L is a
Boolean frame. We show that HSL is not Boolean, using condition (d) of Proposition 5.2.
Let I = {X ⊆ R : X ∩ (R\Q) is countable}. Then I is a σ-ideal of L; that is, a downset closed under
countable unions. By Definition 2.3(g)(iv),

∨
X∈I

∇X =
⋃

X∈I

∇X and this cannot have the form ∇Z for any

Z ∈ L, since that would require Z ⊇ X for all X ∈ I, and hence Z = R; a contradiction.

Example 5.6 Let L consist of all countable and co-countable subsets of the real line, and let S designate
countable subsets. Clearly L is a Boolean σ-frame, but not a complete lattice, so not a frame.

6 Comparing congruences on a partial frame and its free frame

The material in this section comes from [16].
In this section, for a partial frame L, we compare CSL, the frame of S-congruences of L, with C(HSL),

the frame of (frame) congruences on HSL, the free frame over L. The universal property of the embedding
∇ : L → CSL provides a frame map EL : CSL → C(HSL). We give an explicit description of this map, and
show that it provides a natural transformation.

We then turn our attention to its right adjoint DL : C(HSL) → CSL. Again, we provide an explicit
description of this function, including an interesting and useful action on closed congruences (Lemma 6.8).

Definition 6.1 Let L be an S-frame. Consider this diagram
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C(HSL)

HSL

L CSL

∇

↓

∇

EL

By the universal property of ∇ : L → CSL there exists a unique frame map EL : CSL → C(HSL) such
that EL ◦ ∇ = ∇ ◦ ↓; that is, for all a ∈ L

EL(∇a) = ∇↓ a.

Lemma 6.2 Let L be an S-frame.

(i) For θ ∈ CSL, E(θ) is the frame congruence on HSL generated by {(↓ x, ↓ y) : (x, y) ∈ θ}; this is
denoted by E(θ) = 〈(↓x, ↓ y) : (x, y) ∈ θ〉.

(ii) The frame map E : CSL → C(HSL) is dense.

Corollary 6.3 Let L be an S-frame and E : CSL → C(HSL) given as in Definition 6.1. For all a ∈ L:

(i) E(∇a) = ∇↓ a

(ii) E(∆a) = ∆↓ a

Remark 6.4 Let L be an S-frame. the embedding e : HSL → CSL of Definition 2.4 can be incorporated
into the diagram of Definition 6.1 as follows:

C(HSL)

HSL

L CSL

∇

↓

∇

e

E

Note that

• the upper triangle commutes, since e ◦ ↓ = ∇.

• the lower triangle commutes, since, for I ∈ HSL,
E ◦ e(I) = E(

∨
i∈I

∇i) =
∨
i∈I

E(∇i) =
∨
i∈I

∇↓ i = ∇I .

Alternatively, this can be seen because the outer diagram commutes and every S-ideal is generated by
principal S-ideals.

Proposition 6.5 The function EL provides a natural transformation from the functor CS to the functor
CHS .

We now define, for any S-frame L, the function DL. In a subsequent lemma, DL is seen to be the right
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adjoint of the frame map EL.

Definition 6.6 Let L be an S-frame, and Φ a frame congruence on the frame HSL. Define

DL(Φ) = {(x, y) ∈ L× L : (↓x, ↓ y) ∈ Φ}.

Lemma 6.7 Let L be an S-frame.

(i) For any frame congruence Φ on HSL, DL(Φ) is an S-congruence on L.

(ii) The function DL : C(HSL) → CSL is the right adjoint of the frame map EL : CSL → C(HSL) of
Definition 6.1.

(iii) The function DL preserves bottom, top and arbitrary meets.

We now provide further properties of D, including its action on certain special congruences. We note
that the proof of Lemma 6.8(a) uses the fact that, for I an S-ideal of an S-frame L,

∨
i∈I

∇i =
⋃
i∈I

∇i. This

is not immediately obvious, but was proved in [15] Lemma 3.1.

Lemma 6.8 Let L be an S-frame, and D as in Definition 6.6.

(i) For all I ∈ HSL, D(∇I) =
⋃
i∈I

∇i.

(ii) For all a ∈ L,
(a) D(∇↓ a) = ∇a

(b) D(∆↓ a) = ∆a

(iii) For I ∈ HSL, I is principal ⇐⇒ D(∇I) ∨D(∆I) = ∇.

Definition 6.9 Let M be a full frame. For any a ∈ M we say a is an S-Lindelöf element of M if the
following condition holds:

If a =
∨

B for some B ⊆ M , then a =
∨

D for some designated subset D of M such that D ⊆ B.

See [7] for details about this notion. In particular, Lemma 4.3 of that paper characterizes the S-Lindelöf
elements of HSL as being the principal S-ideals.

The next result characterizes those rather special S-frames L for which EL is an isomorphism.

Theorem 6.10 Let L be an S-frame. The following are equivalent:

(i) The embedding ↓ : L → HSL is an isomorphism.

(ii) Every S-ideal of L is principal.

(iii) L is a frame and every element of L is S-Lindelöf.

(iv) The frame map E : CSL → C(HSL) is an isomorphism.

The equivalent conditions of Theorem 6.10 might seem rather strong. Here are some examples which
show that these can obtain.

Example 6.11 The conditions of Theorem 6.10 hold in the following examples:

• S selects finite subsets and L is a finite frame.

• S selects countable subsets, and L consists of the open subsets of the real line.

• S selects finite subsets, or S selects countable subsets, and L consists of the cofinite subsets of the real
line, together with the empty set.

7 Closed and open embeddings into the free frame and the congruence frame

Theorem 7.1 Let L be an S-frame and ↓ : L → HSL the embedding into its free frame.

(a) The map ↓ has a right adjoint iff ↓ is an isomorphism.
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(b) The map ↓ is closed iff ↓ is an isomorphism.

(c) The map ↓ has a left adjoint iff L is a complete lattice.

(d) The map ↓ is open iff L is a frame.

Theorem 7.2 Let L be an S-frame and ∇ : L → CSL the embedding into its congruence frame.

(a) The map ∇ is closed iff ∇ is an isomorphism.

(b) The map ∇ is open iff L is a Boolean frame.
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