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Abstract

The residuated lattices form one of the most important algebras of fuzzy logics and have been heavily studied by people
from various different points of view. Sheaf presentations provide a topological approach to many algebraic structures. In
this paper, we study the topological properties of prime spectrum of residuated lattices, and then construct a sheaf space to
obtain a sheaf representation for each residuated lattice.
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1 Introduction

Residuated lattices, introduced by Ward and Dilworth [20], constitute the semantics of Höhle’s Monoidal
Logic [14]. Such algebras provide the fundamental framework for algebras of logics. Many familiar alge-
bras, such as Boolean algebras, MV-algebras, BL-algebras, MTL-algebras, NM algebras (R0-algebras) and
Heyting algebras, are special types of residuated lattices.

In dealing with certain type of problems, sheaf representations of algebras often provide powerful
tools as they convert the study of algebras to the study of stalks, a topological structure. Thus, in the
past decades, sheaf spaces [2,17,18] have been constructed for various types of algebras to obtain their
corresponding sheaf representations.

In the case of algebras for fuzzy logics, Ghilardi and Zawadowski constructed the Grothendieck-type
duality and got the sheaf representation for Heyting algebras [10]. Many scholars investigated the sheaf
representations of MV-algebras [3,5,6,7,8,9]. Here we give an outline of their differences. In [5], Dubuc and
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Poveda use Spec(L) (which is endowed with the co-Zariski topology) as the base space and MV-chains as
the stalks. In [7], Filipoiu and Georgescu used Max(L) (which is endowed with the Zariski topology) as
the base space and localMV-algebras as the stalks. Di Nola, Esposito and Gerla [3] improved the methods
of [7], by choosing the stalks from given classes of localMV-algebras. Ferraioli and Lettieri [6], combining
the techniques in [5] and [7], got two types of sheaf representation of MV-algebras. In [8] and [9], Gehrke,
Gool and Marra provided a general framework for previously known results on sheaf representations of
MV-algebras as [5] and [7], through the lens of Stone-Priestley duality, using canonical extensions as an
essential tool. In terms of the sheaf representations of BL-algebras, Di Nola and Leuştean, who adopted
Spec(L)(Max(L)) as the base space and BL-algebras (local BL-algebras) as the stalks, obtained the sheaf
representation and the compact representation of BL-algebras [3,16].

In [8], Gehrke and Gool dealt with sheaf representations of a V-algebra. In their definition Def 3.1 [8],
they required that the V-algebra A is isomorphic to FY , where F is a sheaf, and FY is the algebra of
global sections of F . In this paper, we loosen the isomorphism condition in [8] and the requirement on
the stalks in [6] and further extend above results to the more general structures; namely, define the sheaf
spaces of residuated lattices and obtain the sheaf representation of residuated lattices.

2 Preliminaries

In this section, we recall some basic notions and results to be used in the sequel.

Definition 2.1 ([20]) A residuated lattice is an algebra (L,∧,∨,⊗,→, 0, 1) satisfying the following con-
ditions:

(1) (L,∧,∨, 0, 1) is a bounded lattice;

(2) (L,⊗, 1) is a commutative monoid with identity 1;

(3) for any x, y, z ∈ L, x⊗ y ≤ z iff x ≤ y → z.

In the following, we shall use the shorthand L to denote (L,∧,∨,⊗,→, 0, 1).

Definition 2.2 ([13,19]) A nonempty subset F of a residuated lattice L is called a filter if

(1) x ∈ F and x ≤ y imply y ∈ F ;

(2) x ∈ F and y ∈ F imply x⊗ y ∈ F .

Theorem 2.3 ([13,19]) A nonempty subset F of a residuated lattice L is a filter if

(1) 1 ∈ F ;

(2) x ∈ F and x → y ∈ F imply y ∈ F .

Remark 2.4 A filter is proper if F 6= L. We will use F(L) to denote the set of all filters of a residuated
lattice L. Note that {1} and L are filters. For any X ⊆ L, the filter of L generated by X (the smallest
filter containing X) will be denoted by <X>. In particular, the filter generated by {a} will be denoted
by <a>. To each filter F , we can associate a congruence relation ≡F on L given by

x ≡F y iff ((x → y)⊗ (y → x)) ∈ F.

Let L/F denote the set of the congruence classes of ≡F , i.e., L/F = {x/F |x ∈ L}, where

x/F := {y ∈ L|y ≡F x}. Define operations on L/F as follows:

x/F ⊓ y/F = (x ∧ y)/F , x/F ⊔ y/F = (x ∨ y)/F ,

x/F ⊙ y/F = (x⊗ y)/F , x/F ⇀ y/F = (x → y)/F .

Remark 2.5 ([11,12]) It is easy to show that if {Fi : i ∈ I} ⊆ F(L) is a directed family (∀i1, i2 ∈ I,∃is ∈ I
such that Fi1 ⊆ Fis and Fi2 ⊆ Fis), then

⋃
i∈I Fi ∈ F(L). Thus, for any x ∈ L, <x>≪<x> holds in

the complete lattice (F(L),⊆) (see [11,12] for the definition of the way below relation ≪). It’s not clear
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whether F ∈ F(L) and F ≪ F implies F = <x> for some x ∈ L.

Lemma 2.6 ([1]) Let F be a filter of a residuated lattice L. Then (L/F,⊓,⊔,⊙,⇀, 0/F, 1/F ) is a resid-
uated lattice.

Remark 2.7 ([1]) The following properties hold on any residuated lattice:

(1) x ∨ (y ⊗ z) ≥ (x ∨ y)⊗ (x ∨ z);

(2) <x>∩<y>= <x ∨ y>.

Definition 2.8 ([1]) A proper filter P of a residuated lattice L is called a prime filter if for any x, y ∈ L,
x ∨ y ∈ P implies x ∈ P or y ∈ P .

The set of all prime filters of a residuated lattice L is called the prime spectrum of L and is denoted
by Spec(L).

Lemma 2.9 Let P be a proper filter of a residuated lattice L. Then P is a prime filter iff F1 ∩ F2 ⊆ P
implies F1 ⊆ P or F2 ⊆ P for any F1, F2 ∈ F(L).

Proof. Assume that F1 ∩ F2 ⊆ P with F1 * P and F2 * P . Then there exist x ∈ F1, y ∈ F2 such that
x /∈ P , y /∈ P . Thus x∨ y ∈ F1 ∩F2 and x∨ y /∈ P , since P is a prime filter. This shows that F1 ∩F2 * P ,
a contradiction. Conversely, assume that x ∨ y ∈ P with x /∈ P and y /∈ P . Thus <x>* P and <y>* P .
Therefore <x>∩<y>* P . We have <x ∨ y>* P , that is, x ∨ y /∈ P , again a contradiction.

Next, for any X ⊆ L, we will write D(X) = {P ∈ Spec(L)|X * P}. For any a ∈ L, D({a}) shall be
denoted simply by D(a). ✷

Lemma 2.10 Let L be a residuated lattice. Then

(1) X ⊆ Y ⊆ L implies D(X) ⊆ D(Y );

(2) D(X) = D(<X>).

Proof. (1) is trivial.

(2) Since X ⊆ <X>, from (1), we have that D(X) ⊆ D(<X>). Conversely, suppose P ∈ D(<X>),
then <X>* P . It follows, by the definition of <X>, that X * P . That is, P ∈ D(X). Thus, we have
D(X) = D(<X>). ✷

We now recall some basic notions about topology to be used later. For more about these, we refer to
[15].

A topological space is a pair (X, τ), where X is a nonempty set and τ is a family of subsets of X, called
the topology, such that (i) ∅,X ∈ τ , (ii) a finite intersection of members of τ is in τ and (iii) an arbitrary
union of members of τ is in τ .

The members of τ are called open sets of X and the elements of X are called points. A neighbourhood of
a point x in a topological space X is a subset W ⊆ X such that there exists an open set U of X satisfying
x ∈ U ⊆ W . A set U is open iff U is the neighbourhood of every x ∈ U . A base B for a topology τ is a
collection of open sets in τ such that every open set in τ is a union of some members of B.

Lemma 2.11 A collection B of subsets of set X is the base for some topology iff X =
⋃
{V : V ∈ B} and

if V1, V2 ∈ B, x ∈ V1 ∩ V2, then there exists V ∈ B such that x ∈ V ⊆ V1 ∩ V2.

A function f : X −→ Y from a topological space (X, τ) to a topological space (Y, σ) is continuous at
a point x ∈ X if for any neighbourhood V of f(x), there is a neighbourhood U of x such that f(U) ⊆ V .
The function is called continuous if it is continuous everywhere. For any function f : X −→ Y between
two topological spaces, f is continuous iff for any open set W of Y , f−1(W ) is open in X iff for any open
set V in a base B of Y , f−1(V ) is open in X. A function f : X −→ Y between two topological spaces X
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and Y is an open function if for any open set U of X, f(U) is an open set of Y . A function f : X −→ Y
between two topological spaces X and Y is an open function iff for any open set W in a base of X, f(W )
is open in Y . A bijective function f : X −→ Y between two topological spaces is a homeomorphism if
both f and f−1 are continuous. A bijective function f : X −→ Y between two topological spaces is a
homeomorphism iff f is continuous and open.

Theorem 2.12 For any residuated lattice L, the family {D(X)|X ⊆ L} is a topology on Spec(L), which
we call the Stone topology on L.

Proof. We complete the proof by verifying each of the following.

(1) D(L) = Spec(L) and D(1) = ∅.

(2) For any X ⊆ L and Y ⊆ L, D(X)
⋂

D(Y ) = D(<X>∩<Y>).

(3) For any family {Xi|i ∈ I} of subsets of L, D(
⋃

i∈I Xi) =
⋃

i∈I D(Xi).

For any P ∈ Spec(L), L * P . Thus D(L) = Spec(L). For any P ∈ Spec(L), {1} ⊆ P . Hence P /∈ D(1).
Therefore D(1) = ∅. Thus (1) holds.

Since <X>∩<Y>⊆<X>,<Y>, by Lemma 2.10, we have D(<X>∩<Y>) ⊆ D(<X>)
⋂

D(<Y >)
= D(X)

⋂
D(Y ). Conversely, suppose that P ∈ D(X)

⋂
D(Y ), then X * P and Y * P . Hence <X>* P

and <Y>* P . By Lemma 2.9, we have <X>∩<Y>* P . This shows that P ∈ D(<X>∩<Y>). Therefore
D(X)

⋂
D(Y ) = D(<X>)

⋂
D(<Y >)⊆ D(<X>∩<Y>). Hence (2) holds.

Lastly, we verify (3). Suppose that P ∈ D(
⋃

i∈I Xi), then there exists i ∈ I such that Xi * P . Thus
we have P ∈ D(Xi) ⊆

⋃
i∈I D(Xi). Hence D(

⋃
i∈I Xi) ⊆

⋃
i∈I D(Xi). The reverse inclusion holds by

Lemma 2.10 (1). ✷

Remark 2.13 By Lemma 2.10 (2) and Theorem 2.12, we know that the open sets in the spectrum Spec(L)
are exactly the subsets in {D(F ) : F ∈ F(L)}.

Theorem 2.14 For any residuated lattice L, the family {D(a)}a∈L is a base for the Stone topology on
Spec(L).

Proof. Suppose that X ⊆ L and D(X) is an arbitrary open set of Spec(L), then D(X) = D(
⋃

a∈X{a}) =⋃
a∈X D(a). Hence every open set U of Spec(L) is the union of a subset of {D(a)}a∈U . ✷

Proposition 2.15 For any P ∈ Spec(L), O(P ) is a proper filter of a residuated lattice L satisfying
O(P ) ⊆ P , where O(P ) = {x ∈ L|a ∨ x = 1 for some a ∈ L− P}.

Proof. Since 1 /∈ L− P , it follows immediately that 0 /∈ O(P ). If x ∈ O(P ) and x ≤ y, then there exists
a ∈ L − P such that a ∨ x = 1. Hence 1 = x ∨ a ≤ y ∨ a. Therefore y ∨ a = 1, showing that y ∈ O(P ).
Next, if x, y ∈ O(P ), then there exist a, b ∈ L − P such that a ∨ x = 1 and b ∨ y = 1. So a ∨ b ∈ L − P ,
because P is a prime filter of L. Thus (a ∨ b) ∨ (x⊗ y) ≥ (a ∨ b ∨ x)⊗ (a ∨ b ∨ y) = 1⊗ 1 = 1. Therefore
(a ∨ b) ∨ (x⊗ y) = 1. This shows that x⊗ y ∈ O(P ). For any x ∈ O(P ), there exists a ∈ L− P such that
a ∨ x = 1 ∈ P . Thus x ∈ P . ✷

Example 2.16 Let L = {0, a, b, c, 1} with 0 < a, b < c < 1 and a, b incomparable. The operations ⊗ and
→ are defined as follows:
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⊗ 0 a b c 1

0 0 0 0 0 0

a 0 a 0 a a

b 0 0 b b b

c 0 a b c c

1 0 a b c 1

→ 0 a b c 1

0 1 1 1 1 1

a b 1 b 1 1

b a a 1 1 1

c 0 a b 1 1

1 0 a b c 1

Then L becomes a residuated lattice (see [1]). The filters of L are {1}, {c, 1}, {a, c, 1}, {b, c, 1} and L. It
is easy to check that the prime filters of L are {a, c, 1}, {b, c, 1}, and O({a, c, 1}) = {1}, O({b, c, 1}) = {1}.

Example 2.17 Let L = {0, a, b, 1} with 0 < a, b < 1 and a, b incomparable. The operations ⊗ and → are
defined as follows:

⊗ 0 a b 1

0 0 0 0 0

a 0 a 0 a

b 0 0 b b

1 0 a b 1

→ 0 a b 1

0 1 1 1 1

a b 1 b 1

b a a 1 1

1 0 a b 1

It is routine to verify that with the above operations, L is a residuated lattice and the filters of L are
{1}, {a, 1}, {b, 1} and L. In addition, the prime filters of L are {a, 1}, {b, 1} and O({a, 1}) = {a, 1},
O({b, 1}) = {b, 1}.

3 The sheaf representations of residuated lattices

In this section, we introduce the notion of sheaf space of residuated lattices and construct the sheaf
representations of residuated lattices.

Definition 3.1 A sheaf space of residuated lattices is a triple (E, p,X) satisfying the following conditions:

(1) Both E and X are topological spaces.

(2) p : E −→ X is a local homeomorphism from E onto X, i.e. for any e ∈ E, there are open neighbour-
hoods U and U ′ of e and p(e) such that p maps U homeomorphically onto U ′.

(3) For any x ∈ X, p−1({x}) = Ex is a residuated lattice.

(4) The functions defined by (a, b) 7−→ a ∧x b, (a, b) 7−→ a ∨x b, (a, b) 7−→ a ⊗x b, (a, b) 7−→ a →x b from
the set {(a, b) ∈ E ×E|p(a) = p(b)} into E are continuous, where x = p(a) = p(b).

(5) The functions 0, 1 : X −→ E assigning to every x inX the 0x and 1x of Ex respectively, are continuous.

Remark 3.2 In the Definition 3.1, E is usually called the total space, X as the base space and Ex is
called the stalk of E at x ∈ X.

Definition 3.3 Let (E, p,X) be a sheaf space of residuated lattices. For any Y ⊆ X, a function σ : Y −→
E is called a section over Y if it is continuous such that for any y ∈ Y, p(σ(y)) = y.

Remark 3.4 If we define the operations pointwisely on the set of all sections over Y , it constitutes a
residuated lattice. We denote it by Γ(Y,E). The elements of Γ(X,E) are called global sections.

Definition 3.5 ([19]) Suppose that L and L′ are residuated lattices. A residuated lattice morphism is
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a function h : L −→ L′ such that h(a ∧L b) = h(a) ∧L′ h(b), h(a ∨L b) = h(a) ∨L′ h(b), h(a ⊗L b) =
h(a)⊗L′ h(b), h(a →L b) = h(a) →L′ h(b) and h(0) = 0′, h(1) = 1′.

Definition 3.6 A sheaf representation of a residuated lattice L will mean an injective residuated lattice
morphism φ : L −→ Γ(X,E) from L to the residuated lattice Γ(X,E) of global sections of a sheaf space
of residuated lattices (E, p,X).

Lemma 3.7 Let (E, p,X) be a sheaf space of residuated lattices. If we define px : Γ(X,E) −→ Ex by
px(σ) = σ(x), then for any x ∈ X, px is a residuated lattice morphism.

Proof. Here we only prove that ⊗ is a morphism, the proofs for other operations are similar. For any
σ, µ ∈ Γ(X,E), px(µ ⊗ σ) = (µ ⊗ σ)(x) = µ(x)⊗x σ(x) = px(µ)⊗x px(σ), and px(0) = 0(x) = 0x, px(1) =
1(x) = 1x. ✷

Lemma 3.8 If L is a residuated lattice, then for any a ∈ L, V (a) = {P ∈ Spec(L)|a ∈ O(P )} is open in
Spec(L).

Proof. Assume that P ∈ V (a), then a ∈ O(P ). Thus there exists b ∈ L − P such that a ∨ b = 1. If
Q ∈ D(b), then b /∈ Q. Hence a ∈ O(Q), i.e. Q ∈ V (a). Therefore P ∈ D(b) ⊆ V (a). This shows that
V (a) is open. ✷

In the sequel, we will construct a sheaf space for each residuated lattice using the residuated lattice
L and the topological space Spec(L). Let EL be the disjoint union of the set {L/O(P )}P∈Spec(L) and
π : EL −→ Spec(L) the canonical projection.

Theorem 3.9 Let L be a residuated lattice. Then the family B = {D(F, a) : F ∈ F(L) and a ∈ L} is a
base for a topology on EL, where D(F, a) = {aP : P ∈ D(F )} and aP = a/O(P ).

Proof. We complete the proof in two steps.

(i) For every D1,D2 ∈ B and x ∈ D1 ∩D2, there exists a D ∈ B such that x ∈ D ⊆ D1 ∩D2.

Take D1 = D(F1, a),D2 = D(F2, b) with F1, F2 ∈ F(L) and a, b ∈ L. Suppose that x ∈ D(F1, a),
x ∈ D(F2, b), then there exists P ∈ D(F1) and Q ∈ D(F2) such that x = aP = bQ. Thus P = Q and
(a → b) ⊗ (b → a) ∈ O(P ). Hence P ∈ D(F1) ∩D(F2) ∩ V ((a → b) ⊗ (b → a)) := W . By Remark 2.13
and Lemma 3.8, we have that W is open in Spec(L). Hence there exists a filter F such that P ∈ D(F ) ⊆
W ⊆ D(F1) ∩D(F2). Therefore D(F, a) = {ap : P ∈ D(F )} ⊆ D(F1, a) and D(F, a) = {aP : P ∈ D(F )}
= {bP : P ∈ D(F )} ⊆ {bP : P ∈ D(F2)} = D(F2, b), because (a → b) ⊗ (b → a) ∈ O(P ). Therefore
x ∈ D(F, a) ⊆ D(F1, a) ∩D(F2, b).

(ii) For every x ∈ EL, there exists a D ∈ B with x ∈ D.

Suppose that x ∈ EL, then there exists a ∈ L and P ∈ Spec(L) such that x = aP . Thus there exists
G ∈ F(L) such that P ∈ D(G). This shows that x ∈ D(G, a). ✷

In the sequel, we will use T (B) to denote the topology on EL generated by the above B.

Theorem 3.10 The assignment π : EL −→ Spec(L) defined by aP 7−→ P is a local homeomorphism of
(EL,T (B)) onto Spec(L).

Proof. The mapping π is well defined and it is clear that π is surjective. Suppose that aP ∈ EL and
U = D(F, a) is an open neighbourhood of aP from B. Obviously, π(D(F, a)) = D(F ). The restriction πU
of π to U is injective from U into D(F ).

(i) πU is continuous: In fact, suppose thatD(G) is an open set of Spec(L), thenD(F )∩D(G) = D(F∩G)
is a base open set in D(F ). Also π−1

U (D(F ∩G)) = {aP : P ∈ D(F ∩G)} = D(F ∩G, a) and it is an open
subset of D(F, a).

(ii) πU is open: To see this, assume that D(H, b) is a base open set of EL. Then D(H, b)∩U is a base
open subset of U . Also πU(U ∩D(H, b)) = D(F ) ∩D(H), which is open in D(F ). ✷
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Proposition 3.11 For any a ∈ L, the function â : Spec(L) −→ EL defined by â(P ) = aP is a global
section of (EL, π,Spec(L)).

Proof. First, π(â(P )) = π(aP ) = P . Next we prove that â is continuous. Actually, for any D(F, a) ∈ B,
â−1(D(F, a)) = D(F ), which is open in Spec(L). And for any b ∈ L, b 6= a,D(F, b) ∈ B,

â−1(D(F, b)) = D(F )
⋂

{P |aP = bP}

= D(F )
⋂

{P ∈ Spec(L)|(a → b)⊗ (b → a) ∈ O(P )}

= D(F )
⋂

{P ∈ Spec(L)|a → b ∈ O(P )}
⋂

{P ∈ Spec(L)|b → a ∈ O(P )}

= D(F )
⋂

V (a → b)
⋂

V (b → a)

(1)

By Remark 2.13 and Lemma 3.8, we know that â−1(D(F, b)) is open in Spec(L). ✷

Corollary 3.12 The functions 0̂ : Spec(L) −→ EL and 1̂ : Spec(L) −→ EL are global sections of
(EL, π,Spec(L)).

Let EL △ EL =
⋃
{EP × EP : P ∈ Spec(L)} and equip EL △ EL with the subspace topology

of the product space EL × EL. It is well known that a base for the topology on EL × EL is B′ =
{D(F, a) × D(G, b) : F,G ∈ F(L) and a, b ∈ L}. Thus a base for the induced topology on EL △ EL is
given by B′′ = {(B(a, b), F ) : F ∈ F(L) and a, b ∈ L}, where (B(a, b), F ) is the set {(aP , bP ) : P ∈ D(F )}.

Proposition 3.13 For any P ∈ Spec(L), the functions (aP , bP ) 7−→ aP ∧P bP , (aP , bP ) 7−→ aP ∨P bP ,
(aP , bP ) 7−→ aP ⊗P bP , (aP , bP ) 7−→ aP →P bP from the set {(aP , bP ) ∈ EL × EL|π(a) = π(b)} into EL

are continuous, where P = π(a) = π(b).

Proof. We only prove the continuity of the operation ⊗P . The proofs for the rest of the operations are
similar. Let (aP , bP ) ∈ EL △ EL and D(F, a ⊗ b) a neighbourhood of (a ⊗P b)P . Then (B(a, b), F ) is a
neighbourhood of (aP , bP ), whose image by ⊗P is contained in D(F, a⊗ b). ✷

Theorem 3.14 For any residuated lattice L, (EL, π,Spec(L)) is a sheaf space of L.

Proof. For any P ∈ Spec(L), π−1({P}) = L/O(P ). And for any P ∈ Spec(L), O(P ) is a proper
filter of L, thus L/O(P ) is a residuated lattice. By Theorem 3.10, Proposition 3.11, Corollary 3.12 and
Proposition 3.13, we deduce that (EL, π,Spec(L)) is a sheaf space of L. ✷

Lemma 3.15 ([1]) If F is a filter of a residuated lattices L and a ∈ L−F , then there exists a prime filter
P of L such that F ⊆ P and a /∈ P .

Proposition 3.16
⋂
{P |P ∈ Spec(L)} = {1}.

Proof. Clearly {1} ⊆
⋂
{P |P ∈ Spec(L)}. Conversely assume that a 6= 1, then by Lemma 3.15, there is

a P ∈ Spec(L) such that a /∈ P . Thus a /∈
⋂
{P |P ∈ Spec(L)}. Therefore

⋂
{P |P ∈ Spec(L)} ⊆ {1}. ✷

For any P ∈ Spec(L), O(P ) is a subset of P and 1 ∈ O(P ), thus the result below follows immediately.

Corollary 3.17
⋂
{O(P )|P ∈ Spec(L)} = {1}.

Theorem 3.18 If L is a residuated lattice, then the family {O(P )}P∈Spec(L) canonically determines a
sheaf representation of L.

Proof. Define ϕ : L −→ Γ(Spec(L), EL) by ϕ(a) = â. We only prove that for any a, b ∈ L,ϕ(a ⊗ b) =
ϕ(a) ⊗P ϕ(b). The proofs for rest of the operations are similar. For any P ∈ Spec(L), ϕ(a ⊗ b)(P ) =

(â⊗ b)(P ) = a⊗b/O(P ) = a/O(P )⊗P b/O(P ) = â(P )⊗P b̂(P ) = ϕ(a)(P )⊗P ϕ(b)(P ) = (ϕ(a)⊗P ϕ(b))(P ).
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Thus ϕ(a⊗ b) = ϕ(a)⊗P ϕ(b). Next, we prove that the mapping ϕ is injective. Assume that ϕ(a) = ϕ(b).
Then for any P ∈ Spec(L), aP = bP . Thus (a → b)⊗ (b → a) ∈

⋂
{O(P )|P ∈ Spec(L)} = {1}, i.e. a = b.✷

Problem 3.19 For what L, is the mapping ϕ surjective?

4 Conclusions and future work

In this paper, we investigate the properties of the family of all the prime filters of residuated lattices.
Based on this, we construct the sheaf space of residuated lattices and obtain a sheaf representation of
residuated lattices.

In [6], Ferraioli and Lettieri took the primary ideals as the corresponding ideals of the prime ideals and
proved that every MV-algebra and the MV-algebra of all global sections of its sheaf space are isomorphic. In
[8,9], the scholars proved every MV-algebra A is isomorphic to the MV-algebra of global sections of a sheaf
F of MV-algebras with stalks that are linear. In our future work, we will investigate when these results hold
for a residuated lattice, specifically, for what residuated lattice L, the mapping ϕ : L −→ Γ(Spec(L), EL)
is surjective. For example, is ϕ surjective for any Heyting algebra L?
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