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Abstract

The open well-filtered spaces were introduced by Shen, Xi, Xu and Zhao to answer the problem whether every core-compact
well-filtered space is sober. In the current paper we explore further properties of open well-filtered spaces. One of the main
results is that if a space is open well-filtered, then so is its upper space (the set of all nonempty saturated compact subsets
equipped with the upper Vietoris topology). Some other properties on open well-filtered spaces are also studied.
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1 Introduction

The open well-filtered spaces were introduced in [6] and used to give an alternative and more natural proof
of the conjectured conclusion that every core compact and well-filtered space is sober. In [6], the authors
actually proved a stronger conclusion: every core-compact and open well-filtered space is sober, as every
well-filtered space is open well-filtered and the converse conclusion is not true in general. By [8] and [10],
one knows that a space is well-filtered if and only if its upper space is well-filtered. It is thus natural
to wonder whether a similar result holds for open well-filteredness. In this paper we shall give a partial
answer to this problem and prove that if a space is open well-filtered then so is its upper space. A number
of new results on open well-filtered spaces will also be presented here.
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2 Preliminaries

We first recall some basic definitions and results that will be used in the paper.
Let P be a poset. A nonempty subset D of P is directed (resp., filtered) if every two elements of D

have an upper (resp., lower) bound in D. A poset P is a directed complete poset, or a dcpo for short, if for
any directed subset D ⊆ P , the supremum

∨
D exists.

For any subset A of a poset P ,

↑A = {y ∈ P : ∃x ∈ A, x ≤ y}, and ↓A = {y ∈ P : ∃x ∈ A, y ≤ x}.

In particular, for each x ∈ X, we write ↑x = ↑{x} and ↓x = ↓{x}.
For x, y ∈ P , x is way-below y, denoted by x� y, if for any directed subset D of P with

∨
D existing,

y ≤
∨
D implies x ≤ d for some d ∈ D. Denote �x = {y ∈ P : x� y} and �x = {y ∈ P : y � x}. A poset

P is continuous, if for any x ∈ P , the set �x is directed and x =
∨

�x. A continuous dcpo is also called a
domain.

A subset U of a poset P is Scott open if (i) U = ↑U and (ii) for any directed subset D of P with
∨
D

existing,
∨
D ∈ U implies D ∩ U 6= ∅. All Scott open subsets of P form a topology on P , called the Scott

topology on P and denote by σ(P ). The space ΣP = (P, σ(P )) is called the Scott space of P .
For a T0 space X, the specialization order ≤ on X is defined by x ≤ y iff x ∈ clX({y}), where clX is

the closure operator of X. Clearly, clX({y}) = ↓y.
In what follows, if no otherwise specified, the partial order on a T0 space will mean the specialization

order.

Remark 2.1 [1,2] For each poset (P,≤P ), the specialization order on ΣP coincides with ≤P .

For any T0 space X, we shall often use O(X) to denote the topology of X (the collection of all open
sets of X). For any subset A of X, the saturation of A, denoted by SatX(A), is defined by

SatX(A) =
⋂
{U ∈ O(X) : A ⊆ U},

or equivalently, SatX(A) = ↑A with respect to the specialization order (see [2, Proposition 4.2.9]). A
subset A of X is saturated if A = SatX(A).

For any U, V ∈ O(X), we write U � V for that U is way-below V in the poset (O(X),⊆). Using
a similar proof to that of the Alexander’s Subbase Lemma (see [2, Theorem 4.4.29]), we can obtain the
following result.

Lemma 2.2 Let X be a T0 space, S be a subbase for O(X), and U, V ∈ O(X). Then U � V if and only
if one can extract a finite subcover of U from any cover {Ui : i ∈ I} ⊆ S of V .

Definition 2.3 [6] Let X be a T0 space.

(1) A subfamily F ⊆ O(X) is called �-filtered, denoted by F ⊆flt O(X), if for any U1, U2 ∈ F , there
exists U3 ∈ F such that U3 � U1 and U3 � U2.

(2) X is called open well-filtered if for each�-filtered family F ⊆ O(X) and U ∈ O(X),
⋂
F ⊆ U implies

that V ⊆ U for some V ∈ F .

Proposition 2.4 [6] If X is an open well-filtered space and {Ui : i ∈ I} is a�-filtered family of nonempty
open sets, then

⋂
{Ui : i ∈ I} is a nonempty compact saturated set.

Definition 2.5 [1,2] A T0 space X is called core-compact if for each x ∈ X and U ∈ O(X) such that
x ∈ U , there exists V ∈ O(X) such that x ∈ V � U .

Remark 2.6 [1,2] A T0 space X is core-compact if and only if the poset (O(X),⊆) is continuous.

Theorem 2.7 [6] Every core-compact open well-filtered space is sober.
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Definition 2.8 [1,2] A T0 space X is called well-filtered if for any filtered family {Qi : i ∈ I} of compact
saturated subsets of X and any open set U ⊆ X,

⋂
i∈I Qi ⊆ U implies Qi0 ⊆ U for some i0 ∈ I.

Definition 2.9 [1,2] A nonempty subset A of a topological space X is called irreducible if for any closed
sets F1, F2 of X, A ⊆ F1∪F2 implies A ⊆ F1 or A ⊆ F2. A T0 space X is called sober, if for any irreducible
closed set F of X, there is a (unique) point x ∈ X such that F = clX({x}).

The following result on irreducible sets in product spaces will be used in the sequel.

Proposition 2.10 [2, Proposition 8.4.7] Let {Xi : i ∈ I} be a family of topological spaces. The irreducible
closed sets in

∏
i∈I Xi are exactly the sets of the form

∏
i∈I Ci, where each Ci is an irreducible closed set

in Xi (i ∈ I).

The relations among well-filtered spaces, open well-filtered spaces and sober spaces are shown below:

sober

xx
well-filtered // open well-filtered

core-compact
hh

The following lemma will be used in the sequel.

Lemma 2.11 [6, Lemma 2.4] Let X be a T0 space, {Ui : i ∈ I} be a �-filtered family of open sets of X,
and F be a closed set of X. If F ∩ Ui 6= ∅ for all i ∈ I, then there is a minimal closed set F0 ⊆ F such
that F0 ∩ Ui 6= ∅ for all i ∈ I. In addition, this F0 is irreducible.

3 A new characterization for open well-filtered spaces

In [7,9], a characterization for well-filtered spaces by means of KF-sets is obtained. We now prove a similar
characterization for open well-filtered spaces.

Definition 3.1 A nonempty subset A of a T0 space X is called an open well-filtered set, or OWF-set for
short, if there exists a �-filtered family {Ui : i ∈ I} ⊆ O(X) such that cl(A) is a minimal closed set that
intersects all Ui, i ∈ I.

Denote by OWF(X) the set of all closed OWF-subsets of X.

Remark 3.2 (1) A subset of a topological space is an OWF-set if and only if its closure is an OWF-set.

(2) By Lemma 2.11, every OWF-set is irreducible.

Theorem 3.3 Let X be a T0 space. Then the following statements are equivalent:

(1) X is open well-filtered;

(2) ∀A ∈ OWF(X), there exists a unique x ∈ X such that A = cl({x}).

Proof. (1) ⇒ (2). Let A ∈ OWF(X). Then there exists {Ui : i ∈ I} ⊆flt O(X) such that A is a minimal
closed set that intersects all Ui, i ∈ I. Since X is open well-filtered, it follows that

⋂
i∈I Ui ∩ A 6= ∅.

Choose one x ∈
⋂
i∈I Ui ∩A. Then cl({x}) ⊆ A, and it is a closed set that intersects all Ui, i ∈ I. By the

minimality of A, we have that A = cl({x}). The uniqueness of x is determined by the T0 separation of X.
(2) ⇒ (1). Let {Ui : i ∈ I} ⊆flt O(X) and U ∈ O(X) such that

⋂
i∈I Ui ⊆ U . We need to

show that Ui ⊆ U for some i ∈ I. If, on the contrary, that Ui * U for all i ∈ I, then by Lemma
2.11, there exists a minimal (irreducible) closed set A ⊆ X \ U that intersects all Ui, i ∈ I. Thus
A ∈ OWF(X). By the assumption, there exists a unique x ∈ X such that A = cl({x}). For each i ∈ I,
since cl({x}) ∩ Ui = A ∩ Ui 6= ∅, it follows that x ∈ Ui, which implies that x ∈

⋂
i∈I Ui ⊆ U . Thus

x ∈ U ∩A, which contradicts A ⊆ X \ U . This contradiction completes the proof. 2
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Example 3.4 Let N+ be the set of all positive integers, N+
cof be the space of N+ with the co-finite topology

(the open sets are ∅ and all the complements of finite subsets of N+), and let N+
α be the Alexandoff space

of N+ (the open sets are the upper subsets of N+ with the usual order of numbers). We have the following
claims:

(c1) It is trivial to check that each subset of N+ is compact in both N+
cof and N+

α . We then deduce that

U � V iff U ⊆ V for any open sets U, V in N+
cof or N+

α .

(c2) Neither N+
cof nor N+

α is open well-filtered.

For each n ∈ N+, Un = N+ \ {1, 2, 3, . . . , n} is a nonempty open set in both N+
cof and N+

α . From
(c1), it follows that the family {Un : n ∈ N+} is �-filtered, but

⋂
n∈N+ Un = ∅. By Proposition 2.4,

we obtain (c2).

The following example shows that a saturated subspace of an open well-filtered space need not be open
well-filtered.

Example 3.5 Let J = N+×(N+∪{ω}) be the Johnstone’s dcpo [2,3], which is ordered by (m,n) ≤ (m′, n′)
iff either m = m′ and n ≤ n′, or n′ = ω and n ≤ m′ (refer to Figure 1).

Fig. 1. The Johnstone’s dcpo J

We have the following conclusions.

(r1) ΣJ is open well-filtered.
Note that ∀U, V ∈ σ(J), U � V iff U = ∅ (see [2, Exercise 5.2.15]), which implies that each �-

filtered family F of σ(J) is equal to {∅, U}, where U is an arbitrary Scott open set in J. This means
there exists no OWF-set in ΣJ. By Theorem 3.3, we deduce that ΣJ is open well-filtered.

(r2) The set of maximal points N+ × {ω}, as a saturated subspace of ΣJ, is homeomorphic to N+
cof of

Example 3.4, and thus is not open well-filtered.

From (r1), we have that ↓x (which is exactly the closure of {x} in ΣJ) is not an OWF-set for each
x ∈ J . We then deduce that the closure of singletons need not be OWF-sets. From (r2), it follows that
the saturated subspace of an open well-filtered spaces need not be open well-filtered.

Remark 3.6 From Example 3.5, we deduce that if each �-filtered family of open sets in a space X
contains the empty set, then X must be open well-filtered.

The following example shows that neither the closed subspace nor the retract of an open well-filtered
space is open well-filtered in general.

Example 3.7 [6, Example 4.13] Let P = J ∪ N+, where J is the Johnstone’s dcpo. For any x, y ∈ P ,
define x ≤ y if one of the following conditions holds (refer to Figure 2):
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Fig. 2. The poset P of Example 3.7

(i) x, y ∈ N+ and x ≤ y in N+ with the usual ordering;

(ii) x, y ∈ J and x ≤ y in J;

(iii) x ∈ N+ and y = (x, ω).

We have the following conclusions.

(1) ΣP is open well-filtered (see [6, Example 4.13] for details).

(2) N+ is a Scott closed subset of P , and as a subspace of P , is homeomorphic to N+
α , hence is not open

well-filtered (by Example 3.4 (2)).

(3) N+, as a subspace of P , is a retract of P .
Let e : N+ −→ P be the identity embedding, and define r : P −→ N+ as follows: ∀x ∈ P , ∀n ∈ N+,

r(x) = n iff {
x ∈ ↓(1, ω), when n = 1;

x ∈ ↓(n, ω) \ ↓(n− 1, ω), when n ≥ 2.

Since N+ is a closed set in ΣP , we have that e is continuous, and note that r−1(↓n) = ↓(n, ω) is Scott
closed for each n ∈ N+, which implies that r is a continuous mapping. It is clear that the composition
r ◦ e is the identity mapping on N+. Thus (3) holds.

From above (1)–(3), we deduce that the closed subspace or the retract of an open well-filtered space
need not be open well-filtered.

Proposition 3.8 Let X be a core-compact space. Then every irreducible set in X is an OWF-set.

Proof. Suppose that A is an irreducible subset of X. Let

F = {U ∈ O(X) : A ∩ U 6= ∅}.

Claim 1: F ⊆flt O(X).
Let U1, U2 ∈ F . Then A∩U1 6= ∅ and A∩U2 6= ∅, implying that A∩U1∩U2 6= ∅. Take x ∈ A∩U1∩U2.

Since X is core-compact, there exists U3 ∈ O(X) such that x ∈ U3 � U1 ∩ U2. Note that x ∈ U3 ∩A 6= ∅,
implying that U3 ∈ F . Thus F is �-filtered.

Claim 2: cl(A) is a minimal closed set that intersects all members of F .
Suppose B is a closed set such that B ⊆ cl(A) and B ∩ U 6= ∅ for all U ∈ F . We need to prove
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cl(A) ⊆ B. Otherwise, cl(A) * B, which implies A ∩ (X \ B) 6= ∅. Thus X \ B ∈ F , which contradicts
that B intersects all members of F . Therefore, cl(A) = B.

All this shows that cl(A) ∈ OWF(X). 2

The following result is immediate by using Proposition 3.8.

Corollary 3.9 [4,9] Every core-compact open well-filtered space is sober.

The following example shows that the continuous image of an OWF-set need not be an OWF-set.

Example 3.10 Let X be the Alexandroff space of the Johnstone’s dcpo J (whose open sets are the upper
sets), and let f : X −→ ΣJ be the identity mapping. Clearly, f is a continuous mapping. Note that for
any x ∈ J, since X is locally compact (hence core-compact), by Proposition 3.8, ↓x is an OWF-set in X,
but it is not an OWF-subset of ΣJ by Example 3.5 (r1).

For a T0 space X and Y ∈ O(X), if U, V ∈ O(Y ), then we have that U, V ∈ O(X), and that U � V
in (O(Y ),⊆) if and only if U � V in (O(X),⊆). Using this fact, one can prove the following result easily.

Proposition 3.11 Every open subspace of an open well-filtered space is also open well-filtered.

Definition 3.12 [2] A T0 space X is called core-coherent if for any U, V,W ∈ O(X), U � V implies that
U ∩W � V ∩W .

Example 3.5 shows that singletons need not be OWF-sets. As a remedy, we have the following result.

Theorem 3.13 Let X be a core-coherent space. Then the following statements are equivalent:

(1) X is core-compact;

(2) all irreducible sets in X are OWF-sets;

(3) the singletons are OWF-sets.

Proof. By Proposition 3.8, that (1) ⇒ (2) is clear, and since singletons are irreducible, we obtain that
(2) ⇒ (3). Now we prove (3) ⇒ (1).

Let x ∈ X and U be an open neighborhood of x. Since {x} is an OWF-set, there exists a �-filtered
family {Ui : i ∈ I} ⊆ O(X) such that cl({x}) is a minimal closed set that intersects all Ui, i ∈ I. Fix an
i0 ∈ I. It follows that x ∈ Ui0 . Then there exists i1 ∈ I such that x ∈ Ui1 � Ui0 . Since X is core-coherent,
it holds that x ∈ U ∩ Ui1 � U ∩ Ui0 ⊆ U . Therefore, X is core-compact. 2

It is easy to verify the following lemma.

Lemma 3.14 Let f : X −→ Y be a continuous open mapping between T0 spaces, and U, V ∈ O(X). If
U � V , then f(U)� f(V ).

Regarding the product spaces, we are still not able to prove that the product of two open well-filtered
spaces is a open well-filtered space. Here is a result for some special spaces.

Theorem 3.15 For each T0 space X, the product X × ΣJ is open well-filtered.

Proof. Let U, V ∈ O(X × ΣJ) such that U � V . We prove that U = ∅. Note that the projection p2 is a
continuous open mapping, so p2(U), p2(V ) ∈ σ(J) and by Lemma 3.14, p2(U) � p2(V ). Thus p2(U) = ∅,
which implies that U = ∅. By Remark 3.6, X × ΣJ is an open well-filtered space. 2

The above theorem indicates that the open well-filteredness of the product of spaces does not imply the
open well-filteredness of the factor spaces. In the following, we will show that the open well-filteredness of
the product of finite T0 spaces implies that one of the factor spaces is open well-filtered.

It also is trivial to verify the following lemma.

Lemma 3.16 Let {Xk : 1 ≤ k ≤ n} be a finite family of T0 spaces, and Uk, Vk ∈ O(X) such that Uk � Vk
for 1 ≤ k ≤ n. Then

∏
1≤k≤n Uk �

∏
1≤k≤n Vk.
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Theorem 3.17 Let {Xk : 1 ≤ k ≤ n} be a finite family of T0 spaces, and X be their product space. If X
is an open well-filtered space, then there is k0 (1 ≤ k0 ≤ n) such that Xk0 is open well-filtered.

Proof. Suppose on the contrary that every Xk is not open well-filtered, 1 ≤ k ≤ n. Then there exist
a �-filtered family Fk ⊆ O(Xk) and an open set Ok in Xk such that

⋂
Fk ⊆ Ok, but U * Ok for any

U ∈ Fk. Define

F =
{∏

1≤k≤n Uk : ∀k, Uk ∈ Fk
}
.

By Lemma 3.16, one can deduce that F is a �-filtered family of O(X) such that
⋂
F ⊆

∏
1≤k≤nOk ∈

O(X). Since X is open well-filtered, there exists
∏

1≤k≤n Uk ∈ F (i.e., Uk ∈ Fk for 1 ≤ k ≤ n) such that∏
1≤k≤n Uk ⊆

∏
1≤k≤nOk. Note that each Uk (1 ≤ k ≤ n) is not empty, which follows that Uk ⊆ Ok for

1 ≤ k ≤ n, a contradiction. 2

4 Upper spaces and open well-filteredness

In this section, we prove that if a space X is open well-filtered then its upper space (or the Smyth power
space) is also open well-filtered. The proof here makes use of a technique employed in [5].

For any topological space X, we use D(X) to denote the set of all nonempty compact saturated subsets
of X. The upper Vietoris topology on D(X) is the topology that has {2U : U ∈ O(X)} as a base, where
2U = {K ∈ D(X) : K ⊆ U}. The set D(X) equipped with the upper Vietoris topology is called the upper
space or Smyth power space of X. Note that {♦F : X \ F ∈ O(X)} is a base of the co-upper Vietoris
topology, where ♦F = {K ∈ D(X) : K ∩ F 6= ∅}.
Remark 4.1 Let X be a T0 space, and U,U1, U2 ∈ O(X).

(1) 2U1 ⊆ 2U2 if and only if U1 ⊆ U2.

(2) For any x /∈ U , ♦cl({x}) ∩2U = ∅.
(3) If 2U ⊆ 2U1 ∪2U2, then 2U ⊆ 2U1 or 2U ⊆ 2U2 [5].

We now state and prove the main result in this section.

Theorem 4.2 For any open well-filtered space X, the upper space D(X) is open well-filtered.

Proof. Assume that X is an open well-filtered space.
Let {Ui : i ∈ I} be a �-filtered family of open sets Ui in D(X) and⋂

{Ui : i ∈ I} ⊆ U

for an open set U in D(X).
For each i ∈ I, let Ui =

⋃
{2Ui,t : t ∈ Ti}, where Ui,t ∈ O(X).

Assume that for each i ∈ I, Ui 6⊆ U . Let C = D(X) \ U . Then C is a closed set in D(X) such that
C ∩ Ui 6= ∅ for all i ∈ I. By Lemma 2.11, there is a minimal closed set C0 ⊆ C which also has a nonempty
intersection with every Ui.

For each i ∈ I, let

Ûi =
⋃
{2Ui,t : 2Ui,t ∩ C0 6= ∅, t ∈ Ti}.

Fact 1: If Ui1 � Ui2 � Ui3 , then Ûi1 � Ûi3 . Therefore, {Ûi : i ∈ I} is �-filtered.

We just need to verify the first statement. To see this, let {Vl : l ∈ L} be a directed open cover of Ûi3 .
Then {Vl ∪ (D(X) \ C0) : l ∈ L} is a directed open cover of Ui3 . By the assumption, there is a l0 ∈ L such
that Ui2 ⊆ Vl0 ∪ (D(X) \ C0).

By Ui1 � Ui2 and the structure of the upper Vietoris topology, there exist

2W1,2W2, · · · ,2Wn contained in Vl0 ,
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2G1,2G2, · · · ,2Gm contained in D(X) \ C0
such that

Ui1 ⊆
⋃
{2Wk : 1 ≤ k ≤ n} ∪

⋃
{2Gh : 1 ≤ h ≤ m}.

Note that Ûi1 ⊆ Ui1 . For each t ∈ Ti1 such that 2Ui1,t ∩ C0 6= ∅, by Remark 4.1, 2Ui1,t ⊆ 2Wk for
some 1 ≤ k ≤ n, or 2Ui1,t ⊆ 2Gh for some 1 ≤ h ≤ m. But 2Gh ∩ C0 = ∅, hence 2Ui1,t ⊆ 2Wk ⊆ Vl0 for
some k. It then follows that

Ûi1 ⊆ Vl0 .
Therefore Ûi1 � Ûi3 holds.

For each i ∈ I, let

Ui =
⋃
{Ui,t : 2Ui,t ∩ C0 6= ∅}.

Fact 2: If Ûi1 � Ûi2 , then Ui1 � Ui2 . Hence {Ui : i ∈ I} is a �-filtered family of open sets in X.
As a matter of fact, it is easy to see that if {Wj : j ∈ J} ⊆ O(X) is a directed open cover of Ui2 , then

{2Wj : j ∈ J} is a directed open cover of Ûi2 , hence there is j0 ∈ J such that Ûi1 ⊆ 2Wj0 , thus Ui1 ⊆Wj0 .

Let
K =

⋂
{Ui : i ∈ I}.

By Proposition 2.4, K is a nonempty saturated compact set, that is K ∈ D(X).

Fact 3: K 6∈ U .
Indeed, if K ∈ U , then there is an open set E of X such that K ∈ 2E ⊆ U . Then K =

⋂
{Ui : i ∈

I} ⊆ E, and since X is open well-filtered, there is i0 such that Ui0 ⊆ E.
Choose one Ui0,t0 such that 2Ui0,t0 ∩ C0 6= ∅. Then Ui0,t0 ⊆ Ui0 ⊆ E, and it follows that

∅ 6= 2Ui0,t0 ∩ C0 ⊆ 2E ∩ C ⊆ U ∩ C = ∅,

a contradiction.

Fact 4: K ∈
⋂
{Ûi : i ∈ I}.

As a matter of fact, if the statement is not true, then there is i0 ∈ I such that K 6∈ Ûi0 . By the

definition of Ûi0 . Take any Ui0,t0 with 2Ui0,t0 ∩ C0 6= ∅. Then K 6⊆ Ui0,t0 . Take an e ∈ K \ Ui0,t0 and let
F = ♦cl({e}). Then by Remark 4.1 F ∩2Ui0,t0 = ∅.

We show that C0 ∩ F ∩ Ui 6= ∅ for all i ∈ I. For this, it is enough to show that for any i ∈ I, there is a
ti ∈ Ti such that

2Ui,ti ∩ F ∩ C0 6= ∅.
If not, there exists i1 ∈ I such that

2Ui1,t ⊆ (D(X) \ F) ∪ (D(X) \ C0)
for all t ∈ Ti1 . Choose i2 such that Ûi2 � Ûi1 . Then there are

2V 1
1 ,2V

1
2 , · · · ,2V 1

m contained in D(X) \ C0,
and

2V 2
1 ,2V

2
2 , · · · ,2V 2

n contained in D(X) \ F
such that

Ûi2 ⊆
⋃
{2V 1

k : 1 ≤ k ≤ m} ∪
⋃
{2V 2

l : 1 ≤ l ≤ n}.

By the definition of K, we have that e ∈ K ⊆ Ui2 , and then there is t′ ∈ Ti2 such that e ∈ Ui2,t′ where
2Ui2,t′ ∩ C0 6= ∅. Thus SatX({e}) ∈ F ∩2Ui2,t′ 6= ∅.
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Now 2Ui2,t′ ⊆ Ûi2 ⊆
⋃
{2V 1

k : 1 ≤ k ≤ m} ∪
⋃
{2V 2

l : 1 ≤ l ≤ n}. By Remark 2.1, we have that

2Ui2,t′ ⊆ 2V 1
k for some 1 ≤ k ≤ m, or 2Ui2,t′ ⊆ 2V 2

l for some 1 ≤ l ≤ n.

But for any k, since 2Ui2,t′ ∩ C0 6= ∅ and 2V 1
k ∩ C0 = ∅, it follows that 2Ui2,t′ * 2V 1

k , and for any l,
since 2Ui2,t′ ∩ F 6= ∅ and 2V 2

l ∩ F = ∅, it follows that 2Ui2,t′ * 2V 2
l , a contradiction. This shows that

C0 ∩ F ∩ Ui 6= ∅ for all i ∈ I.
By the minimality of C0, we have that C0 ⊆ F . Then 2Ui0,t0 ∩ C0 ⊆ 2Ui0,t0 ∩ F . But, as we pointed

out earlier, 2Ui0,t0 ∩ F = ∅, thus 2Ui0,t0 ∩ C0 = ∅. This contradicts that 2Ui0,t0 ∩ C0 6= ∅.
All these together show that K ∈

⋂
{Ûi : i ∈ I}.

Now, Fact 3 and Fact 4 contradict the assumption⋂
{Ui∈I : i ∈ I} ⊆ U .

The proof is thus completed. 2

5 Summary

In this paper, we mainly considered the preservation of the open well-filteredness by some standardly
constructed spaces from an open well-filtered space. The table below summarizes the main results, where
“sp.” denotes “subspaces”.

open sp. closed sp. saturated sp. retract upper space product

X × × × X ?

Note that in many other cases, the ground spaces usually inherit the corresponding properties of their
upper spaces as they can be embedded into the upper spaces under the principle filter mappings. At the
moment, the following problem is still open.

Problem 5.1 Is it true that a space is open well-filtered if its upper space is open well-filtered?
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