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Abstract

The study of weak domains and quasicontinuous domains leads to the consideration of two types generalizations of domains.
In the current paper, we define the weak way-below relation between two nonempty subsets of a poset and quasiexact posets.
We prove some connections among quasiexact posets, quasicontinuous domains and weak domains. Furthermore, we introduce
the weak way-below finitely determined topology and study its links to Scott topology and the weak way-below topology first
considered by Mushburn. It is also proved that a dcpo is a domain if it is quasiexact and moderately meet continuous with
the weak way-below relation weakly increasing.

Keywords: Quasiexact dcpo, Quasicontinuous domain, Weak domain, wf topology, Moderate meet-continuity

1 Introduction

Scott [11] proposed a model for information systems using the Scott topology and a binary relation <
in connection with the information models. For continuous lattices, the relation < coincides with the
way-below relation. The class of continuous complete lattices was introduced by Scott [12]. However, for
general complete lattices, the aforementioned two relations may be distinct.

One of the notable features of continuous lattices is that they admit a unique compact Hausdorff
topology for which the meet operation is continuous. This topology, referred to as the CL-topology [4],
turns out to be ‘order intrinsic’ - it can be defined merely using the lattice structure. Gierz and Lawson [4]
characterized those complete lattices for which the CL-topology is Hausdorff and called them generalized
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continuous lattices. Gierz et al. [5] introduced the quasicontinuous posets and showed that a complete
lattice is generalized continuous if and only if it is quasicontinuous. The key result for establishing the
major properties of quasicontinuous dcpos is the Rudin’s Lemma [10].

Coecke and Martin [2] introduced two orders: the Bayesian order on classical states and the spectral
order on quantum states. They revealed that the corresponding sets are dcpos with an intrinsic notion of
approximation. The operational significance of the orders involved conclusively establishes that physical
information has a natural domain-like theoretic structure. Mushburn [14] called the approximation in [2]
the weak way-below relation, and defined two topologies on posets: the way-below topology and the weak
way-below topology. These topologies coincide with the Scott topology for continuous posets, but are
very different for non-continuous posets. Mushburn also showed that while domain representable spaces
must be Baire, this is not the case with respect to the new topologies. Thus, Mushburn defined the weak
domains and weak domain representable spaces and constructed an example to show that weak domain
representable spaces need not be Baire [15].

The class of meet continuous lattices was first introduced by Birkhoff [1]. Later, much investigations on
meet continuity for lattices and semilattices sprang up. One can refer to Isbell [8], Hofmann and Stralka
[7] and [3]. Kou et al. [9] extended the notion of meet continuity to general dcpos and proved that a dcpo
is continuous iff it is meet continuous and quasicontinuous. See [17] and [18] for the investigation of the
more general meet-continuous posets and quasicontinuous posets.

As a generalization of the way-below relation between two subsets of posets and the weak way-below
relation between elements, we define the weak way-below relation between two subsets of a poset and
use this relation to define the quasiexact posets. We show some connections among quasiexact posets,
quasicontinuous domains and weak domains. Furthermore, we introduce the weak way-below finitely
determined topology (briefly, wf topology) and study its properties as well as its links to Scott topology
and weak way-below topology in some special posets. In addition, we prove that a poset is a weak
domain if it is moderately meet continuous and quasiexact dcpo with the relation <, weakly increasing, a
result similar to the characterization of domains in terms of meet continuity and quasicontinuity. Finally,
employing a result by Shen et al. [16], it is deduced that a dcpo is a domain if and only if it is quasiexact
and moderately meet continuous with the weak way-below relation weakly increasing.

2 Preliminaries

In this section we recall some notations, definitions and results to be used later.

For any subset A of a poset P, we write 1A ={z € P:y < z for some y € A}. A subset A C P is
called an upper set if T A = A.

A nonempty subset D of a poset (P, <) is directed if every two elements in D have an upper bound in
D. A poset P is called a directed complete poset (dcpo, for short) if every directed subset D of P has a
supremum in P, denoted by \/ D.

For any poset P, the way-below relation < on P is defined as follows: for every directed subset D with
V D existing, y < \/ D implies z < d for some d € D. A poset P is continuous if for every = € P, the set
lx ={y € P:y < x} is directed and = = \/ [z. For any = € P, one writs fx = {y € P: z < y}.

A subset U of a poset P is Scott open if U is an upper set and for any directed subset D of P for which
\/ D exists, \/ D € U implies D N U # @. All Scott open subsets of P form a topology, called the Scott
topology on P and denoted by o(P). The space (P,o(P)) is called the Scott space of P, and is denoted
by 2P.

A poset P is said to be meet continuous® if for any x € P and any directed subset D, z <\/ D implies
x € cly({ DN Lx).

For any topological space (X, 7) and a subset A C X, the closure and the interior of A are denoted by
cl;(A) and int,(A), respectively.

Let (X, 7) be a topological space. A nonempty subset A of X is called irreducible if for any closed sets
Band C, AC BUC implies A C B or A C C. The space X is sober if for every irreducible closed set A,

5 In general, the meet continuity means for dcpos. In the current paper, we slightly misuse this notion.
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there exists a unique « € X such that cl-{z} = A.

The weak way-below relation on a poset P is defined as follows [14]: for any x,y € P, x is called weakly
way below y, denoted by = <, y if for any directed subset D of P, \/ D =y implies DN Tz # &.

Note that for continuous posets, the relations <, and < are the same. For any x € P, we write
{w® ={y € P:y <y x}. Mushburn [14] pointed out the following properties.

Lemma 2.1 [14, Theorem 3.1] For any elements x,y, z in a poset P,

(i) If v <y, then v <y y;
(ii) If v <y y, then x < y;
(i1i) If © <y <y 2, then x <y 2;
(iv) If P has the bottom element 1, then L <, x.

It is well-known that the way-below relation < is transitive: z < y < z implies < z. Whereas, this
property may not be true for <. In fact, Coecke and Martin [2] showed that the transitivity is true for
&y if and only if <, =<.

A poset P is called ezact if for any « € P, the set |, « is directed and \/ {,,@ = = [14]. The relation <,,
on a poset P is said to be weakly increasing if for any z,y,z,u € P, x < y < 2z <y u implies © <y 2.
A poset P is called a weak domain if it is an exact dcpo with the relation <, weakly increasing.

Shen et al. [16] proved the following characterization of exact dcpos.

Proposition 2.2 [16] A dcpo P is exact if and only if for any x € P, there exists a directed subset
D C |,z such that \/ D = z.

For a poset P, the collection of all nonempty subsets of P is denoted by P*(P). A preorder < on
P*(P) is defined by G < H if 1 H C1G. This preorder is sometimes called the Smyth order, see [13].

A nonempty family F of subsets of a poset P is said to be directed if given Fy, F» € F, there exists
F3 € F such that Fy, Fy < F3, that is F3 CT FiN 1 Fh, or equivalently, T F3 C1 FiN 1 F>. For any
G,H C P, G is way below H, written as G < H, if for every directed subset D C P, sup D €1 H implies
d €7@ for some d € D. Sometimes, one writes G < x instead of G < {z} and y < H instead of {y} < H.
For more details one can refer to [3].

Recall that a dcpo P is called a quasicontinuous domain if for each x € P the family

fin(x) ={F C P: F is finite, F < z}

is directed and whenever £ y, then there exists F € fin(x) with y ¢1 F. This statement is equivalent to
for each z € P the family
fin(z) ={F C P: F isfinite, F < z}
is directed and ({1 F : F € fin(x)} =tz.
For more about posets and related notions and results, we refer to [3] and [6].

3 Quasiexact dcpos
We first introduce the following definition, as the generalization of both the way-below relation between
two nonempty subsets and the weak way-below relation between two points.

Definition 3.1 For any poset P and G,H € P*(P), we say that G is weakly way below H and write
G <y H, if for every directed subset D C P, \| D € H implies d €1 G for some d € D.

The following properties can be verified straightforwardly.
Lemma 3.2 For any poset P, let G,G', H,H" € P*(P) and x € P. Then
(i) G <y H if and only if G <y x for all x € H;
(ii) G <y H if and only if 1G <y H;
(11i) G <y H and G C G imply G' <, H;
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(v) G <y H and H' C H imply G <, H'.

Thereafter, we write G <, « instead of G <, {z} and y <,, H instead of {y} <, H. By Lemma
3.2, y €y x is unambiguously defined and this fact is similar with the one for the way-below relation.
For any poset P and = € P, write

fing,(x) = {F C P: F is finite, F <, z}.

Definition 3.3 A poset P is said to be quasiexact if for each x € P, the family fin,(z) is directed and
(TF:F € fin,(z)} =te.

Remark 3.4 For any poset P, it is easy to verify that F <, x implies x €T F for any F C P and x € P.
Thus, ({1 F : F € F} Dt holds for allz € P and F C fin,(z). In particular, ({1 F : F € fin,(z)} DTz
for any x € P.

Sometimes it is difficult to characterize the weak way-below relation on a poset. To show a poset P is
quasiexact, it is sufficient to know for any = € P, there are ‘enough’ elements that are weakly way below
x. In order to elaborate this fact, we first show the following lemmas.

The proofs of the following Lemmas 3.5 and 3.6 are straightforward.

Lemma 3.5 For any poset P and F € P*(P),z € P, F < x if and only if Lz NF <y .

Lemma 3.6 For any poset P, let F C P*(P) and x € P. If F is directed, then {FN |x : F € F} is
directed provided that each F'N lx is nonempty.

The following lemma given by Rudin [10] is crucial in proving a number of major properties of quasi-
continuous domains, one can also refer to Lemma III-3.3 in [3].

Lemma 3.7 (Rudin’s Lemma) For any poset P, let F be a directed family of nonempty finite subsets
of P. There exists a directed set D C |Jpcr F' such that DN F # & for every F € F.

Lemma 3.8 For any dcpo P, let G € P*(P) and x € P with G <y . If F is a directed family of
nonempty finite subsets F' Clx with (\per TF Ctx, then there exists Fy € F such that Fy C1G.

Proof. Assume, on the contrary that F\ 1 G # & for all F' € F. For any Fy, F, € F, choose F3 € F
such that F3 Ct FiN 1T Fy. Then F3\ 1G C (1 FiN T )\ 1G = (1 FA\ 1 G) N (1 F2\ T G). 1t is easy to
verify that 1 F1\ TG Ct(F1\ TG) and T Fo\ 1G C1(F>\ 1G). Hence F3\ 1G C1 (Fi\ 1G)N 1 (F2\ 1G).
Thus, {F\ 1G : F € F} is a directed family of nonempty finite subsets. By Rudin’s Lemma, there exists
a directed set D C |Jpcz(F\ TG) such that DN (F\ 1G) # @ for any F' € F. For every F' € F, choose
dr € D such that dp € F'\ 1G. Then \/ D € (per Tdr € Nper T(F\ TG) € Nper TF CTax. Thus,
V D > 2. Note that D C (Jpcr F' Clx, so \/ D < z. It follows that \/ D = z. By G <, «, there exists
d € D such that d €1 G, which contradicts D C |Jpe (F\ TG). O

Similar to Proposition 2.2 for exact posets, we have the following result.

Proposition 3.9 A dcpo P is quasiexact if and only if for any x € P, there exists a directed subset
F Cfiny(x) such that \per TF =Tx.

Proof. It is enough to prove the sufficiency. Let z € P and F C fin,(z) be a directed family with
Nper TF =tx. Since Tz = (\per TF 2 ﬂGeﬁnw(x) TG D1z, it follows that ﬂGeﬁnw(m) TG =tz It
remains to show that fin, (x) is directed. Let G1,Gy € fin,(x). By Lemma 3.5, we have [z NG <y =
and | x N G2 <, z. By Lemma 3.6, {{ x N F : F € F} is a directed collection of nonempty finite
subsets of | . Furthermore, {T (lzNF): Fe F} CN{tF : F € F} =tz. By Lemma 3.8, there
exists F1, Fy € F such that [z N Fy CT(lxNGy) and Lz N Fy CT (L2 N Gy). Choose F3 € F such that
lenFy St (LxnFi)N T (LzNFy). Note that T (LaNFi)N Tl zNFr) ST (enG)N T zNG2) CTGiN 1 Ga.
It follows that |z N F3 Ct G1N 1 G2. Applying Lemma 3.5 again, we can conclude | x N F3 € finy,(x),
whence fin,, () is directed. So P is quasiexact. O

We write fing,(r) = {F : F € fin,(z), F €] x}. For any F € fin,(z), we have | N F <y T
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by Lemma 3.5. It follows that | N F € fing,, (). Note that F' =]z N F for any F' € finy), (), so
fingy, () = {lz N F: F € fing),(z)} C{lzNF: F € fin,(z)}. Therefore, fing),(r) ={}lzNF:F¢€

fin, (z)}.

Now, we give another characterization of quasiexact dcpos.

Proposition 3.10 A dcpo P is quasiezact if and only if for any x € P, the collection finyy,, () is directed
and ﬂFeﬁn(bl)w(I) TF :T.’IJ

Proof. Note that fin(y,(r) C fin,(z). The sufficiency is immediately from Proposition 3.9. For the
necessity, assume that P is quasiexact. Then for each z € P, fin,(z) is directed and ({1 G : G €
fin,(x)} =tx. By Lemma 3.6, we have finy),,(z) is also directed. Note also that fin,(z) = {Lz NG :

G € fin,(z)}. It follows that nFGﬁn(bl)w(z) TF=N{1{zNG) : G € fin,(z)} SN{TG: G € fin,(z)} =l =x.
On the other hand, fin,(z) C fin,(z), so ﬂFEﬁn(bl)w(:v) TF 2N{1G: G € fin,(x)} =] x. Hence,

(W{1TF: F € fingy,(r)} =tz O

Applying Propositions 3.9 and 3.10, we can derive the following result.
Theorem 3.11 For any dcpo P, the following statements are equivalent:
(a) P is quasiexact;
(b) for any x € P, the collection finwy,, () is directed and (V{1 F : F' € fingy),(v)} =T=;
(c) for any x € P, there exists a directed subset F C finy,(x) such that (\per TF =tTx;
(d) for any x € P, there exists a directed subset F C fin(yy, (x) such that Nper TF =Tz.

Proposition 3.12 The cartesian product [[,c; P; of a family of quasievact dcpos is a quasieract dcpo,
provided that at most finitely many do not have a bottom element 1;.

Proof. Obviously, [[,.; Piis a dcpo. Let Iy be a finite subset of I such that P; has L; for any i € I\ I and
I'={J:IpCJCI,Jisfinite}. Consider each z = (z;)icr € [[;¢; Pi- Take Fy = {[[;c; Fj X [Liep s{Ls
} 2 Fy € fing(xj),5 € J} for any J € I and F = |J ;o Fy. Then F C finy(z).

Claim 1. {tF: F e F} =tz.

If y = (yi)ier ¢7x, then there exists jo € I such that y;, ¢17xj,. By the quasiexactness of Pj,, there
exists Fj, € finy(2j,) such that y;, ¢1Fj,. Let Jo = IoU{jo}. Let Fo = Fjo x[L;c s\ 501 £ ¥ I Lien s{Li}-
Then Fy € Fj, € F, but y ¢7Fp. It follows that y ¢1Fj, x H]EJO\{]O} T % HzeI\J » =1 Fy. Therefore,
({TF:FeF}Cta. It follows that y ¢ {1 F : F € F}, whence {1 F: F € F} =z

Claim 2. F is a directed subset of fin,,(x).

Let Fy, F € F. Suppose that Iy =[5, Fji < [Liep{Li} € Fo, and Fo = [Lne, Fiy ¥ [Liep s {Li
} € Fyj,, where Jy,Jo are finite and Iy C Ji,Jo C I, moreover, Fy € ﬁnw(xj) Fé/ € fin,(xm)
for any j' € Ji, j7 € Jo. For any j € Ji N Jo, Fj,Fj, € fin,(z;). Note that fin,(z;) is directed.
Choose Fj, € fin,(z;) such that Fj, Ct F; N 1 Fj,. For any k' € Ji\J2 and k" € Jy\J;, obviously,
Fk’l QTFk/lﬂ 1Ly and Fk’z’ gTFk//ﬂ TLlgr. Put J3 = Jy U J2 and

ks = H]EJmJQ 3 X Hk’eJl\JQ Fi % Hk”ng\Jl Fir x HzeI\Jd{J- }-
Then F3 € Fy,, J3 is finite and Iy C J3 C I. Obviously, F3 CTEFiN T Fy.
By Proposition 3.9, [[; Pjes is quasiexact. |

Some relationships among quasiexact dcpos, weak domains and quasicontinuous domains are shown in
the following result.

Proposition 3.13 (i) Every exact dcpo is quasiezact. Hence, every weak domain is a quasiexact dcpo.

(i) Every quasicontinuous domain is a quasiezact dcpo.
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Proof. (i) Let P be an exact poset. For any « € P, let F = {{d} : d € |,x}. Note that | z is directed
with \/ |, = . Then F is directed and

({tF:FeF}
=({td:d e |,z}
=1V ,2)
= Tx.

By Proposition 3.9, P is quasiexact.

(ii) Assume that P is a quasicontinuous domain. Obviously, P is a dcpo. Let € P. By the assumption
and Lemma 2.1 (1), we get that fin(x) is a directed subset of fin, (z) with ({1t F : F € fin(z)} =Tz. By
Proposition 3.9, P is quasiexact. O

Quasiexact posets have some weak and quasicontinuous domain-like features, so this terminology seems
appropriate.

Shen et al. [16] used two examples to show that quasicontinuous domains need not be weak domains,
and that weak domains need not be quasicontinuous domains. Precisely, Example 3.11 in [16] shows that
quasicontinuous domains are not necessarily exact, and Example 3.12 in [16] shows that weak domains are
not necessarily quasicontinuous.

Here, we shall elaborate some more detailed relationships than those in [16].

The following example shows that quasicontinuous domains are not necessarily weakly increasing. Since
every quasicontinuous domain is quasiexact, this example also shows that quasiexact posets need not to
be exact or weakly increasing.

Example 3.14 Let P = {a,b,c,d} U{z, : n € N} with the order
(1) a <b<ec<d;

(ii) Tm < xn, whenever m < n and m,n € N;

(i1i) xp < c for anyn € N,

where {a,b,c,d} N{x, :n € N} = &, see Figure 1.

d
c
b X,
~ X1
a

Fig. 1. An exact quasicontinuous domain in which <, is not weakly increasing

In this example, we can trivially check the following facts.
(iv) If x € {a,b,c}, then F € fin(x) if and only if F N{xy, :n € N} # &;
(v) If v € {zy, : n € N} U{d}, then F € fin(z) if and only if FN |z # @.
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It is also trivial to check that fin(z) is directed with ({1 F : F € fin(z)} =T for every x € P, whence P is a
quasicontinuous domain. However, the relation <, is not weakly increasing. Note that a < b < ¢ <y d.
Consider the directed set D = {x,, : n € N}. Obviously, \/ D = ¢, but x, # a for any n € N. Hence,
a <y ¢ does not hold. For the point ¢ € P, it is trivial to verify that ¢ = {z, : n € N}, whence \/ {c = c.
Hence, P is exact.

The following example shows that quasicontinuous domains need not be exact, even when the relation
<y 1s weakly increasing.

Example 3.15 Let P = (N x {1,2}) U{T} and define an order by the following rules:
(i) (m,i) < (n,i) if m <n for all m,n € Nand i =1, 2;
(ii) (n,7) < T for all n € N and i = 1,2 (see Figure 2).

G.1) (G.2)
</ Xz)
(L) (1.2)

Fig. 2. A non-exact quasicontinuous domain with <,, weakly increasing

In this example, for any finite set /' C P, F' < (m,1) if and only if FN | (m,1) # @ and F N {(n,2) :
n € N} # @; F < (m,2) if and only if FN | (m,2) # @ and FN{(n,1) :n € N} # @; F < T if
and only if FN{(n,1) : n € N} # @ and FN{(n,2) : n € N} # @. It is easy to verify that P is
a quasicontinuous domain. Thus, P is quasiexact. Note also that for any finite set F, F' <, (n,i) if
and only if FN | (n,i) # @, where i = 1,2; F <, T if and only if ' N {(n,1) : n € N} # @ and
FnN{(n2) :n e N} # . It is trivial to verify that the relation <, is weakly increasing. However,
P is not exact. Consider the top element T. For any (m,1) and m € N, consider the directed set
D = {(n,2) : n € N}. Then \/D =T > (m,1), but (n,2) # (m,1) for any (n,2) and n € N. Thus,
(m,1) ¢ {,T. Similarly, we can verify that (m,2) ¢ |, T and T ¢ | T for any ¢ € N. It follows that
{w | = @. Hence, P is not exact.

Examples 3.14 and 3.15 in the current paper also shows that quasiexacnesst does not imply stronger
properties of <y, .

We take Johnstone’s dcpo to illustrate that weak domains are not necessarily quasicontinuous domain,
hence quasiexact dcpos with the relation <, weakly increasing are not necessarily quasicontinuous.

Example 3.16 (Johnstone space) Let J = N x (NU {w}) with ordering defined by
(i) (a,m) < (a,n) if m <n for all a,m,n € N;
(ii) (a,m) < (b,w) if m <b for all a,b,m € N.
In this example, one can easily check the following fact: For any m,n € N, | (m,n) =] (m,n) and
{w(m,w) = {(m,n) : n € N}, whence, \/ {,(m,n) = (m,n) and \ |,,(m,w) = (m,w). Thus, J is exact. It

is trivial to show that <, is weakly increasing. However, J is not quasicontinuous. By the result in [6,
Exercise 8.2.14], J is a dcpo with the Scott space ¥(J) non-sober. It follows that P is not quasicontinuous.
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4 The wf topology and moderate meet continuity

In this section, we investigate the links between the quasiexactness and some topologies on posets.

In [14], when the family {f,x : v € P} generates a topology on a poset P, then this topology is
called the weak way-below topology (wwb topology, for short), denoted by Tyuuwp(P). The topological space
(P, Twwp(P)) is simply written as (P, Tyuwb)-

For the following result, we refer the reader to the Theorems 3.8 and 3.10 in [14].

Lemma 4.1 [14] Let P be an exact poset. Then {1, x : x € P} generates the wwb topology, which is finer
than the Scott topology.

For any subset F' C P, we write 1, F = {a € P : F' <, a}. Whenever F' = {z} for some z € P, we
replace f,{z} with f z.

Lemma 4.2 If P is a quasiezact poset, then {t,F : F' C P, F is finite} generates a topology on P.

Proof. For any a € P, fin,(a) is directed with ({1 F : F' € fin,(a)} =1 a. Thus, fin,(a) # @. Choose
arbitrarily F' € fin,(a), then a € 1 F.

Let Fi, F» be finite sets in P with b € 1, F1 N1 Fy, i.e., F1 <, b and Fy <, b. Note that fin,,(b) is
directed. There exists F3 € fin,, (b) such that F3 CTFiN 1 Fy. Forany e € P, if F3 <, e, then F1, Fy <, €,
so b€ Tng - TwFlmTwFQ- d

Whenever the family {1, F : FF C P, F is finite} generates a topology on P, we call it the weak way-
below finitely determined topology (briefly, wf topology) on P, denoted by 7, (P). The topological space
(P, Twf(P)) will be simply written as (P, 7y f)-
Remark 4.3 (i) For any quasiezact poset P, we have §,F Cint, (T F) for every F' € P*(P).
(it) If a poset P admits both the wwb topology and the wf topology, then Tyuy(P) C Ty (P).

By Lemma 4.1 and Remark 4.3 (2), we have the following result.
Lemma 4.4 If P is an exact poset, then o(P) C T,¢(P).

Note that every quasicontinuous dcpo admits the wf topology. However, the following example shows
that quasicontinuous dcpos do not necessarily admit the wwb topology.

Example 4.5 Consider the set P = (N x {1,2}) U {T} with the order defined in Example 3.15, which
shows that P is quasicontinuous dcpo. It is trivial to check the following facts:

(i) 1,(n,9) ={(m,7) :m >n,m € N} for any n € Nand i = 1,2;
(i) 1,7 = 2.

Note that the family {1,z : € P} can not cover T. Thus, {f,z : z € P} can not generate the wwb
topology.

Mushburn [14] constructed an example to show the wwb topology can be strictly finer than the Scott
topology.

Proposition 4.6 A poset P is quasiexact if for any nonempty H C P and any x € P, H <, x implies
there exists a finite F' CT H such that F <, =.

Proof. It is trivial to verify that fin, (L) is directed with ({1 F : F <, 1L} = L whenever the bottom
element | exists. Without loss of generality, assume that © # L. Note that Tx ;Cé P. For any y ¢t z, we
show P\ |y < . Otherwise, there exists a directed set D with \/ D = z, but D N (P\ ly) = @ since
P\ |y is an upper set. Thus, D Cly. It follows that x = \/ D < y, a contradiction. By the hypothesis,
there exists a finite set F' C P\ |y such that F' <, . This implies that fin, (z) # @. Furthermore, note
that T F C P\ |y. Then 1 FN |y = @. It follows that y ¢t F. Hence, ({1 F : F € fin,(x)} Ctx.
It remains to show that fin,(z) is directed. For this, let F; € fin,(z) and i = 1,2. We show that
TFIN T Fy, <y x. For any directed set D, if \/ D = z, then DN 1 F; # O, i.e, there exists d; € D and
e; € F; such that d; > e; for ¢ = 1,2. Choose d3 € D such that d3 > d; for i = 1,2. Then dg > e; for
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1 = 1,2. It follows that 1 F1N 1 Fy < x. Note that T F1N T F5 is an upper set. By the hypothesis, there
exists a finite set F3 CTF1N 1 Fy such that F3 <, x. Therefore, fin,(z) is directed. ]

Proposition 4.7 Any poset that has no infinite antichain is quasiexact.

Proof. Assume that P is a poset with no infinite antichain. For any nonempty H C P and any = € P, if
H <, z, then by Zorn’s lemma we can pick a maximal antichain A in T H\ 1z. Note that FF = AU {z}
is finite, contained in T H. We show F <, x. For this, let D be a directed set with \/ D = z. Since
H <, x, eventually, D is in T H. If d = = for some d € D, then d € DN 1 F. Otherwise, d ¢1x for any
d € D. If there exists d € DN 1 H such that d ¢1 AU | A, then d is incomparable with each a € A. Note
that d ¢1x and that A is an antichain in T H\ Tz. It follows that AU {d} is also an antichain in T H\ Tz,
contradicting the maximality of A. So DN 1tH Ct AU | A. It cannot be the case D C| A since \/ D > z.
Note that every d large enough in D is in T H, hence in T AU | A, but not all of them in | A, and those
that are not must be in 1 A. Thus, DN 1F O DN 1A # @. Applying Proposition 4.6, we conclude that P
is quasiexact. O

Following the characterization of meet continuous posets by means of Scott topology, we define the
following meet continuity.

Definition 4.8 A poset P admitting the wf topology is said to be moderately meet continuous if for any
x € P and directed subset D, x < \/ D implies that x € cl,,(} DN | z).

Lemma 4.9 Let P be a moderately meet continuous poset. Then int, (1 F) C U{f,z:x € F'} for any
F e P*(P).

Proof. For convenience, we write int, (1 F)) = U and let ' = {x1,%2, -+, 2,}. Assume z € U, but
y ¢ U{T,z : z € F}, that is, 2; <, y does not hold for any ¢ = 1,2,---,n. Thus, there exists a directed
subset D; C P such that \/ D; =y, but ; ¢| D;. By the moderately meet continuity, y € cl,,(} D1N y).
Since y € U and U € 7,¢(P), then UN (I D1N ly) # @. Pick 21 € UN | D1N ly. Note that z; <y =\/ Ds.
By the moderately meet continuity again, we have z; € cl; (I D2N | 21), whence UN | DoN | 21 # 9.
Pick zo € UN | DsN | z1. The rest can be done in the same manner. In other words, we can pick
zi € UN | DiN | zj—q for any i (1 < ¢ < n). Note that z; < z;_1 and z;_1 €] D;_1 for all 7. It follows
that z, €] D; for all . Thus, z, € ﬂ?zl 4+ D;. Also note that z, € U = intwa (T F) Ct F. Hence, there
exists ig (1 < ip < m) such that x;, < z, €] D,,, showing that z;, €] D;,, a contradiction. Therefore,
int,, (1 F) CU{t,z:2 € F} O

Applying Lemmas 3.2 (3), 4.9 and Remark 4.3 , we derive the following conclusion.

Corollary 4.10 Let P be a moderately meet continuous quasiexact poset. Then

Tl =U{fyz 2 € F} =int, (1F)

for any F € P*(P).

By Remark 4.3 (2) and Corollary 4.10, we deduce the following result strengthening Mushburn’s result
in [14, Theorem 10].
Theorem 4.11 If P is a moderately meet continuous quasiexact poset, then o(P) C Tyuwb(P) = Twr(P).

Theorem 4.12 FEvery moderately meet continuous quasiexact poset is exact and meet continuous.

Proof. Let P be a moderately meet continuous quasiexact. To show that P is exact, we consider any
a € P.

Claim 1. | a is directed.
Let y1,y2 € {,a. Then {y1},{y2} € finy,)(a). By the hypothesis, there exists F' € finy,,(a) such
that F' CTyiN Ty2. By Corollary 4.10, we have a € |J{f,2 : © € F'}. So there exists z € F such that
T &y a. Note that FF Cty1N Ty, then x >y and x > ys.
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Claim 2. {ty:y € {,a} =Ta.
Obviously, ({1Ty : y € {,a} 21 a. For any F' € finy,)(a), by Corollary 4.10, we can pick ar € F

such that ap < a. Then {Typ : F' € finy,)(z)} € {ty:y € {,z}. It follows that {ty:y € | 2} C
(WTyr : F € fing(z)} € (T F : F € fing(z)} =tx. Hence, ({ty:y € |,a} =Ta. Note that
T(Vipa) =N{ty:yelyal. SoVia=a.
By Proposition 2.2, we conclude that P is exact.
For any z € P and directed set D C P, if x € cl; (I DN | z), then by Lemma 4.4 and the definition
of closure, we have cl;, .(} DN | x) C cl,(} DN | x). Therefore, P is meet continuous. O

Shen et al. [16] showed that every meet continuous weak domain is a domain. By Proposition 4.12, we
conclude the following result.

Corollary 4.13 A poset P is a domain if P is a moderately meet continuous quasiexact depo with the
relation <, weakly increasing.

In this paper, we explored the quasiexact posets, parallel to the quasicontinuous posets. A new topol-
ogy, the wf topology on posets is introduced and used to define the moderately meet continuous posets.
Although several results on such structures have been obtained, we still have basic problems to solve as
illustrated below.

Problem 1. What is the property p such that a poset P is exact if and only if it is quasiexact and has
property p?

It is known that a poset P is continuous if and only if it is quasicontinuous and meet continuous [17].
However, we still do not have a similar result for exact posets. It is only proved that every exact poset is
quasiexact.

Problem 2. Under what conditions, a quasiexact dcpo is quasicontinuous?

At the moment we just know that every quasicontinuous dcpo is quasiexact. It would be ideal if we

could find a property ¢ such that a dcpo is quasicontinuous if and only if it is quasiexact and has property

q.
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