
Electronic Notes in Volume 1

Theoretical Informatics ENTICS Proceedings of
And Computer Science https://entics.episciences.org MFPS 2022

Continuous Functions on Final Comodels
of Free Algebraic Theories

Tomoya Yoshida1

Research Institute for Mathematical Sciences
Kyoto University

Kyoto, Japan

Abstract

In 2009, Ghani, Hancock and Pattinson gave a tree-like representation of stream processors AN → BN. In 2021, Garner
showed that this representation can be established in terms of algebraic theory and comodels: the set of infinite streams AN

is the final comodel of the algebraic theory of A-valued input TA and the set of stream processors Top(AN, BN) can be seen as
the final TA-TB-bimodel. In this paper, we generalize Garner’s results to the case of free algebraic theories.

1 Introduction

Writing and verifying programs handling infinite objects such as streams and infinite trees are highly non-
trivial tasks. To ease it, many attempts to identify the mathematical principles behind infinite computation
on infinite data structures have been made. Among them, a most active and well-developed areas are the
theory of coalgebras, in which infinite objects are captured as elements of final coalgebras which enjoy nice
universality and useful principles for programming and verification. This work can be seen as a contribution
in this direction, making use of the recent development of algebraic theories and their comodels.

1.1 Background and Our Result

In computer science, coalgebras for functors appear in various ways [10,11,17]; one is as the way of imple-
mentations of infinite data structures, which appear as elements of final coalgebras. The simplest example
of infinite data structures is infinite sequences (often called streams). For a set A, the set AN of A-valued
streams is a coalgebra for an endofunctor A× () on Set with a coalgebra structure map α : AN → A×AN

given by
a0a1a2 · · · 7→ (a0, a1a2 · · ·).

Moreover, as is well known, the coalgebra (AN, α) is indeed the final coalgebra for the functor A× (), i.e.,
for every (A× ())-coalgebra (X,φ : X → A×X), there exists a unique (A× ())-coalgebra homomorphism
(X,φ) → (AN, α). For an endofunctor F , we write νX.F (X) for the final F -coalgebra when it exists.
Then, AN can be denoted as νX.A×X.

1 Email: ytomoya@kurims.kyoto-u.ac.jp

Published February 15, 2023 Proceedings Available Online at © T. Yoshida

10.46298/entics.10374 https://doi.org/10.46298/entics.proceedings.mfps38 cb Creative Commons

https://entics.episciences.org
mailto:ytomoya@kurims.kyoto-u.ac.jp
https://doi.org/10.46298/entics.10374
https://doi.org/10.46298/entics.proceedings.mfps38
https://creativecommons.org/licenses/by/4.0/

17–2 Continuous Functions on Final Comodels of Free Algebraic Theories

Here, we are interested in functions that translate infinite data to infinite data, e.g., functions from
A-streams to B-streams (A and B are sets). One might say stream processors to mean all functions
AN → BN, but we prefer to define stream processors as productive functions AN → BN. Productivity of a
map f : AN → BN in this context means that f will read only finite information of a input stream −→a to
decide finite information of the output stream f(−→a). This constraint is reasonable from a computational
perspective because programs can read only finite information of infinite data. Thus if a program uses the
stream f(−→a) then it in fact uses a finite segment of this stream and the finite segment of f(−→a) should be
computed using finite information of −→a .

As described in [7,5], this productivity can be characterized as the continuity of functions. The set
AN has a natural topology, the product topology of discrete spaces A, and the set of productive maps
AN → BN coincides with the set of continuous maps AN → BN. Though this characterization may be
mathematically elegant, by computational requirements, we want a coalgebraic characterization of these
continuous functions.

There already have been several studies on coalgebraic representation of continuous functions between
final coalgebras [7,6,2]. In particular, Ghani, Hancock and Pattinson [7] studied stream processors AN →
BN and showed that they can be represented as elements (trees) of another final coalgebra νX.TA(B×X),
where TA(V) is the set of finite-depth A-ary branching trees with V -labelled leaves. Let IAB := νX.TA(B×
X). Then each element of IAB can be seen (coinductively) as a tree in TA(B × IAB). For example, when
A = {0, 1}, the following tree t belongs to IAB

(b1, t1)

(b2, t2) (b3, t3),

0 1

10

where bi ∈ B and ti’s are trees in IAB (i = 1, 2, 3). Here we give an overview of how t expresses a function
{0, 1}N → BN. For a given stream a0a1 · · · ∈ {0, 1}N, this tree t outputs a B-valued stream stepwise as
follows. First, t consumes a0. If a0 = 0, it reaches the leaf (b1, t1). Thus it outputs b1 and then the
computation continues in the same way with t1 and a1a2 · · · (instead of t and a0a1 · · ·). On the other
hand, if a0 = 1, it does not reach leaves. Therefore t also consumes a1 and reaches the leaf (b2, t2) or
(b3, t3) if a1 is 0 or 1, respectively. Then the first output is b2 or b3 and computation continues with either
t2 and a2a3 · · · or t3 and a2a3 · · · . Eventually, t will give a continuous map {0, 1}N → BN because the
above procedure produces each digit of the resulting stream using a finite initial segment of the input
stream. However, this representation is not bijective in the sense that different trees may give the same
function. For instance, consider trees t and t′ such that

t =
(b, t) (b, t),

0 1

t′ = (b, t′).

Then both of them give a constant map which sends every stream to bbb · · · (in particular, the tree t′,
which has no branches, does not consume elements to output the first digit b and thus it does not consume
an input stream at all to output the result bbb · · ·).

Garner [5] paid attention to this non-bijectivity and he gave a bijective characterization of stream
processors in terms of algebraic theories and their comodels. The set AN arises as the final comodel of
the algebraic theory of A-valued input TA and the set of stream processors AN → BN appears as the
final TA-TB-bimodel. He also gave a comodel-theoretic expression of the result of [7]; the final coalgebra
νX.TA(B × X) is the final TA-residual TB-comodel and, because of their finalities, there are canonical
maps between the final TA-residual TB-comodel and the final TA-TB-bimodel such that their composition
is the identity function on the final TA-TB-bimodel.

Yoshida 17–3

In this paper, we generalize Garner’s result to the case of free algebraic theories, which are algebraic
theories with no equational axioms. We analyse continuous functions on final comodels of free algebraic
theories, investigate residual comodels and bimodels of free algebraic theories, and relate them to each
other. If a free algebraic theory T has the signature Σ = {σ1, . . . , σn}, its final comodel ST comprises
infinite-depth n-ary branching trees with labels determined by the signature Σ. This is a generalization
of the case of A-valued streams in the sense that A-valued streams can be seen as infinite-depth 1-ary
branching trees with labels in A. Thus continuous functions ST → ST′ between final comodels of free
algebraic theories T,T′ translate trees to trees and they also observe only finite information of input trees
to decide finite information of output trees (topologies on ST and ST′ are defined in Section 3).

The key point in this generalization is that these continuous functions can observe parallel information
such as sibling nodes in trees. On the other hand, elements of the final T-residual T′-comodel can observe
only serial (in other words, straight or successive) finite information of input trees. Therefore we must
restrict ourselves to consider only such functions (we call them straight functions tentatively). Here, as
the case of streams, different elements can give the same straight function. This non-bijectiveness will be
eliminated when we consider the final T-T′-bimodel. Consequently, we get the following diagram:

straight functions ST → ST′

the final T-residual T′-comodel the final T-T′-bimodel.
reify

reflect

And we will show that the composition reflect ◦ reify is the identity on the final T-T′-bimodel when it
is identified with the set of straight functions. Although the restriction that we consider only straight
functions might seem artificial, the correspondence we will construct is in fact a generalization of [5]
because there is no parallel information in the case of streams. Note that, to realize our restriction for
maps, we will consider a category Sub instead of the usual category Top of topological spaces and continuous
functions. Then the set of straight functions ST → ST′ can be identified with a hom-set Sub(ST, ST′).

1.2 Outline of The Paper

This paper is organized as follows.
In Section 2, we review basic notions of algebraic theories, their models, and comodels. Especially, we

give examples of comodels to help with our intuition.
In Section 3, we discuss topological notions on comodels. Following Garner [5]’s operational topology,

we define the operational sub-basis. Since we mainly use sub-basis, we define the category Sub of sets with
sub-basis. Additionally, we observe that final comodels in Set become final comodels in Sub.

In Section 4, we disucuss residual comodels and bimodels. Each elements of the final residual comodel
constructs a function between two final comodels. This construction will be named reflect. We also define
a map reify from the final bimodel to the final residual comodel.

In Section 5, we show the main result of this paper: Sub(ST, ST′) can appear as the final T-T′-bimodel.
Though the proof is long and might look complex, the technique and key ideas are similar to the case of
stream processors [5]. Difficulty comes from the existence of parallel information in trees, which constitute
final comodels of free theories. At the end of this section, we explain that the composition reflect ◦ reify
becomes the identity on Sub(ST, ST′).

In Section 6, we summarize our results and describe directions for future work.

We use the following notations.

• N := {0, 1, 2, . . .} is the set of natural numbers.

• For a set A, AN denotes the set of infinite sequences of elements of A and A∗ denotes the set of finite
sequences of elements of A. Their (disjoint) union A∗ ∪AN is denoted by A≤N. The empty sequence

17–4 Continuous Functions on Final Comodels of Free Algebraic Theories

in A∗ is written as ε.

• For a finite sequence s ∈ A∗ and a finite or infinite sequence t ∈ A≤N, s · t denotes the concatenation
of s, t.

• Usually we use V , W as sets of variables, and variables are denoted by v, w, v′, v1, v2, etc.

1.3 Related Work

References for (co)algebras include [10,11,17], in which various usages of coalgebras in computer science are
explained; one is as implementations of infinite objects and another one is as representations of transition
systems. On the other hand, comodels also can be seen as transition systems. As described in [16,15,18],
comodels of an algebraic theory T provide environments for evaluating T-terms. Applications of algebraic
theories in the study of computational effects originated in Plotkin and Power [14], and originally, such
categorical studies of computational effects were founded by Moggi [13], in which he advocated that various
kinds of computational effects, such as exception and nondeterminism, can be modeled by monads.

Researches on coalgebraic characterizations of continuous functions on final coalgebras originated in
Ghani et al. [7], which is about stream processors. After that, in [6], they generalized their results to
the case of final coalgebras of functors called containers. In their work, remaining problems were non-
bijectiveness of representations and verification of completeness in the latter case, i.e., it is not resolved
whether all continuous functions can be expressed by their representations (however, for the case of stream
processors, completeness was already proved). Then Garner [5] gave a bijective characterization of stream
processors and reformulated the result of [7] in terms of algebraic theories and their comodels (in particular,
he used notions of residual comodels and bimodels). Our study generalizes Garner’s techniques to the case
of free algebraic theories. An advantage of comodel-theoretic characterization is the easy verification of
completeness, which will be simply done by the universality of final objects. Therefore we expect that this
technique is useful to give complete characterizations in more general cases.

As for stream processors, there exists another well-known related concept called transducers [8], which
is a generalization of automata. In [1], Beal and Carton argued when functions AN → BN realized by
transducers become continuous (in their paper, A and B were assumed to be finite). In a recent work
[9], Hyvernat used type-theoretic transducers to represent continuous functions between coinductive types
(note that completeness of representations is not verified yet). According to Hyvernat, observing parallel
information in trees is equivalent to the backtracking of transducers. This insight leads us to an idea that,
if there is a comodel-theoretic characterization of backtracking, we might be able to characterize not only
straight functions but also arbitrary continuous functions between final comodels.

2 Algebraic Theories and Their (Co)Models

In this section, we review basic concepts and notations for algebraic theories and their models as well as
comodels. We mostly follow Garner’s treatment in [5,4].

Definition 2.1 An algebraic theory T is a pair (ΣT, ET), where ΣT is a signature and ET is a set of
equations over ΣT. A signature comprises a set Σ of operation symbols, and for each σ ∈ Σ a set |σ|, its
arity. Given a signature Σ and a set V , we define the set Σ(V) of Σ-terms with variables in V by the
inductive clauses

v ∈ V ⇒ v ∈ Σ(V),

σ ∈ Σ, ti ∈ Σ(V) (i ∈ |σ|)⇒ σ(λi.ti) ∈ Σ(V).

An equation over a signature Σ is a formal equality t = u between terms in the same set of free variables.
We say T is free if it has no equation, i.e., if ET = ∅.

We usually say “theory” to mean “algebraic theory”.

Yoshida 17–5

Definition 2.2 For a signature Σ and a term t ∈ Σ(V) and terms uv ∈ Σ(W) (v ∈ V), we define the
substitution t(λv.uv) ∈ Σ(W) by recursion on t:

v ∈ V ⇒ v(λv.uv) := uv,

σ ∈ Σ, ti ∈ Σ(V) (i ∈ |σ|)⇒ (σ(λi.ti))(λv.uv) := σ(λi.ti(λv.uv)).

Given a theory T, we define T-equivalence as the smallest family of substitution-congruence ≡T on the sets
ΣT(V) such that t ≡T u for all equations t = u ∈ ET. The set T (V) of T-terms with variables in V is the
quotient Σ(V)/ ≡T.

When writing σ(λi.ti) for a symbol σ, we assume that the variable i ranges over |σ|.
When we see a theory T as specifying a computational effect as advocated in [14], T (V) is seen as

the set of computations with effects from T returning a value in V . Well-known examples are theories for
effects of output, state, exception, nondeterminism, and so on. In this article, we are mainly interested in
the theory of input and its expansions (in short, we basically consider free theories).

Example 2.3 [5] Given a set A, the theory TA of A-valued input comprises a single A-ary operation
symbol readA and no equations. The set of terms TA(V) is the initial algebra µX.V +XA. Its elements
may be seen as A-ary branching trees with leaves labelled in V ; or, from another perspective, they can be
seen as programs which request A-values and use them to determine a return value in V .

Example 2.4 Consider a free theory T with n operation symbols σ1, . . . , σn. For all i, we write |σi| = Ai.

(TA is the case n = 1 and |σ1| = A.) The set of terms T (V) is the initial algebra µX.V +
∐
σ∈ΣT

X |σ|,

where
∐

denotes coproduct or direct sum. Its elements can be thought of as trees such that each node
is labelled by a symbol σi and such a node has Ai-ary branches and finally, their leaves are labelled in V
(or nullary operation symbols if they exist). Computationally, they are programs which request n-sorted
values and return a value in V depending on inputs.

In particular, we write T(n)
A for the free theory with n symbols and |σ1|, . . . , |σn| are all the same set

A. As trees, elements of T
(n)
A (V) has the same form as elements of TA(V) but their nodes have labels in

{1, . . . , n}. Differences between T(n)
A for n ≥ 2 and TA will become more significant when we consider their

comodels.

Definition 2.5 Let Σ be a signature and C be a category with powers. A Σ-structure X in C is an
object X ∈ C with an operation JσKX : X |σ| → X for each σ ∈ Σ. For each t ∈ Σ(V) the derived operation
JtKX : XV → X is determined by the recursive clauses:

JvKX = πv and Jσ(λi.ti)KX = XV (JtiKX)i∈|σ|−−−−−−−→ X |σ|
JσKX−−−→ X.

Definition 2.6 Given a theory T, a T-model in C is a Σ-structure X which satisfies JtKX = JuKX for all
equations t = u of T. T-models in C form a category with morphisms f : X → Y in C such that the
following diagram commutes for all σ ∈ Σ:

X |σ| X

Y |σ| Y

JσKX

f |σ| f

JσKY

The unqualified term “model” will mean “model in Set”. We write Mod(T,C) for the category of
T-models in C , and Mod(T) for Mod(T,Set).

The set of terms T (V) has a T-model structure given by substitution. This structure has the following
universal property.

17–6 Continuous Functions on Final Comodels of Free Algebraic Theories

Lemma 2.7 The set of terms T (V) is the free T-model on V by the inclusion of variables ηV : V → T (V).
That is, for any T-model X and any function f : V → X to the underlying set of X, there is the unique T-
model morphism f † : T (V)→X with f † ◦ ηV = f . Spelling out the detail, we have f †(t) = JtKX(λv.f(v)).

This lemma allows us to define the Kleisli category of T.

Definition 2.8 For an algebraic theory T, the Kleisli category Kl(T) of T has sets as objects. For sets A,B,
the hom-set Kl(T)(A,B) is defined as Set(A, T (B)). The identity at A is ηA : A→ T (A). Composition of
f : A→ T (B) and g : B → T (C) is g† ◦ f with g† as in Lemma 2.7.

There are well-known functors related to Kl(T); the free functor FT : Set → Kl(T) is the identity on
objects and sends f ∈ Set(X,Y) to ηY ◦ f ∈ Kl(T)(X,Y). the comparison functor IT : Kl(T) → Mod(T)
acts as A 7→ T (A) and f 7→ f †.

We now turn to comodel which is the dual notion of model.

Definition 2.9 Let T be a theory. A T-comodel S in a category C with copowers is a model of T in
C op, i.e. an object S ∈ C with co-operations JσKS : S → |σ| · S satisfying the equations of T. Morphisms
between comodels S, S′ are morphisms f : S → S′ in C such that the following diagram commutes for
each symbol σ in ΣT:

S |σ| · S

S′ |σ| · S′

JσKS

f |σ|·f
JσKS

′

The unqualified term “comodel” will mean “comodel in Set”. We write Comod(T,C) for the category
of T-comodels in C , and Comod(T) for Comod(T,Set). We here note that Comod(T,C) ∼= Mod(T,C op)op,
the opposite of the category of T-models in the opposite of C .

Example 2.10 A comodel S of the theory TA of A-valued input is a set S with a map JreadAKS : S →
A× S. This map can be decomposed into two maps: the output map oS : S → A and the transition map
∂S : S → S.

We usually call elements of comodels states. Then a comodel S of TA can be seen as a state ma-
chine which answers to requests for A-value and transition to the next state, determined by oS and ∂S ,
respectively.

As explained in [16,15,18], when a theory T presents a computational effect, its comodels provide
deterministic environments for evaluating computations with effects from T. In general, given a T-comodel
S and a term t ∈ T (V), we have derived co-operation JtKS : S → V × S as the dual of derived operation
in Definition 2.5:

JvKS(s) = ιv(s) = (v, s)

Jσ(λi.ti)KS(s) = JtiKS(s′) where JσKS(s) = (i, s′).

Intuitively, evaluating a term (or a tree) t with an initial state s is selection of a path to a value in t
depending on the behavior of s as follows: first, if t = σ(λi.ti) and JσKS(s) = (i, s′), s chooses the i-th
branch and transition to the next state s′; then continue the computation by evaluating ti with s′; finally,
if the term under the chosen branch is a value, then the evaluation terminates and returns that value.
Clearly, return values of a term t appear in t as variables.

We focus on the final comodel of a theory. The final comodel of T is the final object of Comod(T). We
will also consider the final comodel in a category C other than Set , that is, the final object of Comod(T,C).

Example 2.11 The final comodel of TA is AN, the set of infinite sequences of elements in A. Its co-

Yoshida 17–7

operation JreadKAN
: AN → A×AN is composed of

oA
N

: a0a1a2 · · · 7→ a0 ∂A
N

: a0a1a2 · · · 7→ a1a2 · · · .

In order to help understanding the next example, we see a sequence in AN in a slightly different way.
Firstly, we see a sequence −→a ∈ AN as the function a : N → A with a(k) = ak. We can get the k-th

element a(k) by applying JreadKAN
(more precisely, applying its component ∂A

N
) k-times and taking

the head element of the resulting sequence. So, it is reasonable to see the domain of the function a as
{read}∗ = {ε, read, read · read, . . .}, the set of finite repeats of the symbol read. Then components of

JreadKAN
can be written as:

oA
N

: a 7→ a(ε) ∂A
N

: a 7→ a(read)

where (a(read))(readk) = a(read · readk) = a(readk+1).

We recognize comodels and the final comodel of a free theory in a similar way to the case of the theory
of input.

Example 2.12 Let T be a free theory. A comodel of T is a state machine that answers to requests for
elements of |σ| for each σ ∈ ΣT , and then transition to a next state depending on the requested operation
symbol. This comprises a set of states S and operations JσKS = (oSσ , ∂

S
σ) : S → |σ| × S giving for each

state s ∈ S an output oSσ (s) ∈ |σ| and a next state ∂Sσ (s) ∈ S. By taking the product of JσKS ’s, we
can regard the comodel S as a coalgebra of the functor HT :=

∏
σ∈ΣT

(|σ| × ()) ∼= (
∏
σ∈ΣT

|σ|) × ()ΣT .
Moreover, morphisms between T-comodels coincide with those between HT-coalgebras. Therefore the final
T-comodel ST is the final HT-coalgebra νX.(

∏
σ∈ΣT

|σ|)×XΣT = (
∏
σ∈ΣT

|σ|)ΣT
∗
. The comodel structure

of ST is given by
oST
σ (s) = πσ(s(ε)) ∂ST

σ (s) = s(σ)

where πσ denotes the projection map (
∏
σ∈ΣT

|σ|)→ |σ|.

We omit indices X, S of JσKX , JσKS , oSσ and ∂Sσ , if it is clear from contexts.
An important property of the final comodel is that it describes “observable behaviors” of states in

comodels. As described in [4], the final comodel of the theory T can be characterized as the set of all
possible states of all possible comodels modulo operational equivalence.

Definition 2.13 Let T be an algebraic theory. For states s1 ∈ S1, s2 ∈ S2 of two T-comodels, we say
that they are operationally equivalent if for all T-terms t, πV (JtKS1(s1)) = πV (JtKS2(s2)).

Lemma 2.14 ([4]) States s1 ∈ S1 and s2 ∈ S2 of two T-comodels are operationally equivalent iff they
become equal under each unique map to the final T-comodel.

3 Operational Sub-basis on Comodels

Garner [5] defined the operational topology on a comodel of an algebraic theory T as the topology whose ba-
sic open sets describe those states which are indistinguishable with respect to a finite set of T-computations.

Definition 3.1 [5] Let S be a T-comodel. The operational topology on S is generated by sub-basic open
sets

[t 7→ v]S := {s ∈ S | JtKS(s) = (v, s′) for some s′} for all t ∈ T (V) and v ∈ V.

We omit the subscript S of [t 7→ v]S if the comodel is clear.
We call the sub-basis {[t 7→ v]S | t : term, v : variable} of the operational topology, the operational sub-

basis of the comodel S. In particular, for the final comodel of a theory T, we write ΦT for its operational
sub-basis. In the sequel, we mainly use this operational sub-basis, not the operational topology. Thus we
define a category whose objects are sets with sub-basis.

17–8 Continuous Functions on Final Comodels of Free Algebraic Theories

Definition 3.2 We define the category Sub of sets with sub-basis and functions continuous on sub-basis.
Objects are pairs (X,Φ), X is a set and Φ is a subset of P(X) which contains ∅ and X. A morphism
(X,Φ) → (Y,Ψ) is a mapping f : X → Y such that for each set U ∈ Ψ, f−1(U) ∈ Φ. We call such maps
as continuous functions on sub-basis.

We can show that Sub is a cocomplete category and its constructions of colimits are similar to colimits
in Top. As for comodels in Sub, the following is valid because we can show that, if a set with sub-basis
(X,Φ) has a T-comodel structure in Sub, then the sub-basis Φ contains all sets of the form [t 7→ v].

Proposition 3.3 There is an adjunction

Comod(T,Sub) Comod(T)

op

U

>

where op gives a comodel S the operational sub-basis, and U forgets sub-basis.

As a corollary, the functor op preserves the final object (A similar result for the category Top is in [5]).

Corollary 3.4 For each theory T, the final T-comodel in Set is, when endowed with its operational sub-
basis, the final comodel in Sub.

4 Residual Comodel and Continuous Functions

Residual comodels allow us to describe stateful translations between different notions of computation. The
word residual comes from [12].

Definition 4.1 [5] Let T and T′ be theories. An T-residual T′-comodel is a comodel of T′ in the Kleisli
category Kl(T).

Spelling out the detail, an T-residual T′-comodel S comprises an underlying set S and a co-operation
JσKS : S → T (|σ| × S) for each symbol σ ∈ ΣT′ . That is, for each state s ∈ S and each symbol σ, we need
to deal with an T-computation in order to decide what state we should transition to and to extract an
index in |σ| from JσKS(s). The derived co-operation JtKS : S → T (V ×S) of a term t ∈ T ′(V) is calculated
using composition in the Kleisli category:

JvKS(s) = (v, s) ∈ V × S ⊆ T (V × S)

Jσ(λi.ti)KS(s) = JσKS(s)(λ(i, s′).JtiKS(s′)),

where the term JσKS(s)(λ(i, s′).JtiKS(s′)) ∈ T (V ×S) is the substitution of (JtiKS(s′))(i,s′) ∈ T (V ×S)|σ|×S

to JσKS(s) ∈ T (|σ| × S).
By the above intuition about T-residual T′-comodels, we expect that when we have a state s of an

T-residual T′-comodel S and a state m of an T-comodel, then, for each term t ∈ T ′(V), we can evaluate
JtKS(s) ∈ T (V × S) with the initial state m to a value-state pair in V × S. This idea is formalized as:

Definition 4.2 [5] Let T, T′ be theories. Let S be an T-residual T′-comodel, and let M be an T-comodel.
The tensor product S ·M is the T′-comodel with underlying set S ×M and co-operations

JσKS·M : S ×M JσKS×M−−−−−→ T (|σ| × S)×M (t,m)7→JtKM (m)−−−−−−−−−−→ |σ| × S ×M.

This construction can be generalized to the case that M is a T-comodel in a category C with copowers.
For an T-residual T′-comodel S and an T-comodel M in C , there is a T′-comodel in C whose underlying
object is the copower S ·M .

Yoshida 17–9

If there is the final T′-comodel ST′ in C , Comod(T′,C)(S·M ,ST′) has only one map e. Now we consider
the case of C = Sub and M is the final T-comodel ST. By Corollary 3.4, we have this e : S × ST → ST′
called the extent of S. Then its currying λs ∈ S.e(s,) : S → Sub(ST, ST′) translates elements of a residual
comodel to continuous functions between two final comodels, in particular, these functions are continuous
on sub-basis.

One of our goals is to show that, for free theories T and T′, the currying of the extent of the final
T-residual T′-comodel is surjective. To define the final object, we first define the notion of morphism
between residual comodels. This is different from the usual morphism between comodels in the Kleisli
category.

Definition 4.3 [5] Let T and T′ be theories, S and U be T-residual T′-comodels. A map of residual
comodels S → U is a function f : S → U such that the following diagram commutes for each symbol
σ ∈ ΣT′ :

S T (|σ| × S)

U T (|σ| × U)

JσKS

f T (|σ|×f)

JσKU

Now we define the final T-residual T′-comodel IT,T′ as the final object of the category of residual
comodels and maps between residual comodels, which is different from the final T′-comodel in Kl(T).

We call the currying of the extent of IT,T′ the reflection.

Definition 4.4 Let T and T′ be free theories, IT,T′ be the final T-residual T′-comodel. The reflection
function is defined as currying of the extent e of IT,T′ :

reflect : IT,T′ → Sub(ST, ST′) s 7→ e(s,) : ST → ST′ .

Following examples explain how a state of residual comodel implements a function and why we restrict
our target to maps in Sub (or straight functions in the introduction).

Example 4.5 Let A = {0, 1} and B = {a, b}. Consider a function AN → BN which rewrites 0 to a and
1 to b. We take theories T and T′ as TA and TB. The final T-residual T′-comodel IT,T′ has its residual
comodel structure JreadBK : IT,T′ → T (B × IT,T′). Take a state s ∈ IT,T′ as

JreadBK(s) =

readA

(a, s) (b, s)

0 1

Then for a given stream, such as 1011 · · · in AN, this state constructs a stream y1y2 · · · in BN as follows:
To compute the first digit y1, it uses readB one time. The tree JreadBK(s) requires reading an A-element
and this requirement is met by the given stream. So it consumes the first digit 1 of the input and it
determines that y1 = b. To compute y2, it uses readB twice. The first readB is computed as above and
it reaches the leaf (b, s). The second one is applied to this new s and now it consumes the second digit
0 of the input. Thus it reaches (a, s) and y2 becomes a. The computation continues similarly and it will
implement the function considered as above. We can implement more complex maps by deepening the
tree or by using other states in leaves.

Example 4.6 This example exhibits a function which cannot be implemented by states of residual co-
models. Let T = T2

N and T′ = TN. Consider a function between final comodels ST → ST′ which takes the

17–10 Continuous Functions on Final Comodels of Free Algebraic Theories

sum of each depth:

n1 n2

n11 n12 n21 n22...
...

7−→
n1 + n2

n11 + n12 + n21 + n22...

If this can be implemented by a state s ∈ IT,T′ , the first digit n1 + n2 of the output is computed by the

term JreadNK(s) ∈ T (2)
N (N × IT,T′). There are three cases; (i) JreadNK(s) is a variable (n, s′) ∈ N × IT,T′ ,

(ii) JreadNK(s) is of the form read1
N(λn.un) and (iii) JreadNK(s) is of the form read2

N(λn.un). When (i),
its output is always n and thus this cannot depend on n1, n2. When (ii), it reads n1 of the input tree,
selects the term un1 and, if un1 requires further input, it uses the tree under n1. So, in this case, the
output cannot depend on n2. Similarly, when (iii), the output cannot depend on n1. Consequently, the
term JreadNK(s) cannot observe both of n1 and n2 and thus the function summing up each depth cannot
be implemented by residual comodels.

We will show the surjectivity of the reflection by characterizing Sub(ST, ST′) as the final T-T′-bimodel.
Here, for theories T and T′, the category of T-T′-bimodels is the category of T′-comodels in Mod(T), i.e.,
Comod(T′,Mod(T)). We only describe the most important properties for our purpose; bimodels can be
seen as residual comodels.

Lemma 4.7 Let T be any theory. For any T-model X = (X, J KX) and set B, the copower B ·X is the
quotient of the free model T (B ×X) for an T-congruence relation.

Especially, if T is a free theory, we can take a canonical representative of each equivalence class and
thus B ·X may be regarded as a subset of T (B×X). In detail, the set of canonical representatives coincides
with the set of terms in T (B ×X) which have no non-trivial sub-terms whose variables are labelled by the
same element of B, in other words, banned sub-terms are of the form σ(λi.(b, xi)) for b ∈ B. In this case,
the T-model structure of B ·X is that of T (B ×X) except that JσKB·X(λi.(b, xi)) = (b, JσKX(λi.xi)).

Proof. Define a T-congruence ∼ on T (B ×X) as the minimal congruence satisfying

σ(λi.(b, xi)) ∼ (b, JσKX(λi.xi)). (1)

for all symbols σ ∈ ΣT. The quotient T (B ×X)/ ∼ satisfies universality of the copower B ·X.
If T is a free theory, by orienting read (1) from left to right, this determines a strongly normalizing

rewrite system on T (B × X); if there is a sub-term of the form σ(λi.(b, xi)) then rewrite this into the
variable (b, JσKX(λi.xi)). Thus we can take the normal forms as representatives of equivalence classes. 2

Remark 4.8 The latter of this lemma is justified because the set of T-terms T (B × X) coincides with
the set of ΣT-terms ΣT(B × X), whose elements are trees with ΣT-labelled nodes and (B × X)-labelled
leaves. When T has non-trivial equations, T (B × X) is a quotient of ΣT(B × X). Thus we must argue
about rewriting systems on a quotient set and cannot generalize this lemma simply.

Definition 4.9 Let T and T′ be free theories and K be a T-T′-bimodel. We define the T-residual T′-
comodel Ǩ = (K, J KǨ) whose co-operations are the composites

JσKǨ : K
JσKK−−−→ |σ| ·K ↪→ T (|σ| ×K)

of the T′-comodel structure map with the inclusion of Lemma 4.7.

Definition 4.10 Let T and T′ be free theories and ET,T′ be the final T-T′-bimodel. Then we have the

unique T-residual T′-comodel map ĚT,T′ → IT,T′ and we define the reification function as its underlying
map:

reify : ET,T → IT,T′ .

Yoshida 17–11

If we characterize Sub(ST, ST′) as the final T-T′-bimodel and if we show reflect ◦ reify is the identity
map, we can conclude that reflect is surjective.

5 The Final Bimodel of Free Theories

In this section, we assume that T and T′ are free theories (the only exception is in Proposition 5.1). We
write ST and ST′ for their final comodels and we regard them as objects of Sub with their operational
sub-bases ΦT and ΦT′ .

Our goal in this section is to prove that Sub(ST, ST′) is the final T-T′-bimodel. This is verified by
proving that the functor Sub(ST,) : Sub → Mod(T) preserves the final T′-comodel. Here we assert that
Sub(ST,) is actually a functor to Mod(T). For each object X ∈ Sub, the T-model structure on Sub(ST, X)
is

JσK = splitσ : Sub(ST, X)|σ| → Sub(ST, X)

∈ ∈

(fi)i∈|σ| 7→
ST → X

∈ ∈

s 7→ foσs(∂σs)

(2)

for each σ ∈ ΣT.
The outline of the proof is as follows:

(I) The functor Sub(ST,) : Sub → Mod(T) has a left adjoint.

(II) Sub(ST,) preserves copowers of objects which have a simple (see Definition 5.3) T′-comodel structure.

(III) The final T′-comodel ST′ (endowed with ΦT′) is a simple T′-comodel.

(IV) Conclude the claim by using adjointness in (I).

(I) is established in [3] and [5]. We cite the statement from [5].

Proposition 5.1 Let T be a theory (which is not necessarily free). Let C be a category with copowers and
S a T-comodel in C . For any object C ∈ C , the hom-set C (S,C) bears a structure of T-model C (S, C)
with operations

JσKC (S,C)(λi.S
fi−→ C) = S

JσKS−−−→ |σ| · S
〈fi〉i∈|σ|−−−−−→ C

where 〈fi〉i∈|σ| is the copairing of the fi’s. As C varies, this assignment underlies a functor C (S,) : C →
Mod(T). If C is cocomplete, this functor has a left adjoint ()⊗ S : Mod(T)→ C .

Remark 5.2 The T-model structure (2) on Sub(ST, X) is given by this proposition with the ordinary
T-comodel structure of ST.

(III) is clear from the definition of simplicity and (IV) is shown as follows:
When (I),(II) and (III) have been verified, then we have the adjunction in (I) as

()⊗ ST a Sub(ST,) : Sub → Mod(T).

Since the left adjoint ()⊗ ST preserves copowers and Sub(ST,) also preserves copowers of objects X in
Sub with a simple T′-comodel structure, we have the following isomorphism for an arbitrary object Y in
Comod(T′,Mod(T)),

Comod(T′,Mod(T))(Y ,Sub(ST,X)) ∼= Comod(T′, Sub)(Y ⊗ ST,X).

The final T′-comodel ST′ is simple. So we let X = ST′ in above, then

Comod(T′,Mod(T))(Y ,Sub(ST,ST′)) ∼= Comod(T′, Sub)(Y ⊗ ST,ST′).

17–12 Continuous Functions on Final Comodels of Free Algebraic Theories

By finality of ST′ , the right hand side is a singleton. Thus, Sub(ST,ST′) is final in Comod(T′,Mod(T)).
Therefore we will concentrate on (II). First, we define the notion of simple comodels appearing in (II).

Definition 5.3 We say a comodel S is simple if observationally equivalent states are actually identical,
or explicitly, if S satisfies following condition for all states s, s′:

if oσ(∂σn · · · ∂σ1(s)) = oσ(∂σn · · · ∂σ1(s′))

for all sequences of symbols σ1, . . . , σn and for all σ,

then s = s′.

This definition says that a comodel is simple iff it has no proper quotient (this is the original definition
of simple comodels in [17]). The final comodel is clearly a simple comodel (this is a justification of (III)).

The statement (II) says that, for a T′-comodel ((X,Φ), J KX) in Sub whose underlying comodel (X, J KX)
is simple, we have the copower (ιi : X → I · X)i∈I in Sub, then maps given by applying the functor
Sub(ST,) to each ιi

(ιi ◦ () : Sub(ST, X)→ Sub(ST, I ·X))i∈I (3)

constitute a copower cocone in Mod(T). We prove this in two steps: uniqueness of the mediating morphism
and existence of it.

The difficult part is to prove its uniqueness and this is rephrased as following.

Theorem 5.4 (uniqueness of the mediating morphism) Let ((X,Φ), J KX) be a T′-comodel in Sub
whose underlying comodel (X, J KX) is simple. For its copower (ιi : X → I ·X)i∈I in Sub, the family of
maps given by applying the functor Sub(ST,) to each ιi

(ιi ◦ () : Sub(ST, X)→ Sub(ST, I ·X))i∈I

is jointly epimorphic in the category Mod(T) (that is, if T-model maps f, g : Sub(ST, I ·X) → Y satisfy
f ◦ (ιi ◦ ()) = g ◦ (ιi ◦ ()) for all i ∈ I, then f = g).

Here we describe an overview of the proof:

(i) Let M be the subset of Sub(ST, I · X) which is generated by the image of maps (3) and T-model
structure maps on Sub(ST, I ·X) (2).

(ii) Then it suffices to show that M = Sub(ST, I ·X), i.e., each map f ∈ Sub(ST, I ·X) can be expressed
by splitσ’s and maps g whose image g(ST) is a subset of ιi(X) for some i.

(iii) We show (ii) by induction on the number of indices i ∈ I such that ιi(X) ∩ f(ST) 6= ∅ (we define If
as the set of such indexes).

(iv) When |If | = 1 (in particular |I| = 1), there is nothing to do.

(v) When |If | > 1, we will show that f can be expressed by splitσ and maps g which satisfy Ig (If .

(vi) If If is finite, the above argument in fact shows f ∈M .

(vii) To complete the proof, we will show that even if If is infinite, the situation comes to the finite case.

(We ignore the case of |If | = 0 since it is equivalent to |I| = 0.)
The key points are how to express f by using splitσ as (v) and how to show (vii). Firstly, argue about

(v). When the theory T is TA (the case Garner dealt with), this has only one symbol readA and the final
comodel ST is AN. For a given map f , the map split(λa ∈ A.f(a)) is equal to f : for a given sequence−→a , the operation split separates it into the head a0 and the tail a1a2 · · · , then λa.f(a) simply reconnects
them (and apply f).

When the final comodel consists of trees (when T has more than two symbols), the situation is not so
simple. For a given f , we want an expression f = splitσ(λi ∈ |σ|.fi). There are many problems. First, we
have to select σ. Second, we should define appropriate fi’s. Finally, for a given tree s, splitσ takes only

Yoshida 17–13

oσ(s) and ∂σ(s) and forgets other information. Thus, no matter how we select σ and fi’s, we cannot fully
recover original tree s. So, we focus on recovering the image f(s).

Our solution is taking an index i ∈ I such that ιi(X)∩ f(ST) 6= ∅ and judging whether f(s) ∈ ιi(X) or

not. Now ιi(X) is in the sub-basis of the copower I ·X. Therefore, f−1(ιi(X)) has the form [t(i) 7→ v(i)]

for some term t(i) and some valuable v(i). This says that we can judge whether s ∈ f−1(ιi(X)) or not by

observing the path of t(i) along s.

Definition 5.5 For a free theory T and a term t ∈ T (V), the set of paths of the term t, Path(t), is defined
as follows. Each path is a sequence of pairs (σ, i) of a symbol σ in ΣT and i ∈ |σ|. If t is a variable v, then
the only path of v is the empty sequence. A sequence (σ1, i1) · · · (σn, in) is in Path(t) if t is of the form
σ1(λi.ti) and (σ2, i2) · · · (σn, in) ∈ Path(ti1).

Definition 5.6 Let t ∈ T (V) and s be a state in ST. Define inductively the path of t along s, path(t, s) ∈
Path(t):

path(v, s) := ε,

path(σ(λi.ti), s) := (σ, oσ(s)) · path(toσ(s), ∂σ(s)).

Obviously, if path(t(i), s) = path(t(i), s′) then f(s) ∈ ιi(X) iff f(s′) ∈ ιi(X). Thus, we select σ and fi’s

as remembering the information about path(t(i), s) for given s.

Definition 5.7 Let f ∈ Sub(ST, X), σ be a symbol and i ∈ |σ|. Define fσ,i ∈ Sub(ST, X) as, for a given
s ∈ ST, constructing a new tree s′ such that

oσ(s′) = i, ∂σ(s′) = s

and applying f to s′. Concretely, fσ,i(s) := f(σ,is), where σ,is is the state such that

oσ(σ,is) = i, ∂σ(σ,is) = s

and for other symbols τ ,
oτ (σ,is) = oτ (s), ∂τ (σ,is) = ∂τ (s).

For a sequence p = (σ1, i1) · · · (σn, in), fp denotes the map (fσ1,i1)···σn,in and ps denotes the state
σ1,i1(···σn,ins) (if p = ε then f ε := f and εs := s). Then fp(s) = f(ps).

Remark 5.8 For f ∈ Sub(ST, X), the function fσ,i is indeed continuous on sub-basis because for a sub-
basis U of X, s ∈ (fσ,i)−1(U) ⇔ sσ,i ∈ f−1(U) and sσ,i behaves much like s. The nontrivial case is
when f−1(U) = [σ(λi.ti) 7→ v], but we can easily see that Jσ(λi.ti)K(sσ,i) = JtiK(s). Thus, in this case,
s ∈ (fσ,i)−1(U)⇔ s ∈ [ti 7→ v].

Definition 5.9 For f ∈ Sub(ST, X) and for a term t, we define [f, t] ∈ Sub(ST, X) inductively:

[f, v] := f

[f, σ(λi.ti)] := splitσ(λi.[fσ,i, ti])

Example 5.10 When t = σ1(λk.σ2(λl.(k, l))), for a given state s such that oσ1(s) = k0 and oσ2(∂σ1(s)) =
l0,

[f, t](s) = [f (σ1,k0), σ2(λl.(k0, l))](∂σ1(s))

= [f (σ1,k0)(σ2,l0), (k0, l0)](∂σ2(∂σ1(s)))

= f (σ1,k0)(σ2,l0)(∂σ2(∂σ1(s)))

= f (σ1,k0)((σ2,l0)∂σ2(∂σ1(s)))

= f((σ1,k0)(σ2,l0)∂σ2(∂σ1(s))).

17–14 Continuous Functions on Final Comodels of Free Algebraic Theories

The state s′ := (σ1,k0)(σ2,l0)∂σ2(∂σ1(s)) has the same behavior as s on t i.e. oσ1(s′) = oσ1(s) = k0 and
oσ2(∂σ1(s′)) = oσ2(∂σ1(s)) = l0. Additionally, s′ behaves completely in the same way as s after t, i.e.,
∂σ2(∂σ1(s′)) = ∂σ2(∂σ1(s)).

When we write the state constructed by [f, t(i)] from a state s as 〈t(i), s〉, we can show that [f, t(i)](s) =

f(〈t(i), s〉) and f(〈t(i), s〉) = f(s). The former is shown by easy induction on t(i) (we have to describe

〈t(i), s〉 concretely). The latter is established as follows (the formal proof is too long to describe here).

· Write f(s),f(〈t(i), s〉) ∈ I ×X as (j0, x0),(j1, x1).

· Since f is continuous on sub-basis, the index j0 and behaviors of x0 as a state of T′-comodel X are
determined by behaviors of s. Similarly, j1 and behaviors of x1 are determined by 〈t(i), s〉. (That is, if
f−1(ιi0(X)) = [t 7→ v] then j0 = i0 ⇔ s ∈ [t 7→ v]. Behaviors of x0 is examined by observing whether
x ∈ [t′ 7→ v′] for some t′, v′ and its inverse image f−1([t′ 7→ v′]) is also of the form [t′′ 7→ v′′].)

· With effort, we can show that required behaviors of s and 〈t(i), s〉 are those on t(i) (i.e., we should ask

values of Jt(i)K(s) and Jt(i)K(〈t(i), s〉)) or those after t(i) (i.e., we should observe JtK(s) and JtK(〈t(i), s〉)
for some t compatible with t(i)).

· Behaviors of 〈t(i), s〉 are completely the same as those of s on t(i) and after t(i), as described in Example
5.10.

· Therefore, j0 = j1 and behaviors of x0 and x1 are completely the same.

· Since X is a simple comodel, the behavior determines the state (if X is not simple, there may be
different states with the same behavior).

Now we get the following lemma:

Lemma 5.11 Let f ∈ Sub(ST, I ·X) such that If := {i ∈ I | ιi(X)∩f(ST) 6= ∅} has at least two elements.

Take an index i ∈ If , an appropriate T-term t(i) and a variable v(i) as f−1(ιi(X)) = [t(i) 7→ v(i)]. Then

f = [f, t(i)].

Moreover, by definition, [f, t(i)] consists of splitσ’s and fp’s (p ∈ Path(t(i))).

Lemma 5.12 In the situation of Lemma 5.11, maps fp’s appearing in [f, t(i)] satisfy Ifp (If (where
If := {i ∈ I | ιi(X) ∩ f(ST) 6= ∅}).

Intuition is that when calculation reaches fp, it has already identified whether a given state belongs to
f−1(ιi(X)) or not. Thus Ifp = {i} or i /∈ Ifp .

So far, we completed the part (v) of the overview. If If is finite, by induction, we can express f by
using operations splitσ and maps g such that g : ST → ιig(X) for an index ig ∈ I, and conclude f ∈ M
(complete (vi) of the overview).

It remains to consider the case that If is infinite. First, specify the induction in the finite case (we
assume I 6= ∅ for simplicity):

(1) If |If | > 1 then we choose an index l0 ∈ If .

(2) Take a term t0 and a variable v0 as f−1(ιl0(X)) = [t0 7→ v0].

(3) Write f as [f, t0].

(4) Consider fp’s, p ∈ Path(t0) (maps appearing in [f, t0]).

(5) By Lemma 5.12, for all p ∈ Path(t0), we have Ifp (If and they are not empty.

(6) If |Ifp | = 1 for all p then the induction is finished.

(7) If there are paths p with |Ifp | > 1, we apply this procedure for such maps fp instead of f (take
lp1 ∈ Ifp , let (fp)−1(ιlp1 (X)) = [tp1 7→ vp1], etc.).

We call this procedure the splitting procedure of f . Even when If is infinite, if we reach the situation

Yoshida 17–15

such that all maps fp appearing in the splitting procedure satisfy the condition that Ifp is finite, then we
can conclude f ∈M . Thus our aim is to show that we can always reach this situation, by contradiction.

Suppose that we cannot reach this situation. Then the splitting procedure continues infinitely and
we get a infinite sequence (σ1, in)(σ2, i2) · · · such that for all n ≥ 1, the set If (σ1,i1)···(σn,in) is infinite.
Since this sequence is given by the splitting procedure of f , there exists the unique natural number n1

such that the sequence p1 := (σ1, i1) · · · (σn1 , in1) ∈ Path(t0) and we apply (7) to the map fp1 ; take
appropriate l1 ∈ I (especially l1 6= l0), t1, v1 as f−1

0 (ιl1(X)) = [t1 7→ v1] then we get the sequence
p2 := (σn1+1, in1+1) · · · (σn2 , in2) ∈ Path(t1) for the unique n2. Therefore we are in the following situation:

∃infinite sequence of natural numbers 0 = n0 < n1 < n2 < · · · ,
∀j ≥ 0, ∃lj ∈ I (different from each other), ∃term tj , ∃variable vj ,

pj+1 := (σnj+1, inj+1) · · · (σnj+1 , inj+1) ∈ Path(tj),

(f qj)−1(ιlj (X)) = [tj 7→ vj] 6= ∅, ST,

f qj = [f qj , tj],

Ifqj is infinite.

(qj := (σ1, i1) · · · (σnj , inj) = p1 · · · pj , q0 = p0 := ε.)

If a state s satisfies path(tj , s) = pj+1 then JtjK(s) 6= vj i.e. f qj (s) /∈ ιlj (X): because if JtjK(s) = vj for
this s, then for all state s′, JtjK(pj+1s′) = vj and this implies f qj+1(s′) = f qj ·pj+1(s) = f qj (pj+1s′) ∈ ιlj (X),
contradicts to the assumption that Ifqj+1 is infinite.

By extending this argument, for a state s′ := qj+1s (s is an arbitrary state), we can show that f(s′)
does not belong to any of ιl0(X), . . . ιlj (X). For example, when j = 1, then s′ = p1·p2s and it is clear that
f(s′) /∈ ιl0(X) by path(t0, s

′) = p1; for ιl1(X), we can calculate that f(s′) = [f, t0](s′) = fp1(p2s) = f q1(p2s),
thus f(s′) ∈ ιl1(X) iff f q1(p2s) ∈ ιl1(X) but the latter is false.

Then if we can construct a state s′ such as p1·p2···s (this notation is informal), we expect that f(s′)
does not belong to ιlj (X) for all j. Assume we have such a state s′, and let f(s′) ∈ ιl(X) for l ∈ I, which
satisfies l 6= lj for all j. By the construction of the sequence (σ1, i1)(σ2, i2) · · · , we may have to observe an
infinite behavior of a given state s′′ to decide whether f(s′′) ∈ ιl(X). This contradicts to the continuity of
f on sub-basis.

For lack of space, we only explain the construction of such a state and the outline of derivation of a
contradiction.

Definition 5.13 For any state s ∈ ST and any infinite sequence
−−→
(τ, i) = (τ1, i1)(τ2, i2) · · · , where τk is a

operation symbol in T and ik ∈ |τk| for all k, we define a new state
−−→
(τ,i)s as the function Σ∗T →

∏
σ∈ΣT

|σ|:

−−→
(τ,i)s(−→x) :=

{
s(ε)[τk → ik] (−→x = τ1 · · · τk−1)

s(−→y) (−→x = τ1 · · · τk−1
−→y , y1 6= τk) (k ≥ 1)

We define the infinite sequence
−−−→
(τ, i)k for a natural number k ≥ 1 and a infinite sequence

−−→
(τ, i) =

(τn, in)n≥1 as:

−−−→
(τ, i)k := (τn, in)n≥k.

Lemma 5.14 For any state s ∈ ST and any infinite sequence
−−→
(τ, i),

oτ1(
−−→
(τ,i)s) = i1, ∂τ1(

−−→
(τ,i)s) =

−−−→
(τ,i)2s,

17–16 Continuous Functions on Final Comodels of Free Algebraic Theories

and inductively, for each k ≥ 1,

oτk(∂τk−1
· · · ∂τ1(

−−→
(τ,i)s)) = ik

∂τk · · · ∂τ1(
−−→
(τ,i)s) =

−−−−−→
(τ,i)k+1 s.

Consider the infinite sequence
−−−→
(σ, i) constructed by the splitting procedure of f0 and fix a state s. When

we abbreviate the composition ∂σnj · · · ∂σn1 as ∂j (∂0 is the identity on ST), then by the above lemma, for

all j,

path(tj , ∂j(
−−→
(σ,i)s)) = (σnj+1, inj+1) · · · (σnj+1 , inj+1) = pj+1. (4)

This implies f(
−−→
(σ,i)s) /∈ ιlj (X) for all j: we can show by easy induction on j that f(

−−→
(σ,i)s) = f qj (∂j(

−−→
(σ,i)s))

for each j, and then by (4), f qj (∂j(
−−→
(σ,i)s)) /∈ ιlj (X).

Let l ∈ I be the index such that f(
−−→
(σ,i)s) ∈ ιl(X), then l 6= lj for all j. By the continuity of f ,

f−1(ιl(X)) = [t 7→ v] for some t and v. We show, by induction on j ≥ 1, that each qj is a prefix of the

path path(t,
−−→
(σ,i)s) and therefore the length of path(t,

−−→
(σ,i)s) is infinite, this is irrational.

We have reached the contradiction. Thus, even if If is infinite, the splitting procedure of f comes down
to the finite case and therefore f ∈M . This implies M = Sub(ST, X), we complete the proof of Theorem
5.4.

To complete the proof of that the functor Sub(ST,) preserves copowers of simple comodels (the part
(II) of the overview), we show the existence of the mediating morphism. In the proof below, we use the
fact that M = Sub(ST, X) we have shown above and thus we assume X ∈ Sub has a simple T′-comodel
structure.

Proposition 5.15 (the existence of mediating morphism) Assume that X ∈ Sub has a simple T′-
comodel structure. If there is a family of T-model map

(pi : Sub(ST, X)→ Y)i∈I

then there is a T-model map
p : Sub(ST, I ·X)→ Y

such that pi = p ◦ (ιi ◦ ()) for all i ∈ I.

Proof. Let N be the free T-model on the set Sub(ST, X)× I. By freeness, we have the unique T-model
map β : N → Sub(ST, X) with β(f, i) = ιif and the unique map p′ : N → Y with p′(f, i) = pi(f). It
suffices to show that there is a factorization p of p′ through β i.e. p′ = p ◦ β. By the proof of the above
theorem, β is epimorphic. So, it suffices to show that if x, y ∈ N satisfy β(x) = β(y), then they satisfy
p′(x) = p′(y). We can do this by induction on the total number of operation symbols in T-terms x, y. 2

Now we have completed all of the steps described in the overview and reached the goal:

Theorem 5.16 For free theories T, T′, the set Sub(ST, ST′) appears as the final T-T′-bimodel with T-model
structure maps (splitσ)σ∈ΣT and T′-comodel structure maps

Sub(ST, ST′)
JτKST′ ◦()−−−−−−→ Sub(ST, |τ | · ST′)

∼=−→ |τ | · Sub(ST, ST′)

for τ ∈ ΣT′, where the first part is postcomposition with the T′-comodel structure map JτKST′ of the final
T′-comodel ST′ and the second part is the canonical isomorphism coming from the fact that Sub(ST,) :
Sub →Mod(T) preserves copowers.

Yoshida 17–17

Finally, we describe the relation between the final residual comodel IT,T′ and the final bimodel Sub(ST, ST′).
In section 4, we constructed reflect : IT,T′ → Sub(ST, ST′). We can also define a map of converse direction
reify : Sub(ST, ST′) → IT,T′ . This is because each T-T′-bimodel equips a T-residual T′-comodel structure.
We can show that the composition reflect ◦ reify is the identity on Sub(ST, ST′). This establishes the
complete representation of Sub(ST, ST′) by IT,T′ . The argument is the same as [5].

6 Conclusion and Future Work

Our main contribution is giving a comodel-theoretic characterization of Sub(ST, ST′), which is a subset of
Top(ST, ST′). Explicitly, Sub(ST, ST′) can appear as the final T-T′-bimodel. Additionally, we constructed
maps

Sub(ST, ST′) IT,T′ ,
reflect

reify

where IT,T′ is the underlying set of the final T-residual T′-comodel and we identify Sub(ST, ST′) with the
final T-T′-bimodel. Then we showed that the composition reflect ◦ reify is the identity on Sub(ST, ST′),
this implies the completeness of reflect. A further generalization is required in order to give a complete
representation of Top(ST, ST′). In [6], Ghani et al. gave a coalgebraic representation of continuous functions
on final coalgebras of various functors but they did not show its completeness. On the other hand, although
we show a kind of complete correspondence, this does not consider the whole set of continuous functions.

Our second contribution is an analysis of the final comodel of a free algebraic theory and functions
continuous on sub-basis from it. During the proof in Section 5, we defined several notions such as the
continuous function fσ,i and the state σ,is. We expect that they and the ideas underlying them are useful
when studying arbitrary continuous functions or investigating the case of non-free algebraic theories.

According to [9], transducers with backtracking characterize continuous functions between the set of
trees. After submitting this article, we established a retraction between appropriate transducers and the
residual comodels. We hope to report this result elsewhere.

When we try to generalize our argument to the case of non-free algebraic theories, there are many
difficulties. One is the question whether bimodels can be seen as residual comodels (the latter of Lemma
4.7). This is a key point to define the map reify. Of course, there can be unnoticed issues. We should
carefully analyse our proofs and we would like to identify algebraic theories in which our argument is
effective.

Acknowledgements

I am grateful to Soichiro Fujii for suggesting the topic treated in this paper. He and my supervisor
Masahito Hasegawa helped me in many ways, and discussion with them were very meaningful. Finally, I
would like to thank my advisors and colleagues for broadening and deepening my knowledge.

References

[1] Béal, M.-P. and O. Carton, Determinization of transducers over finite and infinite words, Theoretical Computer Science
289 (2002), pp. 225–251.
https://doi.org/10.1016/S0304-3975(01)00271-7

[2] Capretta, V., G. Hutton and M. Jaskelioff, Contractive functions on infinite data structures, in: Proceedings of the 28th
Symposium on the Implementation and Application of Functional Programming Languages, IFL 2016 (2016).
https://doi.org/10.1145/3064899.3064900

[3] Freyd, P., Algebra valued functors in general and tensor products in particular, Colloquium Mathematicae 14 (1966),
pp. 89–106.
https://eudml.org/doc/262988#reverseReferences

https://doi.org/10.1016/S0304-3975(01)00271-7
https://doi.org/10.1145/3064899.3064900
https://eudml.org/doc/262988#reverseReferences

17–18 Continuous Functions on Final Comodels of Free Algebraic Theories

[4] Garner, R., The costructure-cosemantics adjunction for comodels for computational effects, Mathematical Structures in
Computer Science (2021), pp. 1–46.
https://doi.org/10.1017/S0960129521000219

[5] Garner, R., Stream processors and comodels, in: F. Gadducci and A. Silva, editors, 9th Conference on Algebra and
Coalgebra in Computer Science, CALCO 2021, August 31 to September 3, 2021, Salzburg, Austria, LIPIcs 211 (2021),
pp. 15:1–15:17.
https://doi.org/10.4230/LIPIcs.CALCO.2021.15

[6] Ghani, N., P. Hancock and D. Pattinson, Continuous functions on final coalgebras, Electr. Notes Theor. Comput. Sci.
249 (2009), pp. 3–18.

[7] Ghani, N., P. G. Hancock and D. Pattinson, Representations of stream processors using nested fixed points, Logical
Methods in Computer Science 5 (2009).
http://arxiv.org/abs/0905.4813

[8] Ginsburg, S. and S. Greibach, Abstract families of languages, in: Proceedings of the 8th Annual Symposium on Switching
and Automata Theory (SWAT 1967), FOCS ’67 (1967), pp. 128–139.
https://doi.org/10.1109/FOCS.1967.3

[9] Hyvernat, P., Representing continuous functions between greatest fixed points of indexed containers, Logical Methods in
Computer Science Volume 17, Issue 3 (2021).
https://doi.org/10.46298/lmcs-17(3:13)2021

[10] Jacobs, B., “Introduction to Coalgebra: Towards Mathematics of States and Observation,” Cambridge Tracts in
Theoretical Computer Science, Cambridge University Press, 2016. ISBN 978-1107177895.

[11] Jacobs, B. and J. J. M. M. Rutten, A tutorial on (co)algebras and (co)induction, Bulletin of The European Association
for Theoretical Computer Science (1997). Available online at
http://www.cs.ru.nl/~bart/PAPERS/JR.pdf

[12] Katsumata, S.-y., E. Rivas and T. Uustalu, Interaction laws of monads and comonads, CoRR abs/1912.13477 (2019).
http://arxiv.org/abs/1912.13477

[13] Moggi, E., Notions of computation and monads, Information and Computation 93 (1991), pp. 55–92.
https://doi.org/10.1016/0890-5401(91)90052-4

[14] Plotkin, G. and J. Power, Notions of computation determine monads, Lecture Notes in Computer Science 2303, 2001.
https://doi.org/10.1007/3-540-45931-6_24

[15] Plotkin, G. and J. Power, Tensors of comodels and models for operational semantics, Electronic Notes in Theoretical
Computer Science 218 (2008), pp. 295–311.
https://doi.org/10.1016/j.entcs.2008.10.018

[16] Power, J. and O. Shkaravska, From Comodels to Coalgebras: State and Arrays, Electronic Notes in Theoretical Computer
Science 106 (2004), pp. 297–314.
https://doi.org/10.1016/j.entcs.2004.02.041

[17] Rutten, J. J. M. M., Universal coalgebra: A theory of systems, Theoretical Computer Science 249 (2000), pp. 3–80.
https://doi.org/10.1016/S0304-3975(00)00056-6

[18] Uustalu, T., Stateful Runners of Effectful Computations, Electronic Notes in Theoretical Computer Science 319 (2015),
pp. 403–421.
https://doi.org/10.1016/j.entcs.2015.12.024

https://doi.org/10.1017/S0960129521000219
https://doi.org/10.4230/LIPIcs.CALCO.2021.15
http://arxiv.org/abs/0905.4813
https://doi.org/10.1109/FOCS.1967.3
https://doi.org/10.46298/lmcs-17(3:13)2021
http://www.cs.ru.nl/~bart/PAPERS/JR.pdf
http://arxiv.org/abs/1912.13477
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1016/j.entcs.2008.10.018
https://doi.org/10.1016/j.entcs.2004.02.041
https://doi.org/10.1016/S0304-3975(00)00056-6
https://doi.org/10.1016/j.entcs.2015.12.024

	1 Introduction
	1.1 Background and Our Result
	1.2 Outline of The Paper
	1.3 Related Work

	2 Algebraic Theories and Their (Co)Models
	3 Operational Sub-basis on Comodels
	4 Residual Comodel and Continuous Functions
	5 The Final Bimodel of Free Theories
	6 Conclusion and Future Work
	References

