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Abstract

The Hofmann-Mislove theorem states that in a sober space, the nonempty Scott open filters of its open set lattice correspond
bijectively to its compacts saturated sets. In this paper, the concept of c-well-filtered spaces is introduced. We show that
a retract of a c-well-filtered space is c-well-filtered and a locally Lindelöf and c-well-filtered P -space is countably sober. In
particular, we obtain a Hofmann-Mislove theorem for c-well-filtered spaces.
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1 Introduction

The Hofmann-Mislove Theorem plays an important role in the study of the basic topological theorems
concerning sober spaces and illustrates the close relationship between domain theory and topology. It
states that there exists a bijection between the nonempty Scott open filters on the open set lattice for
a sober space X and the compact saturated subsets ([1,5]). Moreover, it also declares that there is a
bijection between the family of nonempty Scott open filters of the compact saturated sets and the open
set lattice in a locally compact sober space X.

In recent years, some researchers have generalized the Hofmann-Mislove Theorem to some other topo-
logical spaces ([7,8,13,15,16,17]). For example, A. Jung gave an analogy result of the Hofmann-Mislove
theorem for bisober spaces in [7]. In [13], M. Schröder proved that there exists a continuous retraction from
the family OO+(X) of all nonempty σ-Scott-open collections of open sets to the upper space K(X) of all
countably-compact sets in a sequentially Hausdorff sequential space X. J.B. Yang and J.M. Shi obtained
that in a countably sober space, a Scott open countable filter of open set lattice is precisely a compact
saturated set in [17]. The motivation of this paper is to establish the relationship between the open set
lattice and the set of all σ-Scott-open countable filters of saturated Lindelöf sets in a c-well-filtered space.

The remaining parts of this paper are organized as follows. Section 2 recalls some basic concepts and
results used in this paper. In Section 3, we define a new notion of c-well-filtered spaces and investigate
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its basic properties. Particularly, we prove that c-well-filteredness is hereditary for saturated subsets and
a retract of a c-well-filtered space is c-well-filtered. In Section 4, we obtain a Hofmann-Mislove Theorem
for c-well-filtered spaces, which states that there is a bijection between the open set lattice and the set of
all σ-Scott-open countable filters of saturated Lindelöf sets.

2 Preliminaries

We refer to [1,4,10] for the standard definitions and notations of order theory and domain theory, and
to [2,3,11] for topology.

Let X be a set. We denote the family of all finite subsets (resp., countable subsets) of X by FinX (resp.,
CountX). Let L be a poset. A nonempty subset D ⊆ L is countably directed if for every E ∈ CountD,
there exists d ∈ D such that E ⊆ ↓d. Countably filtered is defined dually. A nonempty subset F ⊆ L
is called a countable filter if it is a countably filtered upper set. A poset L is called a countably directed
complete poset if every countably directed subset D ⊆ L has a least upper bound supD in L. An upper
set U of L is σ-Scott open if for every countably directed subset D ⊆ L, supD ∈ U implies D ∩ U 6= ∅.
All σ-Scott open subsets of L form a topology, called the σ-Scott topology and denoted as σc(L).

Let L be a poset. The symbol σ(L) denotes the Scott topology consisting of all Scott open subsets of
L. The space ΣL = (L, σ(L)) is called the Scott space of L.

Let X be a topological space and O(X) the open set lattice. A subset A of X is a Lindelöf set if each
open cover U of A has a countable subcover. We denote the set of all compact saturated (resp., saturated
Lindelöf) subsets of X by Q(X) (resp., LQ(X)). A topological space X is well-filtered iff for every filtered
family K of Q(X) and for every open subset U of X, if

⋂
K ⊆ U , then K ⊆ U for some K ∈ K. A

topological space X is locally Lindelöf if for every open subset U of X and for every point x ∈ U , there
exists K ∈ LQ(X) such that x ∈ int(K) ⊆ K ⊆ U . A point p ∈ X is called a P -point if its neighbourhood
system is closed under countable intersection. A topological space X is called a P -space if every point in
X is a P -point.

In what follows, we will give some results on Lindelöf sets.

Proposition 2.1 Let X be a topological space. A subset K of X is a Lindelöf set if and only if for every
countably directed family {Ui}i∈I of open subsets of X, if K ⊆

⋃
i∈I Ui, then K ⊆ Ui for some i ∈ I.

Proof. (If part) Let U be an open cover of K. Take V = {Uα : Uα =
⋃

i∈N Ui, Ui ∈ U , α ∈ I}, where I
is an index set. Then V is a countably directed family of open subsets of X and

⋃
V =

⋃
U . Thus there

exists α ∈ I such that K ⊆ Uα, which means U has a countable subcover.
(Only if part) It is obvious by the countably directedness of {Ui}i∈I . ✷

Proposition 2.2 Let X be a topological space. A subset K of X is a Lindelöf set if and only if for every
countably filtered family C of closed subsets of X, if K ∩ C 6= ∅ for all C ∈ C, then K ∩

⋂
C 6= ∅.

By Proposition 2.2, we get immediately the following corollary.

Corollary 2.3 Let X be a topological space. If K is a Lindelöf subset of X and C is a closed subset of
X, then K ∩ C is a Lindelöf set.

Proposition 2.4 Let f : X → Y be a continuous map. If C is a Lindelöf subset of X, then f(C) is a
Lindelöf set of Y .

Proposition 2.5 Let X be a Lindelöf space. Then every closed subset F of X is a Lindelöf set.

3 c-well-filtered spaces

In this section, we introduce a notion of c-well-filtered spaces and discuss its some basic properties.

Definition 3.1 A topological space X is c-well-filtered if for every countably filtered family {Ki}i∈I of
saturated Lindelöf subsets of X and each open subset U with

⋂
i∈I Ki ⊆ U , there is a Ki0 ⊆ U for some

i0 ∈ I .
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Proposition 3.2 Suppose that X is a countable set. Then every topological space (X, τ) is c-well-filtered.

Proof. Obviously, each subset of X is a Lindelöf set. Hence LQ(X) = {↑K : K ⊆ X}. Let K be a
countably filtered family of LQ(X) and U ∈ τ with

⋂
K ⊆ U . For every nonempty chain C in K, there

exists K ∈ K such that K is a lower bound of C by the countably filteredness of K . By the order-
dual of Zorn’s Lemma, K contains a minimal element K0. Hence, K0 =

⋂
K ⊆ U . Therefore, (X, τ) is

c-well-filtered. ✷

The following example shows that c-well-filtered spaces are not always well-filtered spaces.

Example 3.3 Let J = N× (N∪{ω}) with the partial order defined by (j, k) ≤ (m,n) iff j = m and k ≤ n,
or n = ω and k ≤ ω, where J is a well-known dcpo constructed by Johnstone in [6]. It is easy to see that
J is countable. By Proposition 3.2, ΣJ is a c-well-filtered space. But ΣJ is not a well-filtered space (see [9,
Example 3.1]).

Conversely, a well-filtered space may not be a c-well-filtered space.

Example 3.4 Consider the real number set R with the co-countable topology τcoc, where τcoc = {U ⊆ R :
R\U is countable}

⋃
{∅}. It is known that the topological space (R, τcoc) is a well-filtered T1-space (see [12,

Example 3.14]).
Next, we show that all subsets of R are saturated Lindelöf sets. Let K be a subset of R and assume that

U is an open cover of K. Given U ∈ U , then there exists a countable subset C of R such that U = R\C
and K = (K ∩ C) ∪ (K\C) ⊆

⋃
U . It is obvious that K\C ⊆ R\C = U . Since K ∩ C is countable and

K ∩ C ⊆
⋃

U , there exist countably many members of U whose union contains K ∩ C. Hence, K is a
saturated Lindelöf set.

Finally, we show that (R, τcoc) is not c-well-filtered. LetK = {R\C : C is countable}. ThenK ⊆ LQ(R).
Obviously, K is countably filtered and

⋂
K = ∅. However, there is no K ∈ K such that K = ∅. Therefore,

(R, τcoc) is not c-well-filtered.

Let X be a T0-space. The specialization order ≤ on X is defined as x ≤ y if and only if x ∈ cl(y).
A T0-space X is called a d-space if X is a directed complete poset under the specialization order and
O(X) ⊆ σ(X).

We know that each well-filtered space is a d-space. However, the following example shows that a
c-well-filtered space may not be a d-space.

Example 3.5 Let L = N ∪ {ω} with the order 1 < 2 < · · · < n < · · · < ω. Then the Alexandroff space
ΓL = (L, a(L)) is a c-well-filtered space by Proposition 3.2 but not a d-space (see [14, Proposition 6.5]).

Similar to well-filtered spaces, the following results hold for c-well-filtered spaces.

Proposition 3.6 A topological space X is c-well-filtered if and only if for every closed subset C of X
and each countably filtered family {Ki}i∈I of saturated Lindelöf subsets, if C ∩Ki 6= ∅ for all i ∈ I, then⋂

i∈I Ki ∩ C 6= ∅.

Proposition 3.7 Let (X, τ) be a c-well-filtered T0-space. Then Ω(X) is a countably directed complete
poset and τ ⊆ σc(Ω(X)), where Ω(X) = (X,≤τ ),≤τ is the specialization order of (X, τ).

Proof. Let D be a countably directed subset of Ω(X). Take K = {↑τd : d ∈ D}, then K is a countably
filtered family of saturated Lindelöf subsets of X and

⋂
K 6= ∅. Suppose that D has no least upper bound.

Then for any x ∈
⋂

K, there exists y ∈
⋂

K such that x � y. Hence, x ∈ X\↓τy. So we have x /∈ clτD by
the fact that (X\↓τy)∩D = ∅. Thus

⋂
K∩ clτD = ∅, i.e.

⋂
K ⊆ X\clτD. By the c-well-filteredness of X,

we have ↑τd ⊆ X\clτD ⊆ X\D for some d ∈ D. This is a contradiction. Therefore, Ω(X) is a countably
directed complete poset.

Let U ∈ τ andD be a countably directed subset of Ω(X) with supD ∈ U . Then
⋂

d∈D ↑τd = ↑τ supD ⊆
U . Thus we have ↑τd ⊆ U for some d ∈ D by the c-well-filteredness of X. Therefore, U ∈ σc(Ω(X)). ✷

Proposition 3.8 Let (X, τ) be a c-well-filtered space and A a saturated subset of X. Then the subspace
(A, τA) is c-well-filtered.
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Proof. Let K be a countably filtered family of saturated Lindelöf subsets of A and V an open subset of A
with

⋂
K ⊆ V . Then there exists an open subset W of X such that V = W ∩A. Hence,

⋂
K ⊆ W . Now,

we claim that K is a saturated Lindelöf subset of X for all K ∈ K. It is easy to see that K is a Lindelöf
subset of X. So we need only to show that K = ↑XK for all K ∈ K. Assume x ∈ ↑XK. Then there exists
y ∈ K such that y ≤ x. As A = ↑XA, we obtain that x ∈ A. Thus x ∈ K, which implies K = ↑XK. So
K is a countably filtered family of LQ(X). By the c-well-filteredness of X, there exists K ∈ K such that
K ⊆ W . Hence, K ⊆ W ∩A = V . This implies that (A, τA) is c-well-filtered. ✷

A retract of a topological space X is a topological space Y such that there are two continuous mappings
r : X → Y and s : Y → X such that r ◦ s = idY .

Proposition 3.9 A retract of a c-well-filtered space is c-well-filtered.

Proof. Let X,Y be topological spaces. Assume that Y is c-well-filtered and there are continuous maps
r : Y → X and s : X → Y such that r ◦ s = idX . Let {Ki}i∈I be a countably filtered family of saturated
Lindelöf subsets of X and U an open subset of X with

⋂
i∈I Ki ⊆ U . We know s(Ki) is a Lindelöf subset

of Y for all i ∈ I by Proposition 2.4. Thus {↑s(Ki)}i∈I is a countably filtered family of saturated Lindelöf
subsets of Y . Next, we show that ↑r(↑s(Ki)) ⊆ Ki for all i ∈ I. Take x ∈ ↑r(↑s(Ki)), there exists y ∈ Ki

such that r(s(y)) ≤ x, i.e. y ≤ x. So we have x ∈ Ki. Therefore,

⋂

i∈I

r(↑s(Ki)) ⊆
⋂

i∈I

↑r(↑s(Ki)) ⊆
⋂

i∈I

Ki ⊆ U.

Then ⋂

i∈I

↑s(Ki) ⊆
⋂

i∈I

r−1(r(↑s(Ki))) = r−1(
⋂

i∈I

r(↑s(Ki)) ⊆ r−1(U).

By the c-well-filteredness of Y , we have s(Ki) ⊆ ↑s(Ki) ⊆ r−1(U) for some i ∈ I. Hence,

Ki ⊆ s−1(s(Ki)) ⊆ s−1(r−1(U)) = (r ◦ s)−1(U) = U.

So X is c-well-filtered. ✷

A topological space X is countably sober if and only if for every countably irreducible closed subset A
of X, there exists a unique element x ∈ X such that A = ↓x (see [17]).

Proposition 3.10 Let X be a P -space. If X is a locally Lindelöf and c-well-filtered space, then X is
countably sober.

Proof. Let A be a countably irreducible closed subset of X and U = {U ∈ O(X) : A ∩ U 6= ∅}. It is
easy to show that U is a countable filter. Let x ∈ A ∩ U . Then there exists Kx,U ∈ LQ(X) such that
x ∈ int(Kx,U) ⊆ Kx,U ⊆ U by the fact that X is locally Lindelöf.

Now, to show the proposition take F = {Kx,U : x ∈ A ∩ U}. Next, we show that F is a countably
filtered family of LQ(X). Suppose that {Kxi,Ui

}i∈Z+
is a countable family of F . Then for any i ∈ Z+,

A ∩ int(Kxi,Ui
) 6= ∅. Using the fact that A is countably irreducible, we have A ∩

⋂
i∈Z+

int(Kxi,Ui
) 6= ∅.

Let W =
⋂

i∈Z+
int(Kxi,Ui

). Since X is a P -space, we have that W is an open subset by [17, Proposition

4.3]. Hence, there exists z ∈ A ∩W , Kz,W ∈ LQ(X) such that z ∈ int(Kz,W ) ⊆ Kz,W ⊆ W . So we have
Kz,W ∈ F and Kz,W ⊆

⋂
i∈Z+

Kxi,Ui
, which imply F is countably filtered.

Since A ∩Kx,U 6= ∅ for all Kx,U ∈ F , we have A ∩
⋂

Kx,U 6= ∅ by Proposition 3.6. Hence, there exists
a ∈ A∩

⋂
Kx,U . We only need to show that A = ↓a. Suppose that there is a x ∈ A such that x � a. Thus

there exists an open subset U of X and x ∈ U such that a /∈ U . Since X is a locally Lindelöf space, there
exists Kx,U ∈ LQ(X) such that x ∈ int(Kx,U ) ⊆ Kx,U ⊆ U . This implies that Kx,U ∈ F . Thus a ∈ Kx,U ,
which is a contradiction. Therefore, A = ↓a. ✷
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4 A Hofmann-Mislove theorem

In this section, we give a Hofmann-Mislove Theorem for c-well-filtered spaces.
Let L be a poset and x, y two elements in L. We say x is countably way-below y, written x ≪c y, if for

every countably directed subset D of L that has a least upper bound supD above y, there is an element
d ∈ D such that x ≤ d. Let ↓cx = {y ∈ L : y ≪c x}. A countably directed complete poset L is said to be
a countably approximating poset if ↓cx is countably directed and x = sup ↓cx for all x ∈ L (see [4]).

Definition 4.1 Let L be a poset. A σ-basis B of L is a subset of L such that for every x ∈ L, the collection
B ∩ ↓cx of all elements of the σ-basis countably way-below x is countably directed and x = sup(B ∩ ↓cx).

Lemma 4.2 A countably directed complete poset L has a σ-basis if and only if it is countably approximat-
ing.

Proof. If L is countably approximating, then L is a σ-basis. Conversely, assume that L has a σ-basis B,
then x is the least upper bound of B∩↓cx, which is a countably directed family of elements countably way-
below x. So, it is clear that x = sup ↓cx. Now, we claim that ↓cx is countably directed. Let E ∈ Count↓cx,
then e ≪c x for every e ∈ E. Thus there exists be ∈ B ∩ ↓cx such that e ≤ be for every e ∈ E. Since
B ∩ ↓cx is countably directed, there is a b ∈ B ∩ ↓cx such that be ≤ b for all e ∈ E. Hence, E ⊆ ↓b and
b ∈ ↓cx. This implies that ↓cx is countably directed and therefore we can conclude that L is countably
approximating. ✷

Proposition 4.3 Let L be a countably approximating poset with a countable σ-basis B. Then (L, σc(L))
is a c-well-filtered space.

Proof. Suppose that {Ki}i∈I is a countably filtered family of saturated Lindelöf subsets of L and U is
a σ-Scott open set with

⋂
i∈I Ki ⊆ U . It is easy to show that {Ki ∩ B}i∈I is a countably filtered family

of saturated Lindelöf subsets of B. Hence,
⋂

i∈I(Ki ∩ B) ⊆ U ∩ B. Then there exists io ∈ I such that
Ki0 ∩ B ⊆ U ∩ B since B with the inherited topology is c-well-filtered. Now, we claim that Ki0 ⊆ U .
Assume that Ki0 * U , then there is a t ∈ Ki0 such that t ∈ L\U . Since t = sup(B ∩ ↓ct) and L\U is a
σ-Scott closed set, we have that B ∩ ↓ct ⊆ L\U . Thus, we can imply that ↑y ∩ L\U ∩ B 6= Ø for every
y ∈ B ∩ ↓ct. And {↑y : y ∈ B ∩ ↓ct} is a countably filtered family of saturated Lindelöf subsets of B since
B ∩ ↓ct is countably directed. So,

⋂

y∈B∩↓
c
t

↑y ∩ L\U ∩B = ↑t ∩ L\U ∩B 6= Ø,

which contradicts t /∈ L\U ∩B. Therefore, Ki0 ⊆ U . So, we can conclude that (L, σc(L)) is a c-well-filtered
space. ✷

Let L be a complete lattice. If L is continuous, then L is countably approximating. And it is clear
that σ(L) ⊆ σc(L). So, we can obtain that the following corollary.

Corollary 4.4 Suppose that L is a continuous lattice with a countable σ-basis B, then (L, σ(L)) is a
c-well-filtered space.

Let X be a topological space. We discuss some properties of saturated Lindelöf subsets of X.

Proposition 4.5 Let X be a c-well-filtered space. Then K =
⋂

C is a nonempty saturated Lindelöf set
for each countable filter base C of nonempty saturated Lindelöf subsets of X. Hence, (LQ(X),⊇) is a
countably directed complete poset.

Proof. It is easy to see that K 6= ∅ and K is saturated. Thus we only need to prove that K is a Lindelöf
set. Let U be an open cover of K, i.e. K ⊆

⋃
U . Since X is c-well-filtered, there exists C ∈ C such that

C ⊆
⋃
U . So there exists countably many members of U whose union contains K by the fact that K ⊆ C

and C is a Lindelöf subset. Therefore, K is a nonempty saturated Lindelöf subset. ✷
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Proposition 4.6 Let X be a P -space.

(i) Let K1,K2 ∈ LQ(X) and consider the following statements:
(a) There exists U ∈ O(X) such that K1 ⊇ U ⊇ K2, i.e. int(K1) ⊇ K2;
(b) K1 ≪c K2 in LQ(X).

If X is c-well-filtered, then (a) ⇒ (b); if X is locally Lindelöf, then (b) ⇒ (a).

(ii) If X is a locally Lindelöf and c-well-filtered space, then (LQ(X),⊇) is a countably approximating poset.

Proof. (i) (a) ⇒ (b) Suppose that X is c-well-filtered and D is a countably directed subset of LQ(X)
with K2 ≤ supD. Using Proposition 4.5, we have supD =

⋂
D. Hence, K2 ⊇

⋂
D. It follows from (a)

that there exists an open set U of X such that K1 ⊇ U ⊇ K2 ⊇
⋂

D. Thus
⋂

D ⊆ int(K1) ⊆ K1. So
there exists D ∈ D such that D ⊆ int(K1) ⊆ K1 by the c-well-filteredness of X. Therefore, K1 ≤ D. This
implies that K1 ≪c K2.

(b) ⇒ (a) Let U ∈ O(X) and K2 ⊆ U . Since X is locally Lindelöf, there exists Kx ∈ LQ(X) such that
x ∈ int(Kx) ⊆ Kx ⊆ U for each x ∈ K2 ⊆ U . Thus

K2 ⊆
⋃

x∈K2

int(Kx) ⊆
⋃

x∈K2

Kx ⊆ U.

Since K2 is a Lindelöf subset, there exists countably many members of {Kx : x ∈ K2} such that

K2 ⊆
⋃

i∈Z+

int(Kxi
) ⊆

⋃

i∈Z+

Kxi
⊆ U.

Now, take QU =
⋃

i∈Z+
Kxi

and D = {QU : U ∈ O(X) and K2 ⊆ QU}. It is obvious that D 6= ∅ and

QU ∈ LQ(X) for all QU ∈ D.
We claim that D is countably directed. Suppose that {QUi

}i∈Z+
is a countable subset of D. Then

K2 ⊆
⋂

i∈Z+

int(QUi
) ⊆

⋂

i∈Z+

QUi
⊆

⋂

i∈Z+

Ui.

Let V =
⋂

i∈Z+
int(QUi

). Then V is an open subset of X by [17, Proposition 4.3]. From K2 ⊆ V we know

that there exists QV ∈ LQ(X) such that

K2 ⊆ int(QV ) ⊆ QV ⊆ V ⊆
⋂

i∈Z+

QUi
.

This implies QV ∈ D and so D is countably directed.
Now we prove that supD = K2. It is easy to see that K2 is an upper bound of D. Let K be another

upper bound of D. Suppose that K2 � K, i.e. K2 + K. Then there exists x ∈ K such that ↓x ∩K2 = ∅.
Hence, K2 ⊆ X\↓ x. So there exists Q ∈ LQ(X) such that K2 ⊆ int(Q) ⊆ Q ⊆ X\↓ x, which implies
Q ∈ D. This contradicts K ⊆ Q. Therefore, supD = K2.

Since K1 ≪c K2, there exists QU ∈ D such that K1 ≤ QU . Therefore, K1 ⊇ QU ⊇ int(QU ) ⊇ K2.
(ii) Let K ∈ LQ(X), ↓cK = {Q ∈ LQ(X) : Q ≪c K}. It is easy to see that sup ↓cK = K. Hence, it is

enough to show that ↓cK is countably directed. Suppose {Qi}i∈Z+
is a countable subset of ↓cK. Then for

any i ∈ Z+, there exists Ui ∈ O(X) such that Qi ⊇ Ui ⊇ K by (i). Thus K ⊆
⋂

i∈Z+
int(Qi) ⊆

⋂
i∈Z+

Qi.

Let V =
⋂

i∈Z+
int(Qi). Since X is a P -space, we have V is an open subset of X and K ⊆ V by [17,

Proposition 4.3]. So there exists QV ∈ LQ(X) such that K ⊆ int(QV ) ⊆ QV ⊆ V . This implies that
QV ∈ ↓cK. Therefore, we conclude that (LQ(X),⊇) is a countably approximating poset by Proposition
4.5. ✷
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Lemma 4.7 Let X be a c-well-filtered space and U ∈ O(X). Then the set

φ
′

(U) = {K ∈ LQ(X) : K ⊆ U}

is a σ-Scott open countable filter in (LQ(X),⊇).

Proof. It is obvious that φ
′

(U) is an upper set. Let {Ki}i∈I be a countably directed subset of LQ(X)

and supi∈I Ki =
⋂

i∈I Ki ∈ φ
′

(U). Then
⋂

i∈I Ki ⊆ U . Hence, there exists i0 ∈ I such that Ki0 ⊆ U by

the fact that X is a c-well-filtered space. So φ
′

(U) is a σ-Scott open subset. Now, we check that φ
′

(U)

is countably filtered. Let {Ki}i∈Z+
be a countable subset of φ

′

(U). Then infi∈Z+
Ki =

⋃
i∈Z+

Ki. Since

Ki ⊆ U for all i ∈ Z+, we have
⋃

i∈Z+
Ki ⊆ U . This implies that

⋃
i∈Z+

Ki ∈ φ
′

(U). Therefore, φ
′

(U) is

a σ-Scott open countable filter. ✷

Let X be a topological space. The set of all σ-Scott open countable filters of (LQ(X),⊇) is denoted
by OCFiltσ((LQ(X),⊇)). We have the following theorem.

Theorem 4.8 Let X be a P -space. If X is locally Lindelöf and c-well-filtered, then the mapping

φ
′

: O(X) → OCFiltσ((LQ(X),⊇)), φ
′

(U) = {K ∈ LQ(X) : K ⊆ U}

is an order isomorphism.

Proof. (1) φ
′

is surjective. Let F ∈ OCFiltσ((LQ(X),⊇)). Take U =
⋃

F . Now, we check that U is
an open subset of X. It is enough to show that U is a neighborhood of x for all x ∈ U . Assume x ∈ U .
Then there exists K ∈ F such that ↑x ⊆ K. Using the fact that F is an upper set, we have ↑x ∈ F . Let
D = {Q ∈ LQ(X) : x ∈ int(Q) ⊆ Q}. Since X is locally Lindelöf, we have that D 6= ∅. Now, we claim that
D is countably directed. Let {Qi}i∈Z+

be a countable subset of D. Then x ∈
⋂

i∈Z+
int(Qi) ⊆

⋂
i∈Z+

Qi.

As X is a P -space, we have
⋂

i∈Z+
int(Qi) is an open subset of X by [17, Proposition 4.3]. So there

exists Q ∈ LQ(X) such that x ∈ int(Q) ⊆ Q ⊆
⋂

i∈Z+
int(Qi), which implies that Q ∈ D. Thus

supD =
⋂

D = ↑x. Since F is a σ-Scott open subset, there exists Q ∈ D such that Q ∈ F . Therefore,
x ∈ int(Q) ⊆ Q ⊆ U , which implies that U is a neighborhood of x.

Next, we show that φ
′

(U) = F . Obviously, F ⊆ φ
′

(U). We only need to show that φ
′

(U) ⊆ F . Let

K ∈ φ
′

(U) and x ∈ K ⊆ U . Then there exists Kx ∈ F such that x ∈ int(Kx) ⊆ Kx. Hence, K ⊆
⋃

x∈K Kx.
So there exists a countable subset {Kxi

: i ∈ Z+} of {Kx : x ∈ K} such that K ⊆
⋃

i∈Z+
Kxi

by the fact

that K is a Lindelöf subset. Thus
⋃

i∈Z+
Kxi

∈ F because F is a countable filter. Therefore, K ∈ F .

(2) φ
′

is an order embedding, i.e. U1 ⊆ U2 ⇔ φ
′

(U1) ⊆ φ
′

(U2).
(⇒) It obviously holds.

(⇐) Suppose that U1 * U2. Then there exists u ∈ U1 such that u /∈ U2. Hence, ↑u ∈ φ
′

(U1) but

↑u /∈ φ
′

(U2), which is a contradiction. Thus U1 ⊆ U2 as desired. ✷
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