A Note on the Category of c-spaces

Zhenchao Lyu^{a,1,2} Xiaolin Xie^{a,1,3} Hui Kou^{a,1,4}

^a Department of Mathematics Sichuan University Chengdu, 610064, China

Abstract

We prove that the category of c-spaces with continuous maps is not cartesian closed. As a corollary, it follows that the category of locally finitary compact spaces with continuous maps also is not cartesian closed.

Keywords: directed space, c-space, cartesian closed, locally finitary compact

1 Introduction

Many people have been trying to extend domain theory to general topological spaces, see [6,4,7,9,2]. Directed spaces are introduced by Kou and Yu independently [12] in 2014 for generalizing the concept of Scott spaces, which is equivalent to that of T_0 monotone determined spaces introduced by Erné [5]. In the same paper Kou and Yu proved that the category of directed spaces with continuous maps (**DTop** for short) is cartesian closed. There are many important directed spaces in domain theory, for instance locally finitary compact spaces are directed spaces; in particular c-spaces and Alexandroff spaces are directed spaces. Since the category of continuous domains is not cartesian closed, and since the position of the category of c-spaces in the category of directed spaces is similar to that of continuous domains in dcpos [3], a natural question arises: Is the category of c-spaces cartesian closed? In this short note, we answer this question in the negative.

2 Preliminaries

We refer to [8,1,9] for the standard definitions and notations in order theory, topology and domain theory. A partially ordered set D is called a dcpo if every directed subset of D has a supremum in D. A upper set U is called a Scott open set if for any directed set $A \subseteq D$, $\bigvee A \in U$ implies A intersects U.

 $^{^1\,}$ Supported by the NSF of China (Nos. 11871353, 12001385) and "the Fundamental Research Funds for the Central Universities" No. 2021SCU12108

² Email: zhenchaolyu@scu.edu.cn

³ Email: xxldannyboy@163.com

⁴ Email: kouhui@scu.edu.cn

For a topological space X, we use $\mathcal{O}(X)$ to denote the lattice of open subsets of X. We require that all topological spaces are T_0 in this note. Let X be a T_0 space, the specializing order \leq is defined as follows : $x \leq y$ if x belongs to the closure of point y. A topological space is a *c-space* if for any $x \in X$ and any open neighbourhood U of x, there is a point $y \in U$ such that $x \in \text{int}(\uparrow y)$. A space X is locally finitary compact if for any $x \in X$ and its open neighborhood U, there is a finite subset F of U such that $x \in \text{int}(\uparrow F)$.

Let X be a T_0 space and \leq the specialization order over X. A topological space X is called a Scott space if (X, \leq) is a dcpo and the topology on X is equal to the Scott topology on (X, \leq) . Every directed set D of X under specialization order can be regarded as a monotone net, we say D converges to x iff for every open neighborhood U of $x, D \cap U \neq \emptyset$. We say that V is a directed open set of X if for all directed set D which converges to some point of V, then $D \cap V \neq \emptyset$. It is easy to see that every directed open set is an upper set.

Definition 2.1 [12] Let X be a T_0 space. If every directed open set of X is also an open set, then we say that X is a directed space.

There are many important spaces in domain theory which also are directed spaces.

Example 2.2 (i) Every poset with Scott topology is a directed space.

- (ii) All c-spaces are directed spaces. In particular, every Alexandroff space is a directed space.
- (iii) All locally finitary compact spaces are directed spaces. By the way, every c-space is locally finitary compact.

Next we introduce the concept of the exponential object in general category.

Definition 2.3 Given two objects X, Y in a category C with binary products, an exponential object, if it exists, is an object Y^X with a morphism $App: Y^X \times X \to Y$ such that for every morphism $f: Z \times X \to Y$, there is a unique morphism $\bar{f}: Z \to Y^X$ such that the following diagram commutes:

The following result describes the underlying set of the exponential object in **Top**.

Proposition 2.4 [9] Let C be any full subcategory of **Top** with finite products, and assume that $1 = \{\star\}$ is an object of C. Let X, Y be two objects of C that have an exponential object Y^X in C.

Then there is a unique homeomorphism $\theta: Y^X \to [X \to Y]$, for some unique topology on $[X \to Y]$ (the set of all continuous functions from X to Y), such that $App(h, x) = \theta(h)(x)$ for all $h \in Y^X, x \in X$. Moreover, $\overline{f}(z)$ is the image by θ^{-1} of $f(z, \underline{\cdot})$ for all $f: Z \times X \to Y, z \in Z$.

Remark: By the above result, we always let the exponential object in \mathcal{C} be the set $[X \to Y]$ with some unique topology if it exists.

Theorem 2.5 [12] The category of directed spaces and continuous maps is cartesian closed.

Next, we build a relationship between directed spaces and Scott spaces, which will be used later.

Definition 2.6 Let X be a T_0 space. If X with the specialization order is a dcpo and every open set of X is Scott open in (X, \leq) . Then we say that X is a d-space.

Lemma 2.7 A directed space is a Scott space iff it is a d-space.

Proof. We only need to show the "if" part. Let X be a d-space and a directed space, obviously every open set of X is Scott open of (X, \leq) since X is a d-space. Now take any Scott open set U of (X, \leq) and

for any directed set D converges to some point x of U. Assume that $D \cap U = \emptyset$, then $b = \bigvee^{\uparrow} D \notin U$. It follows that $x \in X \setminus \downarrow b$. Because D converges to x and $X \setminus \downarrow b$ is open in X, there is some $d \in D$ such that $d \in X \setminus \downarrow b$, a contradiction. Hence the assumption is wrong. It means that U is a directed open set of X. Since X is a directed space, the topology on X is exactly the Scott topology on (X, \leq) .

We list some results about separate continuity and joint continuity.

Theorem 2.8 [11] Let E be a T_0 space. The following conditions are equivalent:

- (i) E is locally finitary compact.
- (ii) For all T_0 space X, if a map from $X \times E$ is separately continuous, then it is jointly continuous.

Corollary 2.9 Let X be a c-space and Y a T_0 space. For any T_0 space Z, a map $f: X \times Y \to Z$ is continuous (i.e. jointly continuous) iff it is separately continuous.

3 The category of c-spaces

We now prove our main result.

Theorem 3.1 The category of c-spaces with continuous maps (CS for short) is not cartesian closed.

Proof. Let \mathbb{Z}^- be the set of non-positive integers with the Scott topology. Assume **CS** is a ccc. It is easy to see that the topological product $X \times Y$ is the categorical product because $X \times Y$ is a c-space. Since **CS** is cartesian closed, there exists exponential topology τ on $[\mathbb{Z}^- \to \mathbb{Z}^-]$, we denote by $[\mathbb{Z}^- \to \mathbb{Z}^-]_{\tau}$. Then for any c-space Y and any map $f: Y \times \mathbb{Z}^- \to \mathbb{Z}^-$, f is continuous iff $f: Y \to [\mathbb{Z}^- \to \mathbb{Z}^-]_{\tau}$ is continuous.

Claim 1: The specialization order on $[\mathbb{Z}^- \to \mathbb{Z}^-]_{\tau}$ is equal to the pointwise order.

For any $g_1, g_2 \in [\mathbb{Z}^- \to \mathbb{Z}^-]_{\tau}$ with $g_1 \leq_{\tau} g_2$ $(g_1 \neq g_2)$, take $Y = \mathbb{S}$ with Scott topology. A map $\theta \colon \mathbb{S} \to [\mathbb{Z}^- \to \mathbb{Z}^-]_{\tau}$ is defined as $\theta(1) = g_2, \theta(0) = g_1$. Then θ is continuous. Hence $\hat{\theta} \colon \mathbb{S} \times \mathbb{Z}^- \to \mathbb{Z}^-$ is continuous. It follows that

$$g_1(x) = \theta(0, x) \le \theta(1, x) = g_2(x)$$

for any $x \in X$.

For any $g_1, g_2 \in [\mathbb{Z}^- \to \mathbb{Z}^-]_{\tau}$ with $g_1 \leq g_2$, consider a continuous map $f: \mathbb{S} \times \mathbb{Z}^- \to \mathbb{Z}^-$ which is defined as $f(0, x) = g_1(x), f(1, x) = g_2(x) \ \forall x \in X$. It follows that the transpose map \bar{f} is continuous hence monotone, which implies that

$$g_1 = f(0) \leq_{\tau} f(1) = g_2.$$

Claim 2: $[\mathbb{Z}^- \to \mathbb{Z}^-]_{\tau}$ is a d-space.

We only need to show that every directed subfamily $(g_i)_{i\in I}$ of $[\mathbb{Z}^- \to \mathbb{Z}^-]_{\tau}$ converges to its supremum $g = \bigvee_{i\in I}^{\uparrow} g_i$. Let Y be the set $I \cup \{\infty\}$ with the topology generated by $\{\uparrow i \cup \{\infty\} : i \in I\}$. Obviously Y is a c-space. Consider a map $f: Y \times \mathbb{Z}^- \to \mathbb{Z}^-$ which is defined as $f(\infty, x) = g(x), f(i, x) = g_i(x)$. It is easy to see that f is continuous since f is continuous iff it is separately continuous by 2.9. It follows that $\overline{f}: Y \to [\mathbb{Z}^- \to \mathbb{Z}^-]_{\tau}$ is continuous, and so $(g_i = \overline{f}(i))_i$ converges to $\overline{f}(\infty) = g$.

Therefore τ is just the Scott topology on $[\mathbb{Z}^- \to \mathbb{Z}^-]$. But from [10] we know that $[\mathbb{Z}^- \to \mathbb{Z}^-]$ is not a continuous domain, hence it is not a c-space, a contradiction.

Theorem 3.2 [8] A meet continuous dcpo is a continuous dcpo iff it is a quasicontinuous dcpo.

Notice that $[\mathbb{Z}^- \to \mathbb{Z}^-]$ is a meet continuous semilattice which is not continuous, hence it is not a quasicontinuous dcpo. Then we have the following result.

Corollary 3.3 The category of locally finitary compact spaces with continuous maps is not cartesian closed.

Acknowledgement

We are grateful to the anonymous referees for useful comments and suggestions. We also would like to thank Yuxu Chen for helpful discussions.

References

- [1] Abramsky, S. and A. Jung, Domain Theory, in: Handbook of Logic in Computer Science, Vol. 3, pages 1-168, Oxford Univ. Press, New York (1994). https://www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf
- Battenfeld, I., M. Schröder and A. Simpson, A convenient category of domains, Electronic Notes in Theoretical Computer Science 172, pages 69–99 (2007). https://doi.org/10.1016/j.entcs.2007.02.004
- [3] Chen, Y., H. Kou and Z. Lyu, Continuity on directed spaces (2022). https://doi.org/arXiv:2203.06344 [math.GN]
- [4] Erné, M., The ABC of order and topology, Category theory at work 18, pages 57-83 (1991).
- [5] Erné, M., Infinite distributive laws versus local connectedness and compactness properties, Topology and Its Applications 156, pages 2054–2069 (2009). https://doi.org/10.1016/j.topol.2009.03.029
- [6] Ershov, Y. L., The theory of A-spaces, Algebra and Logic 12, pages 209-232 (1973). https://doi.org/10.1007/BF02218570
- [7] Ershov, Y. L., Theory of domains and nearby, Springer Berlin Heidelberg (1993). https://doi.org/10.1007/BFb0039696
- [8] Gierz, G., K. H. Hofmann, K. Keimel, J. D. Lawson, M. Mislove and D. S. Scott, Continuous Lattices and Domains, volume 93 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge (2003), ISBN 0-521-80338-1. https://doi.org/10.1017/CB09780511542725
- [9] Goubault-Larrecq, J., Non-Hausdorff Topology and Domain Theory, volume 22 of New Mathematical Monographs, Cambridge University Press, Cambridge (2013), ISBN 978-1-107-03413-6. https://doi.org/10.1017/CB09781139524438
- [10] Jung, A., Cartesian closed categories of domains, 66, Citeseer (1989).
- [11] Lawson, J. D., T_0 -spaces and pointwise convergence, Topology and Its Applications **21**, pages 73–76 (1985). 10.1016/0166-8641(85)90059-8
- [12] Yu, Y. and H. Kou, Directed spaces defined through T_0 spaces with specialization order, Journal of Sichuan University(Natural Science Edition)(Chinese) **52**, pages 217–222 (2015).