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Abstract

In this paper, we introduce the concept of d∗-spaces. We find that strong d-spaces are d∗-spaces, but the converse does not
hold. We give a characterization for a topological space to be a d∗-space. We prove that each retract of a d∗-space is a
d∗-space. We obtain the result that for any T0 space X and Y , if the function space TOP (X,Y ) endowed with the Isbell
topology is a d∗-space, then Y is a d∗-space. We also show that for any T0 space X, if the Smyth power space Qv(X) is
a d∗-space, then X is a d∗-space. Finally, we give an example of a d∗-space X whose Smyth power space Qv(X) is not a
d∗-space, showing that the converse is false.
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1 Introduction

Domain theory, initially developed by Dana Scott, has been exceedingly active at the interface between
Mathematics and Theoretical Computer Science as the denotational semantics of functional programming
language. Scott proved that a domain endowed with the Scott topology induced by the order of the
domain is sober. As the sobriety can give rise to a categorical equivalence between topological spaces and
certain frames, it is a very important topological property in domain theory and non-Hausdorff topological
space. Other than sobriety, there were some other weaker properties put forward and investigated by some
scholars, for example, d-space, well-filtered space, etc. In [9], Xu and Zhao introduced the concept of strong
d-spaces lying between d-spaces and T1 spaces. Strong d-spaces are d-spaces, but the converse is not true.
Well-filtered spaces and strong d-spaces do not have inclusive relationships. However, a strong d-space is
a well-filtered space when equipped with the Scott topology. Moreover, every coherent well-filtered space
is a strong d-space.

In [8], Lu and Li introduced the concept of weak well-filtered space which is strictly weaker than
well-filtered space and showed that the Johnstone’s example is weak well-filtered but not well-filtered. In
this paper, we introduce the concept of d∗-space. We find that the d∗-space is strictly weaker than the
strong d-space and show that the Johnstone’s example is a d∗-space but not a strong d-space. We give
a characterization for a topological space to be a d∗-space. We prove that a retract of a d∗-space is a
d∗-space. We obtain the result that for any T0 spaces X and Y , if the function space TOP (X,Y ) endowed
with the Isbell topology is a d∗-space, then Y is a d∗-space. We also show that for any T0 space X, if the
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1–2 The d∗-space

Smyth power space Qv(X) is a d∗-space, then X is a d∗-space. Meanwhile, we give a counterexample to
illustrate that conversely, for a d∗-space X, the Smyth power space Qv(X) may not be a d∗-space.

2 Preliminaries

We refer to [1,3] for the standard definitions and notation of order theory and domain theory, and to [2,4]
for those of topologies.

Let P be a poset and A ⊆ P . We denote ↑A = {x ∈ P | x ≥ a for some a ∈ A} and ↓A =
{x ∈ P | x ≤ a for some a ∈ A}. For every a ∈ P , we denote ↑{a} = ↑a = {x ∈ P | x ≥ a} and
↓{a} = ↓a = {x ∈ P | x ≤ a}. A is called an upper set (resp., a lower set) if A = ↑A (resp., A = ↓A). A is
called directed provided that it is nonempty and every finite subset of A has an upper bound in A. The
set of all directed sets of P is denoted by D(P ). Moreover, the set of all subsets of P is denoted by 2P .

A poset P is called a dcpo if every directed subset D in P has a supremum. A subset U of P is
called Scott open if (1) U = ↑U and (2) for any directed subset D for which ∨D exists, ∨D ∈ U implies
D ∩ U 6= ∅. All Scott open subsets of P form a topology, we call it the Scott topology on P and denoted
by σ(P ). We denote ΣP = (P, σ(P )).

For a T0 space (X, τ), let O(X) (resp., Γ(X) ) be the set of all open subsets (resp., closed subsets) of X.
For a subset A of X, the closure of A is denoted by clτ (A) or A. We use ≤τ to represent the specialization

order of X, that is, x ≤τ y iff x ∈ {y}. We denote ↓τ{a} = ↓τa = {x ∈ P | x ≤τ a}. A nonempty subset
A of X is irreducible if A ⊆ B ∪C for closed subsets B and C implies A ⊆ B or A ⊆ C. A subset B of X
is called saturated if B equals the intersection of all open sets containing it (equivalently, B is an upper
set in the specialization order). For a topological space X, we denote the set of all nonempty compact
saturated subsets of X with the order reverse to containment, i.e., K1 6 K2 iff K2 ⊆ K1 by Q(X). We
consider the upper Vietoris topology υ on Q(X) generated by the sets 2U = {K ∈ Q(X) | K ⊆ U}, where
U ranges over the open subsets of X. We use Qυ(X) to denote the resulting topological space. A T0 space
X is called a d-space (i.e., monotone convergence space) if X (with the specialization order) is a dcpo and
O(X) ⊆ σ(X).

For a T0 space X, let K be a filtered family under the inclusion order in Q(X), which is denoted by
K ⊆filt Q(X), i.e., for any K1,K2 ∈ Q(X), there exists K3 ∈ Q(X) such that K3 ⊆ K1 ∩K2. X is called
well-filtered if for any open subset U and any K ⊆filt Q(X),

⋂
K ⊆ U implies K ⊆ U for some K ∈ K. X

is called coherent if the intersection of two compact saturated subset is compact.

Definition 2.1 [9] A T0 space X is called a strong d-space if for any D ∈ D(X), x ∈ X and U ∈ O(X),⋂
d∈D
↑d ∩ ↑x ⊆ U implies ↑d ∩ ↑x ⊆ U for some d ∈ D.

Definition 2.2 [10] A poset L is called a consistent dcpo if for any directed subset D of L with
⋂
d∈D
↑d 6= ∅,

D has a least upper bound in L.

Definition 2.3 [8] A topological space (X, τ) is called weak well-filtered if, whenever a nonempty open
set U contains a filtered intersection

⋂
i∈I

Qi of compact saturated subsets, then U contains Qi for some

i ∈ I.

Definition 2.4 [4] A retract of a topological space Y is a topological space X such that there are two
continuous maps s : X → Y and r : Y → X such that r ◦ s = idX .

Theorem 2.5 [5] Let X be a topological space and A an irreducible subset of the Smyth power space
Qυ(X). Then every closed set C ⊆ X that meets all members of A contains a minimal irreducible closed
subset A that meets all members of A.

Theorem 2.6 [12] A topological space X is well-filtered iff its upper space Q(X) is well-filtered.

3 Main result

In this section, we introduce the d∗-space inspired by Lu and Li’s work[8] on weak well-filtered space.
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Chu and Li 1–3

Definition 3.1 A T0 space X is called a d∗-space if for any D ∈ D(X), x ∈ X, U ∈ O(X)\{∅},⋂
d∈D
↑d ∩ ↑x ⊆ U implies ↑d ∩ ↑x ⊆ U for some d ∈ D.

Remark 3.2 A T0 space X is a d∗-space iff for any D ∈ D(X), x ∈ X, A ∈ Γ(X)\{X}, if ↑d∩↑x∩A 6= ∅
for all d ∈ D, then

⋂
d∈D
↑d ∩ ↑x ∩A 6= ∅. Obviously, every coherent weak well-filtered space is a d∗-space.

Clearly every strong d-space is a d∗-space. The following example shows that a d∗-space may not be a
strong d-space.

Example 3.3 Consider the natural number N with the usual order . It is easy to verify that (N, σ(N))
is a d∗-space. Obviously, (N, σ(N)) is not a d-space. Hence, it is not a strong d-space.

Proposition 3.4 Let (X, τ) be a d∗-space. Then Ω(X) is a consistent dcpo and τ ⊆ σ(Ω(X)), where
Ω(X) = (X,≤τ ).

Proof. Let D be a directed subset of X and
⋂
d∈D
↑τd 6= ∅. Suppose that supD does not exist. Then for

all x∈
⋂
d∈D
↑τd, there exists y∈

⋂
d∈D
↑τd such that x � y, it follows that x ∈ X\↓τy and D ⊆ ↓τy. Thus

clτ (D) ⊆ ↓τy and x /∈ clτ (D). So
⋂
d∈D
↑τd ∩ clτ (D) = ∅. Since D is directed, it is nonempty, there exists

d0 ∈ D. Note that
⋂
d∈D
↑τd ∩ ↑τd0 ∩ clτ (D) = ∅. Obviously, clτ (D) 6= X. Therefore, there exists d ∈ D

such that ↑τd∩↑τd0∩clτ (D) = ∅ by Remark 3.2. Again by the fact that D is directed, there exists d′ ∈ D
such that d ≤ d′ and d0 ≤ d′. Thus d′ /∈ clτ (D), which is a contradiction. Hence, Ω(X) is a consistent
dcpo.

Suppose that U ∈ τ\ {∅}. Obviously, it is an upper set in the specialization order. Let D be a directed
set on Ω(X) with supD ∈ U . Then

⋂
d∈D
↑τ d =↑τ supD ⊆ U . Thus there exists d ∈ D such that ↑τ d ⊆ U ,

that is D ∩ U 6= ∅. Therefore, U ∈ σ(Ω(X)). 2

Example 3.5 Let us consider P = N ∪ {a}, where N is the set of natural numbers with the usual order
and for all n ∈ N , n and a are incomparable. It is clear that P is a consistent dcpo. But (P, σ(P )) is not
a d∗-space. Indeed,

⋂
n∈N
↑ n ⊆ {a}, but for all n ∈ N , ↑ n * {a}. It illustrated that a consistent dcpo with

Scott topology may be not a d∗-space.

Theorem 3.6 For a dcpo P , the following two conditions are equivalent.

(i) ΣP is a d∗-space.

(ii) For any A ∈ Γ(P )\{P} and x ∈ P , ↓(↑x ∩A) ∈ Γ(P ).

Proof. (1)⇒ (2): Obviously, ↓(↑x ∩A) is a lower set. We only need to prove that supD ∈ ↓(↑x ∩A) for
any directed subset D ⊆ ↓(↑x ∩ A) and supD exists. Suppose not, we have that ↑ supD ∩ ↑x ∩ A = ∅,
that is

⋂
d∈D
↑d∩ ↑x∩A = ∅. Since A 6= P , there exists d0 ∈ D such that ↑d0 ∩ ↑x∩A = ∅ by Remark 3.2.

So d0 /∈ ↓(↑x ∩A), which is a contradiction.
(2) ⇒ (1): Let D be a directed subset of P and

⋂
d∈D
↑d ∩ ↑x ⊆ U for any x ∈ P and any nonempty

open subset U of P . Assume that for every d ∈ D, ↑d ∩ ↑x * U . Then ↑d ∩ ↑x ∩ P\ U 6= ∅. Thus
d ∈ ↓(↑x ∩ P\ U), this implies that D ⊆ ↓(↑x ∩ P\ U). Since P is a dcpo, supD exists. By (2), we have
supD ∈ ↓(↑x ∩ P\ U), that is ↑ supD ∩ ↑x ∩ P\ U 6= ∅. Therefore,

⋂
d∈D
↑d ∩ ↑x ∩ P\ U 6= ∅, which is a

contradiction. So ΣP is a d∗-space. 2

Proposition 3.7 Let P be a dcpo. For any A ∈ Γ(P )\{P} and any K ∈ Q(P ), ↓(K ∩ A) ∈ Γ(P ). Then
(P, σ(P )) is weak well-filtered.

Proof. Let K be a filtered compact saturated subset family of P and
⋂
K ⊆ U for any nonempty open

subset U . We need to prove that there exists a compact saturated subset K in K such that K ⊆ U .
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Suppose not, for any K ∈ K, K * U . Then K ∩ P\U 6= ∅. By Rudin Lemma, there exists a minimal
closed subset C ⊆ P\U such that for all K ∈ K, K ∩ C 6= ∅. For any K ′ ∈ K, there exists K ′′ ∈ K such
that K ′′ ⊆ K∩K ′. Then ∅ 6= C∩K ′′ ⊆ C∩K∩K ′ ⊆ ↓(C∩K)∩K ′. Thus ↓(C∩K)∩K ′ 6= ∅. Since C is
a minimal closed subset, we have ↓(C ∩K) = C. So there exists a maximal element x0 in C because P is
a dcpo and C ∈ Γ(P ). Note that x0 ∈ C = ↓(C ∩K). Hence, for all K ∈ K, there exists aK ∈ C ∩K such
that x0 ≤ aK . By the fact that x0 is a maximal element, we know x0 = aK . So x0 ∈

⋂
K ⊆ U ⊆ X\C,

which is a contradiction. 2

Lemma 3.8 [11] For a poset P and A ∈ Γ(P ), the following two conditions are equivalent.

(i) ↓(↑x ∩A) ∈ Γ(P ) for all x ∈ P .

(ii) ↓(K ∩A) =
⋃
k∈K
↓(↑k ∩A) ∈ Γ(P ) for all K ∈ Q(ΣP ).

Corollary 3.9 Let L be a dcpo. If (L, σ(L)) is a d∗-space, then (L, σ(L)) is weak well-filtered.

Proof. Suppose A ∈ Γ(P )\{P} and K ∈ Q(P ). We need to show that ↓(K ∩A) in Γ(P ). Since (L, σ(L))
is a d∗-space, by Theorem 3.6, for any A ∈ Γ(P )\{P} and x ∈ P (especially x in K), ↓(↑x ∩ A) ∈ Γ(P ).
By Lemma 3.7, ↓(K ∩A) ∈ Γ(P ). By Proposition 3.8, (L, σ(L)) is weak well-filtered. 2

Problem 3.10 In Corollary 3.9, if dcpo is replaced by poset, does the conclusion still hold?

From the example below, we can see that Johnstone dcpo endowed with the Scott topology is a d∗-space,
but it is not a strong d-space.

Example 3.11 Recall the dcpo constructed by Johnstone in [4], which is defined as J = N × (N ∪ {∞}),
with the order defined by (j, k) ≤ (m,n) iff j = m and k ≤ n or n =∞ and k ≤ m. Obviously, the John-
stone space ΣJ is a d-space. Clearly,

⋂
n≥2
↑(1, n)∩↑(2, 2) = ∅ but ↑(1, n)∩↑(2, 2) = {(m,∞) | n ≤ m} 6= ∅

for any n ≥ 2. Hence, (J, σ(J)) is not a strong d-space. Consider any directed subset
D = {(xi, yi)}i∈I , t = (x, y) ∈ J and U ∈ σ(J)\{∅}. If

⋂
i∈I
↑(xi, yi) ∩ ↑(x, y) ⊆ U , then we have⋂

i∈I
↑(xi, yi) ∩ ↑(x, y) = ↑ supD ∩ ↑t ⊆ U . We need to consider the following two cases.

Case 1. If supD ∈ D, then there exists i0 ∈ I such that (xi0 , yi0) = supD; hence, ↑(xi0 , yi0)∩↑(x, y) ⊆ U .
Case 2. If supD /∈ D, then D is a chain. Hence, there exists n0 ∈ N such that xi = n0 for all i ∈ I. So
supD = (n0,∞). For t = (x, y), if x = n0, then ↑ supD∩↑t = ↑ supD ⊆ U , that is, supD ∈ U . Since U is a
Scott open subset, there exists a i1 ∈ I such that (n0, yi1) ∈ U . Hence, ↑(n0, yi1)∩↑(x, y) ⊆ ↑(n0, yi1) ⊆ U .
If x 6= n0, then we can find a k0 ∈ N such that (k0,∞) ∈ U because U is nonempty. Clearly, there exists
m0 ∈ N such that (k0,m0) ∈ U . So there exists (l0,∞) ∈ U where m0 ≤ l0 and y ≤ l0. Thus there exists
i ∈ I such that l0 ≤ yi. Therefore, ↑(xi, yi) ∩ ↑(x, y) = {(b,∞) | b ≥ yi and b ≥ y} ⊆ ↑(k0,m0) ⊆ U .
So the Johnstone space ΣJ is a d∗-spaces.

Theorem 3.12 If A is a saturated subspace of d∗-space X, then A is a d∗-space.

Proof. Let D be a directed subset of A and
⋂
d∈D
↑Ad ∩ ↑Ax ⊆ U for any x ∈ A and any nonempty open

set U on A. Since A is a saturated subspace of d∗-space X, there exists V ∈ O(X) such that U = V ∩A.
We claim that ↑Ax = ↑x. Clearly, ↑Ax ⊆ ↑x. Assume y ∈ ↑x. Then x ≤ y. Since A is saturated, we have
y ∈ A. Hence, y ∈ ↑Ax. Thus

⋂
d∈D
↑d ∩ ↑x ⊆ V ∩ A ⊆ V and V 6= ∅. So there exists d ∈ D such that

↑d ∩ ↑x ⊆ V . We conclude that ↑Ad ∩ ↑Ax ⊆ V ∩A = U . 2

Theorem 3.13 If A is a closed subspace of d∗-space X, then A is a d∗-space.

Proof. Let D be a directed subset of A and
⋂
d∈D
↑Ad ∩ ↑Ax ⊆ U for any x ∈ A and any nonempty open

set on A. Since A is a closed subspace of d∗-space X, there exists V ∈ O(X) such that U = V ∩A. Thus⋂
d∈D
↑Ad ∩ ↑Ax ⊆ V ∩ A. So

⋂
d∈D
↑d ∩ ↑x ⊆ V ∪ (X\A). Obviously, V ∪ (X\A) 6= ∅. Hence, there exists

d ∈ D such that ↑d ∩ ↑x ⊆ V ∪ (X\A). It follows that ↑Ad ∩ ↑Ax ⊆ V ∩A = U . 2
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In [6], it has been verified that the product of two strong d-spaces need not be a strong d-space. The
following example reveals that the product of two d∗-spaces need not be a d∗-space, either.

Example 3.14 We know that ΣN and the Sierpinski space Σ2 are d∗-spaces, where 2 is defined as {0, 1}
with the ordering 0 < 1. We consider the product space ΣN × Σ2. Let D = {(n, 0) | n ∈ N} and
x = (0, 0), U = ↑(0, 1) = N × {1}. Obviously, ∅ =

⋂
n∈N
↑(n, 0) ∩ ↑(0, 0) ⊆ N × {1}. But for any n ∈ N ,

↑(n, 0) ∩ ↑(0, 0) = ↑(n, 0) * N × {1}. Thus ΣN × Σ2 is not a d∗-space.

Theorem 3.15 A retract of a d∗-space is a d∗-space.

Proof. Suppose X is a d∗-space and Y is a retract of X. Then there are two continuous maps f : X → Y
and g : Y → X such that f ◦ g = idY . Suppose D is a directed subset of Y with

⋂
d∈D
↑d ∩ ↑x ⊆ U for

any x ∈ Y and any nonempty open set U on Y . We can prove that
⋂
d∈D
↑g(d) ∩ ↑g(x) ⊆ f−1(U). Indeed,

assume t ∈
⋂
d∈D
↑g(d) ∩ ↑g(x). Then for any d ∈ D, g(d) ≤ t and g(x) ≤ t. So d = f(g(d)) ≤ f(t)

and x = f(g(x)) ≤ f(t). Thus f(t) ∈
⋂
d∈D
↑d ∩ ↑x, it follows that f(t) ∈ U . So t ∈ f−1(U)). Since

f is continuous and surjective, we have f−1(U) ∈ O(X) and f−1(U) 6= ∅. So there exists d ∈ D such
that ↑g(d) ∩ ↑g(x) ⊆ f−1(U) by the assumption that X is a d∗-space. Assume m ∈ ↑d ∩ ↑x. Since g is
monotone, we have g(d) ≤ g(m) and g(x) ≤ g(m). It follows that g(m) ∈ f−1(U). Thus m = fg(m) ∈ U .
We conclude that ↑d ∩ ↑x ⊆ U , that is Y is a d∗-space. 2

Given topological spaces X and Y , let TOP (X,Y ) be the set of all continuous functions from
X to Y . The Isbell topology on the set TOP (X,Y ) is generated by the subsets of the form
N(H ← V ) = {f ∈ TOP (X,Y ) : f−1(V ) ∈ H}, where H is a Scott open subset of the complete lattice
O(X) and V is open in the topological space Y . Let [X,Y ] denote TOP (X,Y ) endowed with the Isbell
topology.

Lemma 3.16 [7] For each y ∈ Y ,consider the mapping ξ : Y → [X,Y ] by ξ(y) = ξy, where ξy(x) = y for
all x ∈ X. Then ξ is continuous.

Lemma 3.17 Consider the mapping F : [X,Y ]→ Y by F (f) = f(x0) for some fixed x0 ∈ X. Then F (f)
is continuous.

Proof. Suppose U ∈ O(Y ). Then F−1(U) = {f ∈ [X,Y ]|F (f) ∈ U} = {f ∈ [X,Y ]|f(x0) ∈ U} = {f ∈
[X,Y ]|f−1(U) ∈ N (x0)}. Since f is continuous, we have f−1(U) ∈ O(X). Obviously, N (x0) the set of all
open neighbourhood of x0 is a Scott open subset of the complete lattice O(X). So {f ∈ [X,Y ]|f−1(U) ∈
N (x0)} is open in [X,Y ]. Therefore, F (f) is continuous. 2

Proposition 3.18 For any T0 topological spaces X and Y , Y is a retract of [X,Y ].

Proof. By Lemma 3.16 and Lemma 3.17, we can define F : [X,Y ] → Y by F (f) = f(x0) for some fixed
x0 ∈ X, ξ : Y → [X,Y ] by ξ(y) = ξy, where ξy(x) = y for all x ∈ X. Obviously, they are continuous and
F ◦ ξ(y) = F (ξ(y)) = F (ξy) = ξy(x0) = y. We conclude that F ◦ ξ = idY . So Y is a retract of [X,Y ]. 2

Now we make the conclusion below.

Corollary 3.19 If [X,Y ] is a d∗-space, then Y is a d∗-space.

We give the following example to illustrate that the converse of Corollary 3.19 does not hold.

Example 3.20 The Sierpinski space Σ2 (Example 3.14) and (N, σ(N)) are d∗-spaces (Example 3.3). For
any n ∈ N , We define the function fn : Σ2→ ΣN by

fn(x) =

{
n, x = 1;

0, else.
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1–6 The d∗-space

Obviously, {fn}n∈N is directed in TOP (Σ2,ΣN). It is also clear that {{0, 1}} is a Scott open subset of the
complete lattice O(2) and ↑3 is open in ΣN . Let f = f0 and U = N({{0, 1}} ← ↑3) = {f ∈ [Σ2→ ΣN ] |
f−1(↑3) ∈ {{0, 1}}} = {f ∈ [Σ2→ ΣN ] | f−1(↑3) = {0, 1}}. Then ∅ =

⋂
n∈N
↑fn ∩ ↑f =

⋂
n∈N
↑fn ⊆ U . But

for any n ∈ N ,

f−1n (↑3) =

{
∅, 3 > n;

{1}, 3 ≤ n.
Thus for any n ∈ N , fn /∈ U . Hence, ↑fn ∩ ↑f = ↑fn * U . So [Σ2→ ΣN ] is not a d∗-space.

We know that if a topological space X is well-filtered, then Q(X) is a dcpo. However, the converse of
this result does not hold.

Example 3.21 Let X = N ∪ {ω1, ω2}, where the natural number N with the usual order and for all
n ∈ N , n < ω1, ω2, ω1 and ω2 are incomparable. Then (X,σ) is a T0 topological space. Obviously,
Q(X) = {↑x | x ∈ X} ∪ {{ω1, ω2}}, and Q(X) is a dcpo. But (X,σ) is not well-filtered because X is not
a dcpo.

𝑋, σ is not well-filtered 

1

0

2

ω1 ω2 {ω1} {ω2}

{ω1,ω2}

↑ 0

↑ 1

↑ 2

𝑄 𝑋 , ⊇ is a dcpo.

Theorem 3.22 Let X be a topological space. If Qυ(X) is a d∗-space, then X is a d∗-space.

Proof. Suppose D is a directed subset of X with
⋂
d∈D
↑d∩↑x ⊆ U for any x ∈ X and any nonempty open set

U on X. Then D = {↑d | d ∈ D} is directed in Q(X). We claim that
⋂
d∈D
↑Qυ(X)(↑d) ∩ ↑Qυ(X)(↑x) ⊆ 2U .

Indeed, suppose K ∈
⋂
d∈D
↑Qυ(X)(↑d) ∩ ↑Qυ(X)(↑x). Then for all d ∈ D, ↑d ≤ K and ↑x ≤ K. Thus

for all d ∈ D, K ⊆↑ d and K ⊆ ↑x. So K ⊆
⋂
d∈D
↑d ∩ ↑x ⊆ U , K ∈ 2U . Since U is nonempty,

there exists b ∈ U such that ↑b ⊆ U , which implies that 2U 6= ∅. So there exists d ∈ D such that
↑Qυ(X)(↑d)∩↑Qυ(X)(↑x) ⊆ 2U . Assume m ∈ ↑d∩↑x, then ↑m ∈ ↑Qυ(X)(↑d)∩↑Qυ(X)(↑x) ⊆ 2U , it follows
that ↑m ⊆ U . Hence, m ∈ U . We conclude that ↑d ∩ ↑x ⊆ U . 2

The following example demonstrates that the converse of Theorem 3.22 does not hold.

Example 3.23 Consider the set of natural numbers N with the co-finite topology τ1 = {U | N\U is
finite} ∪ {∅} and the single point set {a} with the discrete topology τ2 = {∅, {a}}. The topology on
N ∪ {a} is generated by the refinement of τ1 ∨ τ2. Obviously, it is a T1 space because every singleton
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set is a closed set. Thus it is a d∗ space. Clearly, Q(X) = 2N∪{a}\{∅}. Let K0 = N , K1 = N\{0},
K2 = N\{0, 1}, · · · ,Kn = N\{0, 1, 2 · · ·n−1},· · · . Obviously, {Kn}n∈N is directed in Q(X). Let K = K0.
Then ∅ =

⋂
n∈N
↑Qυ(X)Kn ∩ ↑Qυ(X)K =

⋂
n∈N
↑Qυ(X)Kn = ∅ ⊆ 2{a}. But for all n ∈ N , Kn * {a}, that is,

Kn /∈ 2{a}. Furthermore, for all n ∈ N , we have ↑Qυ(X)Kn ∩ ↑Qυ(X)K = ↑Qυ(X)Kn * 2{a}. So Qυ(X) is
not a d∗-space.

The following example demonstrates that Qυ(X) is a d∗-space but X with the specialization order is
not a complete lattice.

Example 3.24 Consider the natural number N with the co-countable topology τc = {U | N\U is count-
able }. (N, τc) is well filtered. We find that Qυ(N) is a d∗-space but N with the specialization order is not

a complete lattice. Indeed, suppose K is a directed subset of Q(N) with
⋂
K∈K ↑Qυ(N) K ∩ ↑Qυ(N) K

′ ⊆ U
for any K

′
in Q(N) and nonempty open subset U . Now let us do tow cases. If K ∩ K ′ = ∅ for some

K ∈ K, ∅ = ↑Qυ(K) K ∩ ↑Qυ(K) K
′ ⊆ U . If K ∩K ′ 6= ∅ for all K ∈ K,

⋂
K∈K ↑Qυ(K) K ∩ ↑Qυ(K) K

′
=⋂

K∈K ↑Qυ(K) K ∩K
′ ⊆ U . Since Qυ(N) is well filtered and K ∩K ′ is finite, there exists K in K such that

↑Qυ(K) K ∩K
′ ⊆ U . So ↑Qυ(K) K ∩ ↑Qυ(K) K

′ ⊆ U for some K in K.

References

[1] Abramsky, S. and A. Jung, “Domain theory”, in: S. Abramsky, D.M. Gabbay, T.S.E. Maibaum (Eds.), Handbook of
Logic in Computer Science, Vol. 3, Semantic Structures, 1994, pp. 1-168. Available online at
https://www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf

[2] Engelking, R., “General Topology”, Polish Scientific Publishers, Warszawa, 1997.
https://doi.org/10.1007/978-3-642-61701-0

[3] Gierz, G., K. H. Hofmann, K. Keimel, J.D. Lawson, M. Mislove, and D.S. Scott, “Continuous Lattices and Domains”,
Volume 93 of Encyclopedia of Mathematics and its Applications, Cambridge University Press, 2003.
https://doi.org/10.1017/CBO9780511542725

[4] Goubault-Larrecq, J. “Non-Hausdorff Topology and Domain Theory”, Volume 22 of New Mathematical Monographs,
Cambridge University Press, 2013.
https://doi.org/10.1017/CBO9781139524438

[5] Heckmann, R. and K. Keimel, Quasicontinuous domains and the Smyth powerdomain, Electron. Notes Theor.Comput.Sci.
298(2013) 215-232.
https://doi.org/10.1016/j.entcs.2013.09.015

[6] Li, Q., M. Jin, H. Miao, S. Chen, On some results related to sober spaces, (preprint).

[7] Liu, B., Q. Li, W. Ho, On funtion spaces related to d-space, Topology and its Applications, 300 (2021) 107757.
https://doi.org/10.1016/j.topol.2021.107757

[8] Lu, C. and Q. Li, Weak well-filtered and coherence, Topology and its Applications, 230 (2017) 373-380.
https://doi.org/10.1016/j.topol.2017.08.049

[9] Xu, X. and D. Zhao, On Topological Rudin’s Lemma, well-filtered Spaces and sober Spaces, Topology and its Applications,
272 (2020) 107080.
https://doi.org/10.1016/j.topol.2020.107080

[10] Xu, L. Consistently continuous posets and their directed completions, Journal of Yangzhou University Natural Science
Edition, 3 (2000) 1C10(in Chinese).
https://doi.org/10.19411/j.1007-824x.2000.01.001

[11] Xu, X. and D. Zhao, Some open problems on well-filtered spaces and sober spaces, Topology and its Applications, 301
(2021) 107540.
https://doi.org/10.1016/j.topol.2020.107540

[12] Xu, X., X. Xi and D. Zhao, A complete Heyting algebra whose Scott space is non-sober, Fundamenta Mathematicae, 2020,
252(3).
https://doi.org/10.4064/fm704-4-2020

7

https://www.cs.bham.ac.uk/~axj/pub/papers/handy1.pdf
https://doi.org/10.1007/978-3-642-61701-0 
https://doi.org/10.1017/CBO9780511542725
https://doi.org/10.1017/CBO9781139524438
https://doi.org/10.1016/j.entcs.2013.09.015
https://doi.org/10.1016/j.topol.2021.107757
https://doi.org/10.1016/j.topol.2017.08.049
https://doi.org/10.1016/j.topol.2020.107080
https://doi.org/10.19411/j.1007-824x.2000.01.001
https://doi.org/10.1016/j.topol.2020.107540
https://doi.org/10.4064/fm704-4-2020

	1 Introduction
	2 Preliminaries
	3 Main result
	References

