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Abstract

This paper studies the weak one-step closure and one-step closure properties concerning the structure of Scott closures. We
deduce that every quasicontinuous domain has weak one-step closure and show that a quasicontinuous poset need not have
weak one-step closure. We also constructed a non-continuous poset with one-step closure, which gives a negative answer to
an open problem posed by Zou et al.. Finally, we investigate the relationship between weak one-step closure property and
one-step closure property and prove that a poset has one-step closure if and only if it is meet continuous and has weak one-step
closure.
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1 Introduction

The Scott topology is an intrinsic topology on posets, which is the most important topology in domain
theory. Scott proved that a domain endowed with the Scott topology is sober. It is well known that a
poset is continuous if and only if its Scott closed set lattice is a completely distributive lattice. In [7], Zhao
introduced the weak one-step closure property in order to obtain some characterizations of Z-continuous
posets. In [6], Zou et al. proposed the one-step closure property and proved that every continuous poset
has one-step closure. They asked whether all posets with one-step closure are continuous. Since every
continuous poset is quasicontinuous, it is natural to wonder whether every quasicontinuous poset also has
one-step closure.

In this paper we shall answer the above problems and investigate other aspects of weak one-step closure
and one-step closure properties. We give the outline of this paper below.
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In Section 3, we prove that every quasicontinuous domain has weak one-step closure and show, by a
counterexample, that a quasicontinuous poset may not have weak one-step closure. In Section 4, we give a
negative answer to the problem posed by Zou et al. in [6]. In Section 5, we prove that a poset has one-step
closure if and only if it is meet continuous and has weak one-step closure.

Some problems are posed for further investigation.

2 Preliminaries

We now recall some basic notions and results to be used later. We refer the readers to [3], [2] for more
about these.

Let P be a poset. For any subset A of P, let 1A ={y € P:x <y for some x € A} and |A = {y €
P :y < xfor some x € A}. A nonempty subset D of P is directed, denoted by D CT P, if every finite
subset of D has an upper bound in D. The supremum (infimum) of a subset A of P, if exists, means the
least upper (greatest lower) bound of A in P and will be denoted by sup A (inf A, resp.) A semilattice is
a poset in which every nonempty finite subset has an inf; the dual notion is the sup semilattice. A Scott
open subset of P is an upper set U (U = 1U) of P such that, for every directed subset D of P such that
sup D exists and is in U, there is a d € D such that d € U. The complements of Scott open sets are called
Scott closed sets. The collection of all Scott open subsets of P form a topology on P, which is called the
Scott topology of P and denoted by o(P). The collection of all Scott closed subsets of P is denoted by
['(P). The space (P,o(P)) is simply written as ¥P. For any A C P, we write cl(A) as the Scott closure
of A (the closure of A with respect to the Scott topology). We denote the set of all finite subsets of a
poset P by Fin(P). The Smyth preoder on the set of all subsets of P is given by G < H if T1H C 1G.
We say that G is way below H and write G < H if for every directed subset D C P, sup D € TH implies
DN1G # 0. We write G < z for G < {z} and TG = {r € L | G < z}. For =,y € P, = is way-below v,
denoted by z < y, if for any directed subset D of P for which sup D exists, y < sup D implies D Ntz # ().
The poset P is continuous if for all z € P, [ = {y € L | y < x} is directed and = = sup Jz.

A poset P is directed complete if sup D exists for all D CT P. A directed complete poset will be called
a dcpo.

A subset A of a topological space is saturated if A is the intersection of all open sets containing A.
For a topological space X, the set of all compact saturated subsets of X is denoted by Q(X). We write
R Crip Q(X) represents that R is filtered. We denote the set of all open sets of space X by O(X). On
Q(X), we consider the upper Vietoris topology generated by the sets OU = {K € Q(X) | K C U}, where
U e O(X).

Definition 2.1 ([6]) A poset P is said to have one-step closure if cl(A) = A’ holds for any A C P, where
A ={zxeP|3DC" A x=supD}.

Definition 2.2 ([2]) A poset P is meet continuous if for any z € P and any directed set D of P with
sup D existing, < sup D implies z € ¢l(}D N ]x).

Remark 2.3 For a semilattice L, one can prove that it is meet continuous if and only if it satisfies
inf{z,sup D} = supyep inf{z,d} for any x € L and any directed set D C L with sup D existing.
Definition 2.4 ([2]) A poset P is quasicontinuous, if for every x € P,

(1) fin(x) ={F | F € Fin(P),F < x} is a directed family;

(2) 12 = Npefin() TF for any z € P.

A quasicontinuous dcpo is called a quasicontinuous domain.

For any quasicontinuous domain P, the family {{F : F C P is finite} is a base of the Scott topology
on P ([2]).

Definition 2.5 ([2]) A space X is well-filtered if for each filter basis C of compact saturated sets of X
and each open set U with (|C C U, there is a K € C such that K C U.
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Definition 2.6 ([1]) The set R of all real numbers equipped with the topology having {[z,y) | * < y,z,y €
R} as a base is called the Sorgenfrey line, which is denoted by R;.

3 Weak one-step closure

By [6], every continuous poset has one-step closure. However, a quasicontinuous poset may not have one-
step closure. In this section, we consider a weaker property, called weaker one-step closure. We prove that
every quasicontinuous domain has the weak one-step closure, but a quasicontinuous poset need not have
this property.

Definition 3.1 A poset P is said to have the weak one-step closure if for any A C P, it holds that
cl(A) = A", where A" = {x € P|3D C" | A, x <supD}

Remark 3.2 In [7], Zhao introduced the Definition 3.1 for an arbitrary set system, and called it one-step
closure. To be consistent with the paper [6], here we call this property weak one-step closure.

Theorem 3.3 Fvery quasicontinuous dcpo has weak one-step closure.

Proof. It suffices to show that cl(A) C A" for any subset A of L. To this end, let x € cl(A), F € fin(L)

with € TF. Then TF is Scott open as L is quasicontinuous. Hence TF N A # 0, which implies that
FNlA#D. Thus (FNJA)pefin(z) 5 a filtered family (with respective to the Smyth preorder) of nonempty
finite subsets of L. By Rudin’s Lemma ([2]), there exists a directed subset D of UFEfin(x) FNJ]A such that

DN (FNJA)#0 for any F € fin(z). Also, since L is a quasicontinuous domain, {TF | F € fin(x)} is
a neighborhood basis of x. This indicates that x € cl(D) = | sup D. Note that D C JA. We conclude that
ze A", Hence cl(A) C A”. 0

The following example shows that the converse conclusion of Theorem 3.3 is not true.
Example 3.4 Let L = (N x N) U {T}. Define order < on L as follows:
(i) (m,n) < (s,t) if and only if m = s and n < ¢;
(ii) « < T for all z € L.

It is well known that L is a dcpo and not quasicontinuous. However, we can easily verify that L has
weak one-step closure.

Note that this decpo L does not have one-step closure.
The dcpo L is illustrated in Figure 1.

(12)1(2,2) 1 oo

(1,1)4(2,1) 4 —eeeee e

Fig.1. A non-quasicontinuous domain that has weak one-step closure.

The following example shows that a quasicontinuous poset may not have weak one-step closure.

Example 3.5 Let L = (N x (NU{w})) UN. We define an order < on L as follows:
For any z,y € L, x < y if and only if one of the following holds:
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(V T = (17711)7?4 - (m27w)7m2 2 ni;
(vi) z = (mq,n),y = (ma,n),m; < mg,my > 2.

L can be illustrated in Figure 2. Then L is a quasicontinuous poset, but L does not have weak one-step
closure.

To see this, first note that (1,w) € l(N) = L and (1,w) ¢ N". Hence, L does not have weak one-step
closure. It remains to show that L is quasicontinuous.

(i) For (1,w), we have {(1,n) | n € N} CT |(1,w) and (1,w) = sup,en(1,n).

(ii) For each (1,n) € L. Let F,, ., = {{(1,n),(2,m)} | m € N}. Then {F,,,, | m € N} C fin(1,n) and is
a filtered base with 1(1,n) = (", cny TFu,m-

(iii) For each (m,n) € L with m € N and m > 2, we see easily that (m,n) < (m,n). In addition, each
(m,w) with m > 2 is the supremum of the directed set {(m,n) : n € N} of compact elements.

All these together show that L is quasicontinuous.

Fig.2. A quasicontinuous poset does not have weak one-step closure.

4 One-step closure

In [6], Zou, Li and Ho showed that every continuous poset has one-step closure. They asked whether L is
continuous if it has one-step closure. We now give a counterexample for their problem. We begin with a
lemma which is crucial for further study.

Lemma 4.1 If X is a well-filtered space and Q(X) endowed with the upper Vietoris topology is first-
countable, then (Q(X), D) has one-step closure.

Proof. Let A C Q(X) and K € cl(A). The fact that Q(X) equipped with the upper Vietoris topology is
first-countable implies that there ezists a countable neighborhood basis Bx = {0OU, | n € N} of K and
OU,+1 C OU, for any n € N.

Claim 1: OU C OV implies U CV for any U,V € O(X).
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Let x € U. Then tx € OU C OV. In other words Tx C V. So U CV holds.

From Theorem 5.8 in [5], we know that the upper Vietoris topology coincides with the Scott topology
on (Q(X),2). It follows that OU, N A # 0 for any DU, € By due to the assumption that K € cl(A).
Choose K,, € OU, N A for any n € N. We define Q,, = K U Ky, for any n € N.

Claim 2: Q, € Q(X) for each n € N.

As a union of saturated sets, Qy, is a saturated. It suffices to verify that Qy, is compact. Let {W; :i € I}
be a family of open sets of X such that Qn € U;e; Wi. Then K C J;c; Wi. As K is compact, there exists
Fy € Fin(I) such that K C UZ-GF1 W;. Then, there exists OU,, € Bg such that K € OU,, C O UZ-GF1 W;.
We consider the following two cases:

Case 1. ng < n: For any m > n > ng, then K, C Uy, C Uy, by Claim 1. Hence, Q, C Uy, C
UieFl Wi'

Case 2. ng > n: We can obtain that UmZno K,, C U,, C UZEF1 W; by the similar proof to Case 1.
Note that |/, ' Ki € Q(X) and | J!*, ' K; C Uier Wi. This means that there exists Fy € Fin(I) such that

=N =n
U?ﬁ;l K; C Uier W;. Therefore, @Q, C UieFluF2 W;.

Claim 3: K = sup,eny @n = (pen @n-

It is easy to see that K C (), oy @n. For the converse, suppose x € [\, ey @n- We claim that x € K.
Assume x ¢ K. This manifests le N K = 0. In other words, K C X\|x. It follows that there exists n € N
such that K € OU, C OX\|z. Through Claim 2, we can conclude that x € Q, C U, C X\|x, which
contradicts x € Jx.

Note that K, € A for any n € N and Q,, < K,, (with respect to the reverse inclusion order). So
(Qn)nen is a directed subset of | LA whose supremum equals K. Hence, Q(X) has one-step closure. O

m>n

The conclusion given in the next theorem answers the question from Zou et al..
Theorem 4.2 For the Sorgenfrey line R;, Q(R;) has one-step closure and Q(R;) is not continuous.

Proof. By Example 5.18 of [5], we know that the poset Q(R;) is not continuous. The space R; is Hausdorff,
thus well-filtered (every Hausdorff space is sober and every sober space is well-filtered). Hence, by Lemma
4.1, Q(R;) has one-step closure. O

5 The relationship between weak one-step closure and one-step closure

In this section, we investigate the relationship between weak one-step closure and one-step closure.
The following lemma and example justify the term ”weak one-step closure”.

Lemma 5.1 If a poset P has one-step closure, then it has weak one-step closure.

Proof. It suffices to prove that cl(A) = A" for any subset A of P. From the definition of one-step closure,
we have cl(A) = A'. One sees obviously that A" C cl(A). Let x € cl(A). Then z € A'. It follows that
there exists D CT | A such that v = sup D, i.e., z € A”. a

The converse of Lemma 5.1 is not true.

Example 5.2 Let L = NU {w,a}, where N denotes all natural numbers. We define an order < on L by
x <y if and only if:
(i) z,y € Nand x < y holds in N, or
(ii) z€ Land y = w.
Then L can be easily illustrated in Figure 3. and N' = N U {w} S N” = L. Thus L does not have
one-step closure. But it is easy to check that L has weak one-step closure.

It is then natural to wonder under what conditions, a poset has one-step closure if it has weak one-step
closure. We shall prove that if a poset has weak one-step closure, then it has one-step closure if and only
if it is meet continuous.
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Lemma 5.3 Let L be a poset. Then the following statements are equivalent:
(1) A is a lower set for any A C L;
(2) D' is a lower set for any directed subset D of L.

Proof. (1) = (2) is trivial.

(2) = (1) Assume © <y € A'. Then there exists D C' | A such that y = sup D. This means that
z<yeD. It follows that x € | D' = D'. So we have that there exists a directed subset E of | D such
that x = sup E. Note that E C |D C |A. Therefore, z € A'. O

If L has one-step closure, then for any subset A C L, cl(A) = A’ so it is a lower set.
In [6], Zou, Li and Ho proved that L is meet continuous if L has one-step closure. We now deduce this
result using a weak assumption.

Lemma 5.4 Let L be a poset. If D' = | D" for any D C' L, then L is meet-continuous.

Proof. Let v € L, D C' L with sup D existing. If x < sup D, then = € D" = D'. This means that
there exists a directed subset B of | D such that x = sup E. Note that E C lxz N ]D. This implies that
x € cdl(dxN]D). Therefore, L is meet-continuous. O

Corollary 5.5 Every poset with one-step closure is meet continuous.

Corollary 5.6 Let L be a meet continuous semilattice. Then D' is a lower set for any directed subset D
of L. Moreover, if L has weak one-step closure, then L has one step closure.

Proof. From Lemma 5.8, it suffices to prove that D' is a lower set for any directed subset D of L.
Suppose x < y € D'. Then there exists a directed subset E of 1D with y = sup E. The fact that L is a
meet continuous semilattice implies that © = sup,cpinf{x,e}. It is noteworthy that {inf{x,e} | e € E} is
a directed subset of | D. This means that x € D'. Therefore, D" is a lower set. a

Corollary 5.7 Let L be a meet continuous sup-semilattice. Then D' is a lower set for any directed subset
D of L.

Proof. Letx <y e D'. This means that there exists a directed subset E of | D such that y = sup E. Since
L is meet continuous, x € cl(lx N[E). It follows that |z = cl({x N |E), and hence x = sup({x N [E).
Let G ={sup F : F C (Jz N[E) and F is finite}. Then G is a directed subset of |z N [E with supG =

sup(lz N |E)) = z. Clearly G C |D, thus x € D', showing that D" is lower. O

Lemma 5.8 Let L be a poset with weak one-step closure. If D' is a lower set for any directed subset D
of L, then L has one-step closure.

Proof. This follows immediately from Definition 3.1, Definition 2.1 and Lemma 5.35. a
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Lemma 5.9 Let L be a meet continuous poset with weak one-step closure. Then L has one-step closure.

Proof. By Lemma 5.8, it suffices to show that D' is a lower set for any directed D C L. Suppose
r<y€E D'. Then, there exists a directed subset E of 1D such that y = sup E. Since L is meet continuous,
we have x € cl(lx NJE). Since L has weak one-step closure, there is a directed K C |x N |E such that

x <sup K. But, trivially sup K < x, hence x = sup K. In addition, K C |E C|D, sox € D'. Therefore
D’ is a lower set. a

From Lemma 5.1 and Lemma 5.9 we deduce the following result.

Theorem 5.10 A poset has one-step closure if and only if it is meet continuous and has weak one-step
closure.

Since every poset having one-step closure is meet continuous, we have the following natural problem.
Problem 5.11 Is there a meet continuous poset that does not have one-step closure.

We have already given in Section 4 an example of a non-continuous poset that has one-step closure.
We now confirm that an exact poset with one-step closure is continuous.

Definition 5.12 ([4]) Let =,y be elements of a poset P. We say that z is weakly way-below y, denoted
by x <, ¥, if for any directed subset D of P for which sup D exists, y = sup D implies D Ntz # (. A
poset P is called ezact if for any x € P, | x ={y € P | y < z} is directed and sup|, = = z.

Theorem 5.13 Let L be a poset. Then the following statements are equivalent:
(1) L is continuous;
(2) L has one-step closure and is exact;
(3) A’ is a lower set for any A C L and L is an ezact poset.
(4) D’ is a lower set for any directed subset D of L and L is an ezact poset.

Proof. (1) = (2) = (3) = (4) are all obvious.

(4) = (1) From the definition of exact posets and continuous posets, it suffices to prove that r <, y
implies that x < y for any x,y € L. Let D be a directed subset of L with y < sup D, it follows that
supD € D'. We have that Y € D’ since D" is a lower set. This means that there exists E C1 1D such that
y =sup E. The assumption that x <, y reveals that Tx N E # (). Hence, tx N D # (). O

The following is a problem concerning the connections among the concepts of meet continuity, exactness
and continuity of posets.

Problem 5.14 Let L be a meet continuous and exact poset. Must L be continuous?

Although we cannot solve the above problems, we have the following corollary by Corollary 5.6 and
Corollary 5.7.

Corollary 5.15 Let L be a meet continuous semilattice or sup-semilattice. Then L is continuous iff L is
an exact poset.

Proposition 5.16 Let L, M be two posets. If L is a Scott retract of M, which has one-step closure, then
L has one-step closure.

Proof. Since L is a Scott retract of M, we have that there exists two Scott continuous maps s : L — M
andr: M — L such that id, =ros. Nowletx € L, A C L with x € cl(A). It follows that s(z) € cl(s(A))
by the Scott continuity of s. We know that there ewists D C1 |s(A) such that s(x) = sup D since M has
one-step closure. This implies that v = r o s(x) = r(sup D) = supr(D) from the Scott continuity of r.
Note that r(D) C [r(s(A)) = LA. This means that L has one-step closure. O
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Lemma 5.17 Let L, M be two posets. If L is a Scott retract of M, which has weak one-step closure, then
L has weak one-step closure.

Proof. The proof is similar to Proposition 5.16. a
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