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Abstract

Based on the concept of weakly meet sZ-continuity put forward by Xu and Luo in [13], we further prove that if the subset system
Z satisfies certain conditions, a poset is sZ-continuous if and only if it is weakly meet sZ-continuous and sZ-quasicontinuous,
which improves a related result given by Ruan and Xu in [10]. Meanwhile, we provide a characterization for the poset to
be weakly meet sZ-continuous, that is, a poset with a lower hereditary Z-Scott topology is weakly meet sZ-continuous if
and only if it is locally weakly meet sZ-continuous. In addition, we introduce a monad on the new category POSETδ and
characterize its Eilenberg-Moore algebras concretely.
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1 Introduction

Recall that the concept of subset system on the category POSET of posets was proposed by Wright et
al. in [12]. It originally aimed at applying posets with Z-set structures to problems in computer science,
particularly, to fixed point semantics for programming language. In addition, the set system includes many
systems of sets which we are familiar with, such as directed sets, finite sets, connected sets and so on.
Later, based on the suggestion given by Wright to study the generalized counterpart of continuous poset
by replacing directed sets with Z-sets, in [2], Baranga defined a kind of generalized way-below relation
based on the Z-sets whose supremum exists. Furthermore, the author gave some characterizations for the
Z-algebraic posets. Besides, Erné introduced the concept of s2-continuous posets by lending support to
the cut operator of directed subsets instead of the existing sups, which is a pure order concept on posets,
no longer depending on the dcpo. Recently, Zhang and Xu made use of the cut operator of directed
sets again to define a new way-below relation between subsets, and then introduced s2-quasicontinuous
posets (see [14]). Combining with the notion of subset system, Xu and Luo in [13] gave the definition
of sZ-quasicontinuous posets, and then, Ruan and Xu investigated its properties in [10] concretely and
mainly made the conclusion: when the subset system satisfies some conditions, a poset is sZ-continuous if
and only if it is sZ-quasicontinuous and meet sZ -continuous.
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In this paper, we will first see that there is another characterization of sZ-continuous posets. More
precisely, in the case where the subset system Z satisfies certain conditions, a poset is sZ -continuous if and
only if it is sZ-quasicontinuous and weakly meet sZ -continuous, which is a result stronger than that given
by Xu in [10], meanwhile, it reveals that the requirement of ‘σZ(P ) = σZ(P )’ is unnecessary. Then we
focus on the weakly meet sZ-continuity of a poset, and show that a poset with a lower hereditary Z-Scott
topology is weakly meet sZ-continuous if and only if it is locally weakly meet sZ-continuous. In order to
investigate the Γ-faithful property, Ho and Zhao in [8] introduced a new beneath relation by the Scott
closed subsets whose sups exist. Based on their work, we find there exists a monad on DCPO. Associating
with the subset system, we will introduce a generalized beneath relation using the cuts of Z-Scott closed
subsets, which is not necessary to consider whether the supremum exists. On this basis, we find a monad
on the category POSETδ and characterize its Eilenberg-Moore algebras concretely.

2 Preliminaries

Let P be a poset. For any A ⊆ P, x ∈ P , we write ↑A = {p ∈ P : p ≥ a for some a ∈ A}, ↓A
= {p ∈ P : p ≤ a for some a ∈ A}. In particular, ↑x = ↑{x} and ↓x = ↓{x}. A subset A ⊆ P
is an upper set (resp., a lower set) if A = ↑A (resp., A = ↓A). Let Au and Al denote the sets of all
upper and lower bounds of A, respectively. The cut operator δ is defined by Eδ = Eul for all E ⊆ P .
Obviously, if the supremum of E exists, then x ∈ Eδ iff x ≤ supE. If E ⊆ A for some subset A of P ,
let Eδ |A= {p ∈ A : p ≤ m for all m ∈ Eu ∩ A}. In particular, we write Eδ |↓m as Eδ |m. We denote by

F ⊆f P if F is a finite subset of poset P , and let FinP = {↑F : F ⊆f P}. A mapping min : FinP → 2P

is defined by min(↑F ) = {x ∈ F : x is a minimal element of F}.
For any T0 space X, the partial order ≤X defined by x ≤ y iff x is contained in the closure of y is called

the specialization order. The topology on the poset P generated by all principal filters ↑x as a subbasis
for the closed sets is called the lower topology and denoted by ω(P ).

Let POSET denote the category of posets and monotone mappings. By [12], a subset system on
POSET is a function Z which assigns to each poset, a set Z(P ) of subsets of P such that

• {x} ∈ Z(P ) for any x ∈ P , and

• if f : P → Q in POSET and S ∈ Z(P ), then f(S) ∈ Z(Q).

P is called a Z-complete poset (zcpo, for short), if supD exists for each D ∈ Z(P ). A closure system on
the set X is a non-empty family E of subsets of X which satisfies:

•
⋂

i∈I Ai ∈ E for every nonempty family {Ai}i∈I ⊆ E , and

• X ∈ E .

Definition 2.1 Let P be a poset and let σZ(P ) = {U ⊆ P : for all S ∈ Z(P ), Sδ ∩ U 6= ∅ ⇒ S ∩ U 6= ∅}.
The topology generated by the subbasic open subsets σZ(P ) is called Z-Scott topology on P and denoted
by σZ(P ).

Let ΓZ(P ) = {A ⊆ P : for all S ∈ Z(P ), S ⊆ P ⇒ Sδ ⊆ P}, obviously, ΓZ(P ) is a subbasis for the
closed subsets with respect to Z-Scott topology. We use ΓZ(P ) to denote the set composed of all closed
subsets regarding Z-Scott topology. Note that for any U ∈ σZ(P )(A ∈ ΓZ(P )), U = ↑U(A = ↓A), so
the definition above is the same as that given in [10]. Besides, the family ΓZ(P ) and ΓZ(P ) are closure
systems on P , and the closure operators can be defined as follows: For any M ⊆ P , clσZ (P )(M) =

⋂
{A ∈

ΓZ(P ) :M ⊆ A}, clσZ (P )(M) =
⋂
{B ∈ ΓZ(P ) :M ⊆ B}.

Definition 2.2 ([10]) Let P be a poset and x ∈ P, A,B ⊆ P .

(i) A is called Z-way below B, denoted by A≪Z B, if for any S ∈ Z(P ), Sδ ∩↑B 6= ∅ implies S∩↑A 6= ∅.
F ≪Z {x} is shortly written as F ≪Z x. Let ωZ(x) = {F ⊆f P : F ≪Z x},⇑Z A = {x ∈ P : A ≪Z

x},

և

ZA = {p ∈ P : a ≪Z p for some a ∈ A}, ևZx = {y ∈ P : y ≪Z x}. Specifically, we write

և

x
Zy = {m ∈ ↓x : m≪Z y in ↓x}.
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(ii) P is called a weak sZ -continuous poset, if for all x ∈ P, x ∈ ( ևZx)
δ. In addition, if ևZx ∈ IZ(P ) =

{↓S : S ∈ Z(P )}, then P is called sZ-continuous.

(iii) P is called an sZ-quasicontinuous poset, if for all p ∈ P , {↑F : F ∈ ωZ(P )} ∈ Z(FinP ) and
↑p =

⋂
{↑F : F ∈ ωZ(P )}.

Definition 2.3 ([15]) A subset system Z is hereditary if for any order embedding f : P → Q (that is, for
any x, y ∈ P, f(x) ≤ f(y) ⇔ x ≤ y), D ⊆ P , D ∈ Z(P ) if and only if f(D) ∈ Z(Q).

Definition 2.4 ([10]) Let Z be a subset system.

(i) Z is called union complete, if for any poset P , S ∈ Z(Z(P )), we have
⋃

S ∈ Z(P ).

(ii) Z is said to have the finite family union property, if for any poset P , {S1,S2, ...,Sn} ⊆f Z(FinP ),
we have {

⋃n
i=1Ai : Ai ∈ Si, i = 1, 2, ..., n} ∈ Z(FinP ).

(iii) Z ia said to have the property M , if for any poset P , ↑F ∈ FinP , we have ↓FinP ↑F = {↑G ∈ FinP :
↑F ⊆ ↑G} ∈ Z(FinP ).

Definition 2.5 ([10]) A subset system Z is said to have the Rudin property, if for any poset P , E =
↑E ⊆ P , G ∈ Z(FinP ), ∅ /∈ G, and

⋂
G ⊆ E. Then there exists K ⊆

⋃
{min(G) : G ∈ G} such that

(i) for any G ∈ G, K ∩min(G) 6= ∅,

(ii) K ∈ Z(P ),

(iii)
⋂
{↑k : k ∈ K} ⊆ E, and

(iv) for any G,H ∈ G, G ⊆ H implies K ∩min(G) ⊆ ↑(K ∩min(H)).

Z is called a Rudin subset system, if Z is union-complete and possesses the Rudin property.

3 Weakly meet sZ-continuous posets

Definition 3.1 ([10]) P is called weakly meet sZ-continuous if for all x ∈ P and all D ∈ Z(P ) with
x ∈ Dδ, we have x ∈ clσZ (P )(↓x ∩ ↓D); P is called meet sZ -continuous if for all x ∈ P and all D ∈ Z(P )

with x ∈ Dδ, we have x ∈ clσZ (P )(↓x ∩ ↓D).

Lemma 3.2 Let P be a poset. The following conditions are equivalent:

(1) P is weakly meet sZ-continuous.

(2) For any x ∈ P and any U ∈ σZ(P ), ↑(↓x ∩ U) ∈ σZ(P ).

Proof. (1) ⇒ (2) Assume that D ∈ Z(P ), and Dδ ∩ ↑(↓x ∩ U) 6= ∅. Then there exists an m ∈ Dδ with
m ∈ U and m ≤ x. Since P is weakly meet sZ-continuous, we have m ∈ clσZ (P )(↓m ∩ ↓D), which implies

that ↓D ∩ ↓m ∩ U 6= ∅. Thus ↓D ∩ ↓x ∩ U 6= ∅ by m ≤ x. So D ∩ ↑(↓x ∩ U) 6= ∅ and ↑(↓x ∩ U) ∈ σZ(P )
holds.

(2) ⇒ (1) For any x ∈ P , D ∈ Z(P ), if x ∈ Dδ and there is a U ∈ σZ(P ) such that x ∈ U , then by (2),
↑(↓x∩U) ∈ σZ(P ). Since x ∈ Dδ ∩↑(↓x∩U) 6= ∅, we have D∩↑(↓x∩U) 6= ∅, this means ↓x∩U ∩↓D 6= ∅.
So x ∈ clσZ (P )(↓x ∩ ↓D). ✷

Lemma 3.3 Let P be a Z-complete semilattice. The following conditions are equivalent:

(1) P is weakly meet sZ-continuous;

(2) For any x ∈ P , D ∈ Z(P ), x ∧ ∨D = ∨{x ∧ d : d ∈ D}.

Proof. (1) ⇒ (2) We first claim that y = ∨(↓y ∩ ↓D) if y ∈ Dδ. It is obvious that y is an upper
bound of ↓y ∩ ↓D. Suppose z is also an upper bound of ↓y ∩ ↓D and y 
 z, that is, y ∈ P \ ↓z. Since

y ∈ clσZ (P )(↓y ∩ ↓D) by (1) and P \ ↓z ∈ σZ(P ), we have (P \ ↓z) ∩ ↓y ∩ ↓D 6= ∅. But this contracts

the fact that ↓y ∩ ↓D ⊆ ↓z. Thus y = ∨(↓y ∩ ↓D). Now let y0 = x ∧ ∨D, then y0 ∈ Dδ, which implies
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y0 = ∨(↓y0 ∩ ↓D). Since ↓y0 ∩ ↓D = ↓{x ∧ d : d ∈ D}, we have y0 = ∨{x ∧ d : d ∈ D}, that is,
x ∧ ∨D = ∨{x ∧ d : d ∈ D}.

(2) ⇒ (1) For any x ∈ P , U ∈ σZ(P ), we need to prove ↑(↓x ∩ U) ∈ σZ(P ). Assume D ∈ Z(P )
with Dδ ∩ ↑(↓x ∩ U) 6= ∅. Then there exists an m ∈ U , m ≤ x and m ∈ Dδ. Thus m ≤ ∨D and
m = m ∧ ∨D = ∨{m ∧ d : d ∈ D} ∈ U by (2). Now for m, we define a monotone mapping ϕ : P → P by
ϕ(p) = m ∧ p. Then ϕ(D) = {m ∧ d : d ∈ D} ∈ Z(P ). Hence, m ∧ d0 ∈ U for some d0 ∈ D as U ∈ σZ(P ),
which implies that D ∩ ↑(↓x ∩U) 6= ∅, that is, ↑(↓x∩U) ∈ σZ(P ). So P is weakly meet sZ -continuous by
Lemma 3.2. ✷

Proposition 3.4 Let P be a poset. The following conditions are equivalent:

(1) P is weakly meet sZ-continuous;

(2) ΓZ(P ) is weakly meet sZ-continuous.

Proof. (1) ⇒ (2) By Lemma 3.3, we only need to prove that for any A ∈ ΓZ(P ),D ∈ Z(ΓZ(P )),
A ∧ (∨D) = ∨{A ∧ D : D ∈ D}, that is, A ∩ clσZ (P )(

⋃
D) = clσZ (P )(

⋃
{A ∩ D : D ∈ D}). Assume

x ∈ A ∩ clσZ (P )(
⋃

D) and U ∈ σZ(P ) with x ∈ U . Then we have ↑(↓x ∩ U) ∈ σZ(P ) by Lemma 3.2. As

x ∈ clσZ (P )(
⋃

D), ↑(↓x ∩ U) ∩ D0 6= ∅ for some D0 ∈ D, this means A ∩ U ∩ D0 6= ∅ since x ∈ A and

A is a lower set. Moreover, (
⋃
{A ∩ D : D ∈ D}) ∩ U 6= ∅. So x ∈ clσZ (P )(∪{A ∩ D : D ∈ D}), and

A ∩ clσZ (P )(
⋃

D) ⊆ clσZ (P )(
⋃
{A ∩D : D ∈ D}) holds. Obviously, the conversely inclusion holds.

(2) ⇒ (1) It is sufficient to prove that ↑(↓x∩U) ∈ σZ(P ) for any x ∈ P , U ∈ σZ(P ). Let D ∈ Z(P ) with
Dδ∩↑(↓x∩U) 6= ∅. Then there exists an m ∈ ↓x∩U such that m ∈ Dδ, which implies ↓m ∈ {↓d : d ∈ D}δ.
In addition, we know {↓d : d ∈ D} ∈ Z(ΓZ(P )) since the mapping ψ : P → ΓZ(P ) defined by ψ(p) = ↓p is
monotone. As ΓZ(P ) is weakly meet sZ-continuous, we have ↓m ∈ clσZ (ΓZ (P ))(↓{↓m} ∩ ↓{↓d : d ∈ D}). It

is easy to verify that ♦U = {A ∈ ΓZ(P ) : A∩U 6= ∅} ∈ σZ(ΓZ(P )) and ↓m ∈ ♦U . So ♦U ∩↓{↓m}∩↓{↓d :
d ∈ D} 6= ∅, that is, C ∈ ΓZ(P ) belongs to this intersection. Moreover, there exists an element c ∈ C ∩ U
satisfying c ≤ m ≤ x and c ≤ d0 for some d0 ∈ D, this means D∩↑(↓x∩U) 6= ∅. Hence, ↑(↓x∩U) ∈ σZ(P ),
and P is weakly meet sZ-continuous. ✷

Lemma 3.5 Let P be a weakly meet sZ-continuous poset. If F is a finite subset of P , then intσZ(P )(↑F ) ⊆
∪{

և

Zx : x ∈ F}.

Proof. Suppose F = {x1, x2, ..., xn} and there exists an element a ∈ intσZ (P )(↑F ), but a /∈ ∪{

և

xi : i =

1, 2, ..., n}. Then xi ≪ Z
a for any xi ∈ F , that is, there exists Di ∈ Z(P ) such that a ∈ Dδ

i , but xi /∈ ↓Di,

for i = 1, 2, ..., n. For D1 ∈ Z(P ) with a ∈ Dδ
1, a ∈ clσZ (P )(↓a ∩ ↓D1) by weakly meet sZ-continuity. Then

intσZ (P )(↑F ) ∩ ↓a ∩ ↓D1 6= ∅, which implies that there is a y1 ∈ intσZ (P )(↑F ) ∩ ↓a ∩ ↓D1. By y1 ≤ a and

a ∈ Dδ
2, we have y1 ∈ Dδ

2. Similarly, we get that y1 ∈ clσZ (P )(↓y1∩↓D2) and intσZ (P )(↑F )∩↓y1∩↓D2 6= ∅.
So there is a y2 ∈ intσZ (P )(↑F )∩↓y1∩↓D2. By induction, we find yn ∈ intσZ (P )(↑F )∩↓yn−1∩↓Dn, where

y0 = a, clearly, yn ∈
⋂i=n

i=1 ↓Di. Since yn ∈ intσZ (P )(↑F ) ⊆ ↑F , yn ≥ xi0 for some i0 ∈ {1, 2, ..., n}, this
implies xi0 ∈ ↓Di0 , which contradicts that xi0 /∈ ↓Di0 . Hence, intσZ (P )(↑F ) ⊆ ∪{

և

Zx : x ∈ F}. ✷

Lemma 3.6 ([10]) Let Z be a Rudin subset system which has the finite family union property and P an
sZ-quasicontinuous poset. Then the following statements hold.

(1) For any finite set F in P , ⇑Z F ∈ σZ(P ).

(2) If U ⊆ P , then U ∈ σZ(P ) if and only if for any x ∈ U , there exists F ⊆f P such that x ∈⇑Z F ⊆
↑F ⊆ U .

Lemma 3.7 Let Z be a Rudin subset system which has the finite family union property. If P is weakly
meet sZ-continuous and sZ-quasicontinuous, then for any finite subset F of P , we have

⇑Z F =

և

ZF .
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Proof. By Lemma 3.5 and Lemma 3.6, obviously, ⇑Z F ⊆

և

ZF . And the reverse containment is easy to
verify, so we omit the proof. ✷

Proposition 3.8 ([13]) Let Z be a Rudin subset system which possesses M property. If P is an sZ-
continuous poset, then P is sZ-quasicontinuous, and for any p ∈ P , ωZ(p) = {F ⊆f P : ∃y ≪Z

p, such that y ∈ ↑F}.

Proposition 3.9 ([10]) Let P be an sZ-continuous poset. Then P is weakly meet sZ-continuous.

Proposition 3.10 Let P be a weakly meet sZ-continuous poset. If for any x, y ∈ P , x � y, there are

U ∈ σZ(P ), V ∈ ω(P ) such that x ∈ U , y ∈ V and U ∩ V = ∅, then P is weak sZ-continuous.

Proof. It suffices to prove that x ∈ ( ևZx)
δ for any x ∈ P . Suppose that there is a y ∈ ( ևzx)

u but x � y.

Then there are U ∈ σZ(P ), V = P \ ↑F ∈ ω(P ) such that x ∈ U , y ∈ V and U ∩ V = ∅, so U ⊆ ↑F . Since
↑(↓x∩U) ∈ σZ(P ) by Lemma 3.2 and x ∈ ↑(↓x∩U) ⊆ ↑F , we have x ∈ intσZ (P )(↑F ) ⊆

և

ZF . Thus there

is an m ∈ F such that m ∈ ևZx. It follows that m ≤ y, then y ∈ ↑F . But this contradicts that y ∈ V . ✷

Theorem 3.11 Let P be a poset and Z a Rudin subset system which possesses the finite family union
property and M property. If ևZx ∈ IZ(P ) for each x ∈ P , then the following conditions are equivalent:

(1) P is sZ-continuous;

(2) P is weakly meet sZ-continuous and sZ-quasicontinuous;

(3) P is weakly meet sZ-continuous, and for any x � y in P , there are U ∈ σZ(P ), V ∈ ω(P ) such that
x ∈ U , y ∈ V and U ∩ V = ∅.

Proof. (1) ⇒ (2) Straightforward by Proposition 3.8 and Proposition 3.9.
(2) ⇒ (3) For any x � y, that is, y /∈ ↑x, there is an F ∈ ωZ(x) such that y /∈ ↑F by (2). So we get

that there are ⇑Z F ∈ σZ(P ), P \ ↑F ∈ ω(P ) containing x and y, respectively, and ⇑Z F ∩ P \ ↑F = ∅.
(3) ⇒ (1) By Proposition 3.10 and ևZx ∈ IZ(P ), we know P is sZ -continuous. ✷

4 Posets with lower hereditary Z-Scott topology

Definition 4.1 Let P be a poset. The Z-Scott topology on P is called lower hereditary if for each closed
subbasis A of P , the Z-Scott topology of poset A is precisely generated by the subbasic closed subsets of
the form B ∩A, where B ∈ ΓZ(P ), that is, ΓZ(A) = {B ∩A : B ∈ ΓZ(P )}.

Definition 4.2 Let P , Q be two posets. A mapping f : P → Q is called σZ -continuous if for any
A ∈ ΓZ(Q), f−1(A) ∈ ΓZ(P ).

It is obvious that f is monotone if f is σZ -continuous.

Lemma 4.3 Let P and Q be two posets and f : P → Q. Consider the following three conditions:

(1) f is σZ-continuous.

(2) For any D ∈ Z(P ), f(Dδ) ⊆ f(D)δ.

(3) f(clσZ (P )(A)) ⊆ clσZ (P )(f(A)) for each A ⊆ P .

Then (1) ⇔ (2) ⇒ (3).

Proof. Straightforward. ✷

Lemma 4.4 Let P be a poset and Z a subset hereditary subset system. Consider the following conditions:

(1) The Z-Scott topology on P is lower hereditary.

(2) The inclusion map i : ↓x→ P is σZ-continuous for any x ∈ P .

(3) For any x ∈ P and D ∈ Z(↓x), Dδ |x= Dδ.
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(4) For any A ∈ ΓZ(P ) and D ∈ Z(A), Dδ |A= Dδ.

(5) For any D ∈ Z(P ), Du is filtered.

Then (5) ⇒ (1) ⇔ (2) ⇔ (3) ⇔ (4).

Proof. It is easy to verify that (1) ⇒ (2) ⇒ (3).

(3) ⇒ (4) : It is clear that Dδ ⊆ Dδ |A. Assume m ∈ Du |A. Then D ⊆ ↓m and m ∈ A. Since Z
is subset hereditary, D ∈ Z(↓m). Thus we have Dδ |m= Dδ by (3). Now we only need to prove that
Dδ |A⊆ Dδ |m. Assume a ∈ Dδ |A, b ∈ Du |m. Then b ≤ m and b ∈ A as m ∈ A, which implies that
b ∈ Du |A, so a ≤ b. Hence, Dδ |A⊆ Dδ |m.

(4) ⇒ (1) : We want to prove that ΓZ(A) = {A ∩ C : C ∈ ΓZ(P )} for any A ∈ ΓZ(P ). For each
B ∈ ΓZ(A), let D ∈ Z(P ) and D ⊆ B. Then D ∈ Z(A) because Z is subset hereditary. It follows that
Dδ |A⊆ B, which means Dδ ⊆ B since Dδ |A= Dδ. Thus B ∈ ΓZ(P ) and ΓZ(A) ⊆ {A ∩ C : C ∈ ΓZ(P )}.
Conversely, for any C ∈ ΓZ(P ), let D ∈ Z(A) with D ⊆ A ∩ C. Then D ∈ Z(P ) and Dδ ⊆ A ∩ C since
A ∩ C ∈ ΓZ(P ). This implies that Dδ |A⊆ A ∩ C. So A ∩ C ∈ ΓZ(A), and hence, ΓZ(A) = {A ∩ C : C ∈
ΓZ(P )} holds.

(5) ⇒ (3) : Clearly, Dδ ⊆ Dδ |x. Conversely, assume m ∈ Dδ |x, n ∈ Du. Then x, n ∈ Du. Since Du is
filtered, there is a p ∈ Du such that p ≤ x, n. This implies p ∈ Du |x, so m ≤ p. It follows that m ≤ n by
p ≤ n. Thus Dδ |x⊆ Dδ. ✷

Example 4.5 The condition (5) in the above lemma is not equivalent to others. Let N be the set of
natural numbers and P = N ∪ (N∂∪̇N∂) with the partial order defined by x ≤ y iff x ≤ y in N or x ≤ y
in N∂ or x ∈ N and y ∈ N∂∪̇N∂ (see Fig. 1 for a better understanding). One can easily sees that for any
−n ∈ N∂∪̇N∂ and D = N ∈ D(↓{−n}), Dδ|−n = Dδ, but Du is not filtered.

Corollary 4.6 Every zcpo P has a lower hereditary Z-Scott topology.

Proof. Since supD exists for any D ∈ Z(P ), Du is filtered. ✷

Definition 4.7 A poset P is called locally weakly meet sZ -continuous if ↓x as a subposet of P is weakly
meet sZ-continuous for each x ∈ P .

Lemma 4.8 Let P be a poset with a lower hereditary Z-Scott topology and A ∈ ΓZ(P ). Then for any
E ⊆ A, we have clσZ (P )(E) = clσZ (A)(E).

Proof. Straightforward. ✷

Theorem 4.9 Let P be a poset with a lower hereditary Z-Scott topology and Z be subset hereditary. Then
P is weakly meet sZ-continuous if and only if P is locally weakly meet sZ-continuous.
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Proof. (⇒): For any x ∈ P , let D ∈ Z(↓x), y ∈ Dδ |x. Then D ∈ Z(P ). Since the Z-Scott topology of P
is lower hereditary, by Lemma 4.4, we have Dδ |x= Dδ. Thus y ∈ Dδ. It follows that y ∈ clσZ (P )(↓y ∩ ↓D)

by the weakly meet sZ -continuity of P . Therefore, y ∈ clσZ (↓x)(↓y ∩ ↓D) by Lemma 4.8.

(⇐): Suppose D ∈ Z(P ), y ∈ Dδ. For any m ∈ Du, we have D ⊆ ↓m and D ∈ Z(↓m) as Z is
subset hereditary. Since Dδ = Dδ |m, we have y ∈ Dδ |m, which implies that y ∈ clσZ (↓m)(↓y ∩ ↓D). So

y ∈ clσZ (P )(↓y ∩ ↓D) by Lemma 4.8 again. ✷

Proposition 4.10 Let P be a poset with a lower hereditary Z-Scott topology. If P is weak sZ-continuous
and for any x ∈ P , y ∈ ↓x, և

x
Zy ∈ Z(↓x), then ↓x is sZ-continuous.

Proof. We need to prove that y ∈ ( և

x
Zy)

δ |x. Since P is weak sZ -continuous, y ∈ ( ևZy)
δ. Assumem≪Z y,

D ∈ Z(↓x) with y ∈ Dδ |x. Then y ∈ Dδ since the Z-Scott topology on P is lower hereditary. So m ∈ ↓D
by m ≪Z y, which implies that m ≪Z y in ↓x. Therefore, ևZy ⊆ և

x
Zy. Hence, y ∈ ( ևZy)

δ ⊆ ( և

x
Zy)

δ =

( և

x
Zy)

δ |x, where the last equality holds as և

x
Zy ∈ Z(↓x). Moreover, և

x
Zy ∈ Z(↓x) implies և

x
Zy ∈ IZ(↓x), so

↓x is sZ-continuous. ✷

Proposition 4.11 Let P be a poset with a lower hereditary Z-Scott topology and Z be subset hereditary.
If for any x ∈ P , ↓x is sZ-continuous and ևZx ∈ Z(P ), then P is sZ-continuous.

Proof. We only need to prove that x ∈ ( ևZx)
δ. By assumption, ↓x is sZ -continuous, we have x ∈ ( և

x
Zx)

δ |x.
Now we show that և

x
Zx ⊆ ևZx. Let m≪Z x in ↓x and D ∈ Z(P ) with x ∈ Dδ. We can find that D ⊆ ↓y

and D ∈ Z(↓y) for each y ∈ Du. Claim that և

x
Zx ⊆ և

y
Zx. Assume a ∈ և

x
Zx. Since ↓y is sZ-continuous

and x ∈ ↓y, we have և

y
Zx ∈ Z(↓y) and x ∈ ( և

y
Zx)

δ |y. It follows that x ∈ ( և

y
Zx)

δ |x as ↓x ⊆ ↓y. Moreover,

և

y
Zx ∈ Z(↓x) as և

y
Zx ⊆ ↓x and Z is subset hereditary. This implies that a ∈ և

y
Zx. So և

x
Zx ⊆ և

y
Zx holds.

Thus m ≪Z x in ↓y. As x ∈ Dδ implies that x ∈ Dδ |y, we have m ∈ ↓D. Hence, m ≪Z x. Then

և

x
Zx ⊆ ևZx. It is self-evident that x ∈ ( և

x
Zx)

δ |x⊆ ( ևZx)
δ |x= ( ևZx)

δ, where the last equality holds as

ևZx ∈ Z(↓x). So P is sZ-continuous. ✷

Theorem 4.12 Let P be a poset with a lower hereditary Z-Scott topology and Z be subset hereditary.
Then the following conditions are equivalent:

(1) P is sZ-continuous and և

x
Zy ∈ Z(↓x) for any x ∈ P and y ∈ ↓x;

(2) ↓x is sZ-continuous and ևZx ∈ Z(P ) for any x ∈ P .

Proof. Straightforward by Proposition 4.10 and 4.11. ✷

5 A monad on POSETδ

In this part, POSETδ denotes the category whose objects are all posets and morphisms are σZ -continuous
mappings. We will give a monad on POSETδ and characterize its Eilenberg-Moore algebras.

Definition 5.1 Let P be a poset and x, y ∈ P .

(1) x is called Z-beneath y, denoted by x ≺Z y, if for any A ∈ ΓZ(P ) with y ∈ Aδ, x ∈ A.

(2) P is said to be δZ -continuous if for all a ∈ P , a ∈ {m ∈ P : m ≺Z a}
δ .

Notice that the set {m ∈ P : m ≺Z a} ∈ ΓZ(P ) automatically. There are some common properties
about the relation ≺Z being similar to the ≪.

Proposition 5.2 Let P be a poset and x, y,m, n ∈ P .

(1) x ≺Z y implies x ≤ y;

(2) m ≤ x ≺Z y ≤ n implies m ≺Z n;

(3) if P has a bottom 0, then 0 ≺Z x always holds.
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Proposition 5.3 Let P be a poset and C ∈ ΓZ(ΓZ(P )). Then the supremum of C in ΓZ(P ) exists and is
exactly

⋃
C.

Proof. Clearly, it is enough to show that
⋃

C ∈ ΓZ(P ). For any D ∈ Z(P ) with D ⊆
⋃

C, there is Cd ∈ C
for each d ∈ D such that d ∈ Cd. Then we have ↓d ⊆ Cd and {↓d : d ∈ D} ⊆ C as C is a lower set. Since the
monotonicity of the mapping f : P → ΓZ(P ) defined by f(p) = ↓p implies that {↓d : d ∈ D} ∈ Z(ΓZ(P )),
{↓d : d ∈ D}δ ⊆ C. Now consider each a ∈ Dδ, we have ↓a ∈ {↓d : d ∈ D}δ , which means ↓a ∈ C. Thus
a ∈

⋃
C, and Dδ ⊆

⋃
C holds. ✷

Definition 5.4 Let P be a poset.

(1) An element x of P is called Z-compact if x ≺Z x. We use kZ(P ) to denote the set of all Z-compact
elements of P .

(2) P is called δZ -prealgebraic if for each x ∈ P , x ∈ {y ∈ kZ(P ) : y ≤ x}δ.

Notably, we call a δZ -prealgebraic complete lattice a δZ -prealgebraic lattice for short. Obviously,
ΓZ(P ) is a δZ -prealgebraic lattice for any poset P .

Lemma 5.5 Let (g, d) be a Galois connection between two posets S and T , where g : S → T , d : T → S.
Then d preserves cuts of any subset of T , that is, d(Aδ) ⊆ d(A)δ for any A ⊆ T .

Proof. It suffices to show that d(x) ∈ d(A)δ for any x ∈ Aδ. Let y be an upper bound of d(A). Then
for each a ∈ A, we have d(a) ≤ y, and so a ≤ g(y). It follows that A ⊆ ↓g(y). Thus Aδ ⊆ ↓g(y), which
implies x ≤ g(y), so d(x) ≤ y. Hence, d(x) ∈ d(A)δ . ✷

Lemma 5.6 Let (g, d) be a Galois connection between two posets S and T , where g : S → T , d : T → S.
Then for any C ∈ ΓZ(S), ↓g(C) ∈ ΓZ(T ).

Proof. Let E be a Z-set of T with E ⊆ ↓g(C). Then for any e ∈ E, there is a ce ∈ C such that e ≤ g(ce),
this means d(e) ≤ ce. Thus d(E) ⊆ C and d(E)δ ⊆ C since C ∈ ΓZ(S). The conclusion of Lemma 5.5
indicates that d(Eδ) ⊆ C. Therefore, Eδ ⊆ d−1(C) = ↓g(C). ✷

Lemma 5.7 Let (g, d) be a Galois connection between two posets S and T , where g : S → T , d : T → S.
Consider the following two conditions:

(1) For any A ∈ ΓZ(S), g(Aδ) ⊆ g(A)δ .

(2) d preserves the relation ≺Z.

Then (1) ⇒ (2); if T is δZ-continuous, then (2) ⇒ (1).

Proof. (1) ⇒ (2): We need to show that d(x) ≺Z d(y) for any x ≺Z y in T . Let A ∈ ΓZ(S) with
d(y) ∈ Aδ. Then y ≤ g(m) for some m ∈ Aδ. By the condition (1), we have g(m) ∈ g(A)δ and hence,
y ∈ g(A)δ = (↓ g(A))δ. Lemma 5.6 indicates that ↓g(A) ∈ ΓZ(T ), then x ∈ ↓g(A) as x ≺Z y. Thus there
is an a ∈ A such that x ≤ g(a), which implies d(x) ≤ a. It follows that d(x) ∈ A. Therefore, d preserves
the relation ≺Z .

(2) ⇒ (1): By the δZ -continuity of T , we know g(x) ∈ {y ∈ T : y ≺Z g(x)}δ for each x ∈ Aδ.
Thus in order to show g(Aδ) ⊆ g(A)δ for any A ∈ ΓZ(S), it suffices to prove that for each x ∈ Aδ,
{y ∈ T : y ≺Z g(x)}δ ⊆ g(A)δ . For each y ≺Z g(x), since d(y) ≺Z d(g(x)) ≤ x, we have d(y) ≺Z x.
Then d(y) ∈ A because x ∈ Aδ and A ∈ ΓZ(S), which implies y ∈ ↓g(A). Thus {y ∈ T : y ≺Z g(x)}δ ⊆
(↓g(A))δ = g(A)δ . ✷

Lemma 5.8 If L is a zcpo, then kZ(L) is also a zcpo.

Proof. We just need to prove that supD ∈ kZ(L) for any D ∈ Z(kZ(L)). Let A ∈ ΓZ(L) with supD ∈ Aδ.
Then D ⊆ Aδ, and so D ⊆ A by D ⊆ kZ(L). Thus ↓ supD = Dδ ⊆ A, this means supD ∈ A. Hence,
supD ∈ kZ(L) and supkZ(L)D = supD ∈ kZ(L). It follows that kZ(L) is a zcpo. ✷
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The above lemma ensures that Dδ |kZ (L)= Dδ ∩ kZ(L) hold. There is an example illustrating that

Dδ |kZ(L)= Dδ ∩ kZ(L) doesn’t hold if L is not a zcpo.

Example 5.9 Let P be the poset consist of all natural numbers N and {a, b, c, d,⊤}. ⊤ is the greatest
element of P and {a, b, c, d} ⊆ Nu, c ∈ {a, b}u. Now consider Z = D, where D(P ) is the family of all
directed subsets. It is easy to verify that kD(P ) = N ∪ {d}. For N ∈ D(P ), Nδ |kD(P )= N ∪ {d}, however,

Nδ ∩ kD(P ) = N since Nδ = N.

We denote by δZPALG the category which has all δZ -prealgebraic lattices as objects and maps that
have an upper adjoint and preserve the relation ≺Z as morphisms. Next, we will investigate the relation
between the categories POSETδ and δZPALG.

Theorem 5.10 Let KZ and ΓZ be two functors between δZPALG and POSETδ. Here KZ is defined by
associating a δZ-prealgebraic lattice with the poset kZ(L) and a morphism f : L → M in δZPALG with
the map KZ(f) : kZ(L) → kZ(M) defined by

∀x ∈ kZ(L), KZ(f)(x) = f(x);

ΓZ is defined by assigning a poset P to the δZ-prealgebraic lattice ΓZ(L) and the σZ-continuous mapping
g : P → Q to ΓZ(g) : ΓZ(P ) → ΓZ(Q) defined as follows:

∀A ∈ ΓZ(P ), ΓZ(g)(A) = clσZ (Q)(g(A)).

Then ΓZ is left adjoint to KZ with unit ηP and counit ǫP given by

ηP : P → KZΓ
Z(P ) : p 7→ ↓p, ∀p ∈ P , and

ǫL : ΓZKZ(L) → L : E 7→ supE, ∀E ∈ ΓZKZ(L),

respectively.

Proof. Step 1: Verify that functors KZ and ΓZ are well-defined by showing that KZ(f) and ΓZ(g)
are morphisms in POSETδ, δZPALG, respectively. We claim that KZ(f) is σZ -continuous, that
is, KZ(f)(D

δ |kZ(L)) ⊆ (KZ(f)(D))δ |kZ(M) for any D ∈ Z(kZ(L)). Since L is a complete lat-
tice, by Lemma 5.8, kZ(L) is a zcpo. Thus we only need to prove that KZ(f)(↓kZ(L) supkZ(L)D) ⊆
↓kZ(M) supkZ(M)KZ(f)(D). More precisely, to show KZ(f)(↓ supD ∩ kZ(L)) ⊆ ↓ supKZ(f)(D) ∩ kZ(M).

From the fact that f has an upper adjoint, we know f(supD) = sup f(D) holds. So it is easy to see that

KZ(f)(↓ supD ∩ kZ(L)) ⊆ KZ(f)(↓ supD) ∩ kZ(M)

⊆ ↓f(supD) ∩ kZ(M)

= ↓ sup f(D) ∩ kZ(M)

= ↓ supKZ(f)(D) ∩ kZ(M).

Hence, KZ(f) is σ
Z -continuous.

We proceed to show ΓZ(g) has an upper adjoint and preserves the relation ≺Z . It is obvious that Γ
Z(g)

preserves arbitrary sups in ΓZ(P ), by Corollary O-3.5 in [6], ΓZ(g) has an upper adjoint. Moreover, the
upper adjoint is given by

h : ΓZ(Q) → ΓZ(P ) : C 7→ g−1(C).

By Proposition 5.3, we know for any C ∈ ΓZ(ΓZ(Q)), sup C =
⋃

C. It follows that

h(Cδ) = g−1(↓ sup C) = ↓{g−1(
⋃

C)} = ↓{
⋃
g−1(C)} = ↓ suph(C) = h(C)δ .

Therefore, from the conclusion of Lemma 5.7, we get that ΓZ(g) preserves ≺Z . So ΓZ(g) is a morphism
in δZPALG.

Step 2: To show ΓZ is left adjoint to KZ in detail. Obviously, ηP is σZ -continuous, that is, a morphism
in POSETδ. Now let L be a δZ -prealgebraic lattice and f : P → KZ(L) σ

Z -continuous. We define
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f̄ : ΓZ(P ) → L : A 7→ sup f(A).

It is easy to find that KZ(f̄)◦η = f . Thus for the remainder, we need to prove that f̄ is a unique morphism
in δZPALG such that KZ(f̄) ◦ η = f . Note that f̄ preserves arbitrary sups in ΓZ(P ) and ΓZ(P ) is a
complete lattice, so f̄ has an upper adjoint, denoted by f∗. More specifically, for any m ∈ L,

f∗(m) = sup f̄−1(↓m)

= sup{C ∈ ΓZ(P ) : f̄(C) ≤ m}

= sup{↓t ∈ ΓZ(P ) : f̄(↓t) ≤ m}

= sup{↓t ∈ ΓZ(P ) : f(t) ≤ m}.

Then again by Lemma 5.7, we check that f∗(Bδ) ⊆ f∗(B)δ for any B ∈ ΓZ(L) to affirm f̄ preserves
≺Z . Since L and ΓZ(P ) are complete lattices, we only need to prove f∗(supB) ≤ sup f∗(B). To this
end, consider each ↓x ∈ ΓZ(P ) which satisfies f(x) ≤ supB, that is, f(x) ∈ Bδ. Then f(x) ∈ B as
f(x) ∈ kZ(L). It follows that ↓x ⊆ f∗(f(x)), in addition, ↓x ⊆ sup f∗(B). Thus f∗(supB) ≤ sup f∗(B)
holds, hence, f∗(Bδ) ⊆ f∗(B)δ. Besides, clearly, f̄ is unique. Therefore, we can conclude that ΓZ is left
adjoint to KZ . ✷

Next, we will give a monad on POSETδ. Before this, let us recall the following conclusion:

Proposition 5.11 [3] Let U : B → A and F : A → B be functors such that F is left adjoint to U with
η : id→ UF and ǫ : FU → id the unit and counit, respectively. Then (UF, η, UǫF ) is a monad on A.

Now, by combining the above two conclusions, and KZΓ
Z is written as δ, we obtain the following.

Theorem 5.12 The endofunctor δ together with two natural transformation η : id→ δ and µ = ΓZǫKZ :
δ2 → δ is a monad on the category POSETδ. More precisely, for each P ∈ POSETδ, ηP : P → δ(P )
and µP : δ2(P ) → δ(P ) are defined as:

∀p ∈ P, η(p) = ↓p,

∀A ∈ δ2(P ), µ(A) = supA,

respectively.

Recall that an Eilenberg-Moore algebra for a monad (T, η, µ) on a category C is a pair (C, ξ), where
ξ : TC → C is a morphism in C called a structure map which satisfies ξ ◦ ηC = idC and ξ ◦ µC = ξTξ. In
addition, we call a poset P δcpo if for any A ∈ δ(P ), supA exists.

Theorem 5.13 There exists a structure map ξ : δ(P ) → P in POSETδ such that (P, ξ) is an Eilenberg-
Moore algebra of the monad (δ, η, µ) if and only if P is a δcpo.

Proof. (⇒): We claim that supA = ξ(A) exists for any A ∈ δ(P ). Consider each a ∈ A, from the facts
that η(a) = ↓a ⊆ A and ξ is order-preserving, we have ξ(η(a)) ≤ ξ(A). This implies a ≤ ξ(A) since
ξ ◦ ηP = idP . Thus ξ(A) is an upper bound of A. Assume that m is another upper bound of A, which
means A ⊆ ↓m = η(m). So ξ(A) ≤ ξ(η(m)) by the monotonicity of ξ again. It follows that ξ(A) ≤ m, and
hence ξ(A) = supA.

(⇐): Since P is a δcpo, we can define ξ : δ(P ) → P by C 7→ supC. One can easily verify that
ξ ◦ ηP = idP and ξ ◦ µP = ξδξ. For the remaining part, what we need to prove is that ξ is a morphism
in POSETδ, that is, ξ is σZ -continuous. To this end, let A be a Z-set of δ(P ). Since for every upper
bound y of ξ(A), we have ξ(A) = supA ≤ y for each A ∈ A, which implies A ⊆ ↓y and so ↓y is an
upper bound of A. Thus for every B ∈ Aδ, B ⊆ ↓y, which means ξ(B) = supB ≤ y. It follows that
ξ(Aδ) = {ξ(B) : B ∈ Aδ} ⊆ ξ(A)δ. Hence, ξ is σZ -continuous. ✷
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Refer to [11], if (T, η, µ) is a monad on the category C, the category T-ALG consists of all T -algebras
as objects and morphisms of T -algebras as morphisms. Here a morphism of T -algebras between (C, ξ) and
(C ′, ξ′) in T-ALG is a morphism f : C → C ′ in C which satisfies f ◦ ξ = ξ′Tf .

Combining with the characterization of δ-algebras, we can deduce that f : (P,α) → (Q,β) is a δ-algebra
morphism if and only if f(supA) = sup f(A) for every A ∈ δ(P ).
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