Quantaloidal Completions of Order-enriched Categories and Their Applications

Min Liu^{1,2} Yulin Li³

School of Sciences Chang'an University Xi'an, P R China

Abstract

By introducing the concept of quantaloidal completions for an order-enriched category, relationships between the category of quantaloids and the category of order-enriched categories are studied. It is proved that quantaloidal completions for an order-enriched category can be fully characterized as compatible quotients of the power-set completion. As applications, we show that a special type of injective hull of an order-enriched category is the MacNeille completion; the free quantaloid over an order-enriched category is the Down-set completion.

Keywords: Quantaloid, order-enriched category, completion; injective hull, free quantaloid

1 Introduction

An order-enriched category is a locally small category such that the hom-sets are partially ordered sets and composition of morphisms preserve order in both variables. An order-enriched categories can be viewed as a partially ordered semigroup. Thus order-enriched categories can be viewed as categorical generalization of partially ordered semigroups. Several works devoted to this subject are from computer science [15,33], especially with strong background of the study of programming languages. In 1979, M. Wand studied fixed-point constructions in order-enriched categories, which extended Scott's result based on continuous lattices. Note that an order-enriched category in the sense of [33] means a category with hom-sets not only ordered but also with certain completeness. Later, M. Smyth and G. Plotkin considered solving recursive domain equations in this framework [26]. In 2007, this ideal was further extended to the framework of bicategories [5]. In 1991, C. E. Martin, C. A. R. Hoare and He Jifeng studied pre-adjunctions in order enriched-categories [15]. In [15], the concepts of lax functors, natural transformations and pre-adjunctions are studied with the purpose to explain their understanding of programming languages. We also note that an order-enriched category in the sense of [15] means a

¹ This work is supported by the National Natural Science Foundation of China (Grant No. 11871320), Natural Science Basic Research Program of Shaanxi (Program No. 2022JM-032) and the Fundamental Research Funds for the Central Universities (Grant No. 300102122109).

² Email: liumin@chd.edu.cn

³ Email: 1942348167@qq.com

category with hom-sets preordered. These works are all devoted to study special kind of order-enriched categories. There are little works devoted to study on them systematically.

A quantaloid Q [1, 20–22] is a category enriched in the symmetric monoidal closed category **Sup** of complete lattices and morphisms that preserve arbitrary sups. Just as every complete lattice is a special partially ordered set, every quantaloid is a special order-enriched categories. A quantaloid with only one object is a quantale [19], thus quantaloids are naturally viewed as quantales with many objects. Quantaloids were studied by Pitts [17] in investigating distributive categories of relations and topos theory under the name of sup-lattice enriched categories. In [1] quantaloids are studied in order to include a notion of type on the processes. Quantaloids and their applications were further developed in the monograph [22]. In recent years, Quantaloid-enriched categories received considerable attention [6,8,11,13,16,23–25,27–32].

The process of completion is a classic approach to study ordered structures. Various completion methods for ordered structures are developed with different characteristics [3, 4, 7, 9, 14, 18, 34]. Relationships between order-enriched categories and quantaloids have not received enough attention, though they have similar backgrounds and close relations. Inspired by research on completion methods for ordered semigroups and their applications [9, 12, 20, 34], this paper is devoted to study quantaloidal completions of order-enriched categories and their applications.

The contents of the paper are arranged as follows. Section 2 lists some preliminary notions and results about order-enriched categories and quantaloids. In Section 3, based on compatible nuclei on quantaloids, quantaloidal completions for an order-enriched category are fully characterized as compatible quotients of the power-set completion. In Section 4, two aspects of applications of quantaloidal completions are given. It is proved that the injective hull of an order-enriched category with respect to a special kind of morphisms is the MacNeille completion; the free quantaloid over an order-enriched category is the Down-set completion.

2 Preliminaries on order-enriched categories and quantaloids

For category theory, we refer to [2,10]. Let C_0 be the class of objects of a category C. C(a, b) denotes the hom-set for $a, b \in C_0$. For $a \in C_0$, 1_a denotes the identity on a.

Definition 2.1 ([15]) An order-enriched category is a locally small category \mathcal{A} such that:

- (1) for $a, b \in \mathcal{A}_0$, the hom-set $\mathcal{A}(a, b)$ is a poset,
- (2) composition of morphisms of \mathcal{A} preserves order in both variables.

Definition 2.2 ([35]) Let \mathcal{C} , \mathcal{D} be order-enriched categories. A lax semifunctor $F : \mathcal{C} \to \mathcal{D}$ is given by functions $F : \mathcal{C}_0 \to \mathcal{D}_0$ and $F_{a,b} : \mathcal{C}(a,b) \to \mathcal{D}(Fa,Fb)$ for all $a, b \in \mathcal{C}_0$ such that $F_{a,b}$ is order-preserving and $(Fg) \circ (Ff) \leq F(g \circ f)$ for all $a, b, c \in \mathcal{C}_0$, $f \in \mathcal{C}(a,b), g \in \mathcal{C}(b,c)$. A lax functor $F : \mathcal{C} \to \mathcal{D}$ is a lax semifunctor such that $1_{Fa} \leq F(1_a)$ for all $a \in \mathcal{C}_0$. A 2-functor $F : \mathcal{C} \to \mathcal{D}$ is a functor such that

$$F_{a,b}: \mathcal{C}(a,b) \to \mathcal{D}(Fa,Fb)$$

is order-preserving for all $a, b \in \mathcal{C}_0$.

A quantaloid Q [22] is a category enriched in the symmetric monoidal closed category **Sup** of complete lattices and morphisms that preserve arbitrary sups. In elementary terms:

Definition 2.3 ([20]) A quantaloid is a locally small category \mathcal{Q} such that:

- (1) for $a, b \in Q_0$, the hom-set Q(a, b) is a complete lattice,
- (2) composition of morphisms of \mathcal{Q} presevers sups in both variables.

In this paper, \mathcal{Q} always denotes a small quantaloid, and \mathcal{Q}_0 denotes the set of its objects. The identity \mathcal{Q} -arrow on $q \in \mathcal{Q}_0$ will be denoted by $\mathbb{1}_q$. The greatest element of the complete lattice $\mathcal{Q}(p,q)$ will be denoted by $\mathbb{T}_{p,q}$. For a \mathcal{Q} -arrow $u: p \longrightarrow q$, we denote the domain and the codomain of u by dom(u) and $\operatorname{cod}(u)$, respectively. Given \mathcal{Q} -arrows $u: p \longrightarrow q$, $v: q \longrightarrow r$, the corresponding adjoints induced by the

compositions $-\circ u : \mathcal{Q}(q,r) \longrightarrow \mathcal{Q}(p,r)$ and $v \circ - : \mathcal{Q}(p,q) \longrightarrow \mathcal{Q}(p,r)$ are denoted by $u \rightarrow_l -$ and $v \rightarrow_r -$ respectively.

For more details on quantaloids, we refer to [20, 22].

Definition 2.4 ([20]) Let \mathcal{Q}, \mathcal{S} be quantaloids. A quantaloidal homomorphism $F : \mathcal{Q} \to \mathcal{S}$ is a functor such that

$$F: \mathcal{Q}(X,Y) \to \mathcal{S}(FX,FY)$$

is sup-preserving for all $X, Y \in \mathcal{Q}_0$.

A quantaloidal isomorphism is a quantaloidal homomorphism such that it is bijictive on objects and hom-sets.

Example 2.5 Let \mathcal{A} be an order-enriched category.

- (1) $\mathcal{P}(\mathcal{A})$ is a quantaloid [20]. The objects of $\mathcal{P}(\mathcal{A})$ are those of \mathcal{A} . For $a, b \in \mathcal{A}$, the hom-set $\mathcal{P}(\mathcal{A})(a,b)=\mathcal{P}(\mathcal{A}(a,b))$, the power set of the hom-set $\mathcal{A}(a,b)$. For $S \in \mathcal{P}(\mathcal{A})(a,b), T \in \mathcal{P}(\mathcal{A})(b,c), T \circ S = \{g \circ f \mid g \in T, f \in S\}.$
- (2) $\mathcal{D}(\mathcal{A})$ is a quantaloid. The objects of $\mathcal{D}(\mathcal{A})$ are those of \mathcal{A} . For $a, b \in \mathcal{A}$, the hom-set $\mathcal{D}(\mathcal{A})(a,b)=\mathcal{D}(\mathcal{A}(a,b))$, the set of down sets⁴ of the hom-set $\mathcal{A}(a,b)$. For $S \in \mathcal{D}(\mathcal{A})(a,b), T \in \mathcal{D}(\mathcal{A})(b,c), T \circ S = \downarrow \{g \circ f \mid g \in T, f \in S\}$. We note that $\downarrow 1_a \in \mathcal{D}(\mathcal{A}(a,a))$ is the identity morphism.

Definition 2.6 ([20]) Let \mathcal{Q} be a quantaloid. A quantaloidal nucleus is a lax functor $j : \mathcal{Q} \to \mathcal{Q}$, which is the identity on the objects of \mathcal{Q} and such that the maps $j_{a,b} : \mathcal{Q}(a,b) \to \mathcal{Q}(a,b)$ satisfy:

- (1) $f \leq j_{a,b}(f)$ for all $f \in \mathcal{Q}(a,b)$,
- (2) $j_{a,b}(j_{a,b}(f)) = j_{a,b}(f)$ for all $f \in \mathcal{Q}(a,b)$,
- (3) $j_{b,c}(g) \circ j_{a,b}(f) \leq j_{a,c}(g \circ f)$ for all $g \in \mathcal{Q}(b,c)$ $f \in \mathcal{Q}(a,b)$.

For a quantaloidal nucleus j on a quantaloid \mathcal{Q} , let \mathcal{Q}_j be the bicategory with the same objects as \mathcal{Q} and $\mathcal{Q}_j(a,b) = \{f \in \mathcal{Q}(a,b) \mid j_{a,b}(f) = f\}$ for $a, b \in (\mathcal{Q}_j)_0$. Composition in \mathcal{Q}_j is defined as follows: $g \circ_j f = j_{a,c}(g \circ f)$ for $f \in \mathcal{Q}_j(a,b), g \in \mathcal{Q}_j(b,c)$.

Proposition 2.7 ([20]) If j is a quantaloidal nucleus on a quantaloid Q, then Q_j is a quantaloid and $j: Q \to Q_j$ is a quantaloidal homomorphism.

Proposition 2.8 ([20]) Let S be a subcategory of a quantaloid Q, which contains all the objects of Q. Then, S is a quotient quantaloid of the form Q_j for some quantaloidal nucleus j iff

(1) each hom-set S(a, b) is closed under infs, and

(2) if $f \in \mathcal{S}(a,c)$, then $g \to_l f \in \mathcal{S}(b,c)$ for all $g \in \mathcal{Q}(a,b)$ and $h \to_r g \in \mathcal{S}(a,b)$ for all $h \in \mathcal{Q}(b,c)$.

3 Quantaloidal completions of order-enriched categories

In order to study quantaloidal completions of order-enriched categories, let us begin with the concept of a compatible nucleus on a quantaloid.

Definition 3.1 Let \mathcal{A} be an order-enriched category, $j : \mathcal{P}(\mathcal{A}) \to \mathcal{P}(\mathcal{A})$ a quantaloidal nucleus. j is said to be *compatible* if for $a, b \in \mathcal{A}_0$, $f \in \mathcal{A}(a, b)$, we have $j_{a,b}(\{f\}) = \downarrow f$.

Definition 3.2 Let \mathcal{A} be an order-enriched category, \mathcal{Q} a quantaloid, $F : \mathcal{A} \to \mathcal{Q}$ a 2-functor. The pair (F, \mathcal{Q}) is said to be a *quantaloidal completion* of \mathcal{A} , if the following conditions are satisfied:

- (1) $F: \mathcal{A}_0 \to \mathcal{Q}_0$ is bijective,
- (2) $F_{a,b}: \mathcal{A}(a,b) \to \mathcal{Q}(Fa,Fb)$ is an order embedding for all $a, b \in \mathcal{A}_0$,

⁴ A set D in a poset P is a down set, if $D = \downarrow D$, where $\downarrow D = \{x \mid \exists d \in D, \text{ s. t. } x \leq d\}$.

(3) for every $a, b \in \mathcal{A}_0$ and $f \in \mathcal{Q}(Fa, Fb)$, there exists $U_f \subseteq \mathcal{A}(a, b)$ such that $f = \bigvee F(U_f)$.

Theorem 3.3 If j is a compatible nucleus on an order-enriched category \mathcal{A} , then $(F_j, \mathcal{P}(\mathcal{A})_j)$ is a quantaloidal completion of \mathcal{A} , where $F_j : \mathcal{A} \to \mathcal{P}(\mathcal{A})_j$ is defined as follows:

(1)
$$F_j : \mathcal{A}_0 \to (\mathcal{P}(\mathcal{A})_j)_0$$
 is the identity map,

(2) $F_j(f) = \downarrow f$ for every $f \in \mathcal{A}(a,b), a, b \in \mathcal{A}_0$.

Proof. By definition, $F_j : \mathcal{A}_0 \to (\mathcal{P}(\mathcal{A})_j)_0$ is bijective, and $F_j : \mathcal{A}(a,b) \to \mathcal{P}(\mathcal{A})_j(a,b)$ is an orderembedding. For $S \in \mathcal{P}(\mathcal{A})_j(a,b)$, we have $S = j_{a,b}(S) = j_{a,b}(\bigcup_{f \in S} \{f\}) = \bigvee_{f \in S}^{\mathcal{P}(\mathcal{A})_j(a,b)} j_{a,b}(\{f\}) = \bigvee_{f \in S}^{\mathcal{P}(\mathcal{A})_j(a,b)} \downarrow f = \bigvee_{f \in S}^{\mathcal{P}(\mathcal{A})_j(a,b)} F_j(f)$. This completes the proof. \Box

Corresponding to several classical completion methods of posets and ordered semigroups, we can obtain a series of compatible nucleus. We leave detail to the reader.

Example 3.4 (Down-set completion) Let \mathcal{A} be an order-enriched category. Define a lax functor $\downarrow: \mathcal{P}(\mathcal{A}) \to \mathcal{P}(\mathcal{A})$ as follows:

(1) $\downarrow: \mathcal{P}(\mathcal{A})_0 \to \mathcal{P}(\mathcal{A})_0$ is the identity map,

(2) $\downarrow_{a,b} (S) = \downarrow S \text{ for } S \in \mathcal{P}(\mathcal{A})(a,b), a, b \in \mathcal{P}(\mathcal{A})_0.$

Then \downarrow is a compatible nucleus. The quotient corresponding to \downarrow is $\mathcal{D}(\mathcal{A})$.

Example 3.5 (MacNeille completion) Let \mathcal{A} be an order-enriched category. Define a lax functor cl : $\mathcal{P}(\mathcal{A}) \to \mathcal{P}(\mathcal{A})$ as follows:

(1) cl : $\mathcal{P}(\mathcal{A})_0 \to \mathcal{P}(\mathcal{A})_0$ is the identity map,

(2) $\operatorname{cl}_{a,b}(S) = \{f \in \mathcal{P}(\mathcal{A})(a,b) \mid \forall g \in \mathcal{P}(\mathcal{A})(a',a), h \in \mathcal{P}(\mathcal{A})(b,b'), k \in \mathcal{P}(\mathcal{A})(a,b), h \circ S \circ g \subseteq k \}$ for $S \in \mathcal{P}(\mathcal{A})(a,b), a, b \in \mathcal{P}(\mathcal{A})_0$. Then cl is a compatible nucleus.

Example 3.6 (Equivariant completion) Let \mathcal{A} be an order-enriched category. Suppose $S \subseteq \mathcal{P}(\mathcal{A})(a, b)$. If the join of S exists and is preserved by composition, i.e., $f \circ (\bigvee S) = \bigvee (f \circ S), (\bigvee S) \circ g = \bigvee (S \circ g)$ whenever the composition is well-defined, then $\bigvee S$ is said to be an *equivariant join* with respect to S. Clearly, every $f \in \mathcal{P}(\mathcal{A})(a, b)$ is an equivariant join respect to $\downarrow f$. If k is an equivariant join with respect to S, then $g \circ k$ (resp., $k \circ h$) is an equivariant join with respect to $g \circ S$ (resp., $S \circ h$), whenever the composition is well-defined. For $S \subseteq \mathcal{P}(\mathcal{A})(a, b)$, let

$$S^{EJ} = \{ f \in \mathcal{P}(\mathcal{A})(a, b) \mid \exists T \subseteq S, \text{s.t. } f = \bigvee T \text{ is an equivariant join with respect to } T \}.$$

Let $EJ(\mathcal{A})$ be the subcategory of \mathcal{A} , which contains all the objects of \mathcal{A} . The hom-sets

$$EJ(\mathcal{A})(a,b) = \{ S \in \mathcal{D}(\mathcal{A})(a,b) \mid S = S^{EJ} \}.$$

Then $EJ(\mathcal{A})$ is a quotient of \mathcal{A} such that $\downarrow f \in EJ(\mathcal{A})(a,b)$ for every $f \in \mathcal{P}(\mathcal{A})(a,b)$. Consequently, the corresponding quantaloidal nucleus is compatible.

For an order-enriched category \mathcal{A} , $CN(\mathcal{A})$ denotes the class of all compatible nuclei on $\mathcal{P}(\mathcal{A})$, $QC(\mathcal{A})$ denotes the set of all quantaloidal completions of \mathcal{A} .

Let \mathcal{A} be an order-enriched category, $(F, \mathcal{Q}) \in QC(\mathcal{A})$. Define $j_{(F,\mathcal{Q})} : \mathcal{P}(\mathcal{A}) \to \mathcal{P}(\mathcal{A})$ as follows:

- (1) $j_{(F,\mathcal{Q})}: \mathcal{P}(\mathcal{A})_0 \to \mathcal{P}(\mathcal{A})_0$ is the identity map,
- (2) $j_{(F,\mathcal{Q})}(S) = \{ f \in \mathcal{A}(a,b) \mid F(f) \leq \bigvee_{g \in S} F(g) \}$ for every $S \in \mathcal{P}(\mathcal{A})(a,b), a, b \in \mathcal{A}_0.$

Lemma 3.7 Let \mathcal{A} be an order-enriched category, $(F, \mathcal{Q}) \in QC(\mathcal{A})$. Then $j_{(F,\mathcal{Q})}$ is a compatible nucleus on $\mathcal{P}(\mathcal{A})$.

Liu and Li

Proof. By definition, $j_{(F,\mathcal{Q})} : \mathcal{P}(\mathcal{A})_0 \to \mathcal{P}(\mathcal{A})_0$ is bijective, $j_{(F,\mathcal{Q})} : \mathcal{P}(\mathcal{A})(a,b) \to \mathcal{P}(\mathcal{A})(a,b)$ is order preserving and increasing for all $a, b \in \mathcal{A}_0$. Suppose $S \in \mathcal{P}(\mathcal{A})(a, b), f \in j_{(F,\mathcal{Q})}(j_{(F,\mathcal{Q})}(S))$. Then, $F(f) \leq j_{(F,\mathcal{Q})}(f)$ $\bigvee_{g \in j_{(F,\mathcal{Q})}(S)} F(g). \text{ For every } g \in j_{(F,\mathcal{Q})}(S), \text{ we have } F(g) \leq \bigvee_{k \in S} F(k). \text{ Thus, } F(f) \leq \bigvee_{k \in S} F(k).$ Consequently, $f \in j_{(F,\mathcal{Q})}(S)$. So we can conclude that $j_{(F,\mathcal{Q})} \circ j_{(F,\mathcal{Q})} = j_{(F,\mathcal{Q})}$. Thus, $j_{(F,\mathcal{Q})} : \mathcal{P}(\mathcal{A})(a,b) \to \mathcal{P}(\mathcal{A})(a,b)$ $\mathcal{P}(\mathcal{A})(a,b)$ is a closure operator for every $a, b \in \mathcal{A}_0$.

Suppose $K \in \mathcal{P}(\mathcal{A})(b,c), S \in \mathcal{P}(\mathcal{A})(a,b)$. Then $j_{(F,\mathcal{Q})}(K) \circ j_{(F,\mathcal{Q})}(S) = \{g \circ f \mid g \in \mathcal{A}(b,c), f \in \mathcal{A}(b,c)\}$
$$\begin{split} \mathcal{A}(a,b), F(g) &\leq \bigvee_{k \in K} F(k), F(f) \leq \bigvee_{t \in S} F(t) \rbrace. \text{ If } F(g) \leq \bigvee_{k \in K} F(k), F(f) \leq \bigvee_{t \in S} F(t), \text{ then } F(g \circ f) \leq \bigvee_{k \in K, t \in S} F(k) \circ F(t) = \bigvee_{k \in K, t \in S} F(k \circ t) \leq \bigvee_{p \in K \circ S} F(p). \text{ Thus, } j_{(F,\mathcal{Q})}(K) \circ j_{(F,\mathcal{Q})}(S) \subseteq j_{(F,\mathcal{Q})}(K \circ S). \end{split}$$

For $f_0 \in \mathcal{A}(a,b)$, by the fact that $F : \mathcal{A}(a,b) \to \mathcal{Q}(F(a),F(b))$ is an order embedding, we have $j_{(F,\mathcal{Q})}(\{f_0\}) = \{f \in \mathcal{A}(a,b) \mid F(f) \le F(f_0)\} = \downarrow f_0.$

So we can conclude that $j_{(F,\mathcal{O})}$ is a compatible nucleus on $\mathcal{P}(\mathcal{A})$.

Theorem 3.8 Let \mathcal{A} be an order-enriched category, $(F, \mathcal{Q}) \in QC(\mathcal{A})$. Then \mathcal{Q} is quantaloidal isomorphism to $\mathcal{P}(\mathcal{A})_{j_{(F,Q)}}$.

Proof. Let $F^{-1}: \mathcal{Q}_0 \to \mathcal{A}_0$ be the inverse of the map $F: \mathcal{A}_0 \to \mathcal{Q}_0$. Define $G: \mathcal{Q} \to \mathcal{P}(\mathcal{A})_{j_{(F,\mathcal{Q})}}$ as follows: (1) $G(a) = F^{-1}(a)$ for every $a \in \mathcal{Q}_0$,

(2) $G(p) = \{f \in \mathcal{A}(F^{-1}(c), F^{-1}(d)) \mid F(f) \leq p\}$ for every $p \in \mathcal{Q}(c, d)$.

Then $G: \mathcal{Q}_0 \to (\mathcal{P}(\mathcal{A})_{j(F,\mathcal{Q})})_0$ is bijective. For $f \in j_{(F,\mathcal{Q})}(G(p))$, we have $F(f) \leq \bigvee_{q \in G(p)} F(g) \leq p$, thus $f \in G(p)$. Thus, $j_{(F,Q)}(G(p)) \subseteq G(p)$. Consequently, $G(p) = j_{(F,Q)}(G(p)) \in \mathcal{P}(\mathcal{A})_{j_{(F,Q)}}$. Thus, G is well-defined.

Suppose $a, b \in \mathcal{Q}_0, S \subseteq \mathcal{Q}(a, b)$. Then $G(\bigvee S) = \{f \in \mathcal{A}(F^{-1}(a), F^{-1}(b)) \mid F(f) \leq \bigvee S\},\$

$$\begin{split} \bigvee_{t \in S}^{\mathcal{P}(\mathcal{A})_{j(F,\mathcal{Q})}} G(t) &= j_{(F,\mathcal{Q})} \left(\bigcup_{t \in S} G(t) \right) \\ &= j_{(F,\mathcal{Q})} \left(\bigcup_{t \in S} \{g \in \mathcal{A}(F^{-1}(a), F^{-1}(b)) \mid F(g) \leq t\} \right) \\ &= j_{(F,\mathcal{Q})} \{g \in \mathcal{A}(F^{-1}(a), F^{-1}(b)) \mid \exists t \in S, \text{ s.t. } F(g) \leq t\} \\ &= \{f \in \mathcal{A}(F^{-1}(a), F^{-1}(b)) \mid F(f) \leq \bigvee \{F(g) \mid g \in \mathcal{A}(F^{-1}(a), F^{-1}(b)), \exists t \in S, \text{ s.t. } F(g) \leq t\} \}. \end{split}$$

For $s_0 \in S$, we have

$$s_{0} = \bigvee \{F(g) \mid g \in \mathcal{A}(F^{-1}(a), F^{-1}(b)), F(g) \leq s_{0} \}$$

$$\leq \bigvee \{F(g) \mid g \in \mathcal{A}(F^{-1}(a), F^{-1}(b)), \exists t \in S, \text{ s.t. } F(g) \leq t \}.$$

Thus, $\bigvee S \leq \bigvee \{F(g) \mid g \in \mathcal{A}(F^{-1}(a), F^{-1}(b)), \exists t \in S, \text{ s.t. } F(g) \leq t\}$, whence $G(\bigvee S) \leq \bigvee_{t \in S}^{\mathcal{P}(\mathcal{A})_{j(F,\mathcal{Q})}} G(t)$. The inverse inequality holds trivially. Therefore, $G(\bigvee S) = \bigvee_{t \in S}^{\mathcal{P}(\mathcal{A})_{j_{(F,\mathcal{Q})}}} G(t).$

For $a \in \mathcal{Q}_0$, we have $G(1_a) = \{f \in \mathcal{A}(F^{-1}(a), F^{-1}(a)) \mid F(f) \leq 1_a\} = \downarrow 1_{G(a)}$, which is the identity in $\mathcal{P}(\mathcal{A})_{j_{(F,\mathcal{O})}}.$

Suppose $f \in \mathcal{Q}(a, b), g \in \mathcal{Q}(b, c)$. Then

$$\begin{split} G(g) \circ_{j_{(F,\mathcal{Q})}} G(f) &= j_{(F,\mathcal{Q})}(G(g) \circ G(f)) \\ &= \{ t \in \mathcal{A}(F^{-1}(a), F^{-1}(c)) \mid F(t) \leq \bigvee \{ F(h) \mid h \in G(g) \circ G(f) \} \} \end{split}$$

Since,

$$\bigvee \{F(h) \mid h \in G(g) \circ G(f)\}$$

$$= \bigvee \{F(t_2 \circ t_1) \mid t_1 \in \mathcal{A}(F^{-1}(a), F^{-1}(b)), t_2 \in \mathcal{A}(F^{-1}(b), F^{-1}(c)), F(t_1) \leq f, F(t_2) \leq g\}$$

$$= \left(\bigvee \{F(t_2) \mid t_2 \in \mathcal{A}(F^{-1}(b), F^{-1}(c)), F(t_2) \leq g\}\right) \circ \left(\bigvee \{F(t_1) \mid t_1 \in \mathcal{A}(F^{-1}(a), F^{-1}(b)), F(t_1) \leq f\}\right)$$

$$= g \circ f,$$

we have $G(g) \circ_{j_{(F,Q)}} G(f) = \{t \in \mathcal{A}(F^{-1}(a), F^{-1}(c)) \mid F(t) \leq g \circ f\} = G(g \circ f).$ So we can conclude that G is a quantaloidal homomorphism.

Suppose $p_1, p_2 \in \mathcal{Q}(c, d)$ with $G(p_1) = G(p_2)$. Then $p_1 = \bigvee F(G(p_1)) = \bigvee F(G(p_2)) = p_2$. Thus, $G: \mathcal{Q}(c, d) \to (\mathcal{P}(\mathcal{A})_{j_{(F,\mathcal{Q})}})(F^{-1}(c), F^{-1}(d))$ is injective for all $c, d \in \mathcal{Q}_0$.

Suppose $S \in \mathcal{P}(\mathcal{A})_{j_{(F,\mathcal{Q})}}(a,b)$. Then $S \subseteq \mathcal{A}(a,b)$. For every $f \in \mathcal{A}(a,b)$, we have $G(F(f)) = \{g \in \mathcal{A}(F^{-1}(a), F^{-1}(b)) \mid F(g) \leq F(f)\} = \{g \in \mathcal{A}(F^{-1}(a), F^{-1}(b)) \mid g \leq f\} = \downarrow f$. Thus, $S = j_{(F,\mathcal{Q})}(S) = j_{(F,\mathcal{Q})}\left(\bigcup_{f \in S} \{f\}\right) = \bigvee_{f \in S}^{\mathcal{P}(\mathcal{A})_{j_{(F,\mathcal{Q})}}(a,b)} j_{(F,\mathcal{Q})}(\{f\}) = \bigvee_{f \in S}^{\mathcal{P}(\mathcal{A})_{j_{(F,\mathcal{Q})}}(a,b)} j \in G(F(f)) = G\left(\bigvee_{f \in S}^{\mathcal{Q}(F(a),F(b))} F(f)\right)$. Thus, $G : \mathcal{Q}(a,b) \to (\mathcal{P}(\mathcal{A})_{j_{(F,\mathcal{Q})}})(F^{-1}(a),F^{-1}(b))$ is surjective. Therefore, G is a quantaloidal isomorphism.

As a combination of the above results, we obtain that quantaloidal completions of an order-enriched category \mathcal{A} are completely determined by compatible quantaloidal nuclei on $\mathcal{P}(\mathcal{A})$.

Theorem 3.9 Let \mathcal{A} be an order-enriched category. Then (F, \mathcal{Q}) is a quantaloidal completion of \mathcal{A} if and only if there is a compatible nucleus j on $\mathcal{P}(\mathcal{A})$ such that \mathcal{Q} is quantaloidal isomorphism to $\mathcal{P}(\mathcal{A})_j$.

4 Applications

In this section, we shall give two kinds of applications for the quantaloidal completions of order-enriched categories.

4.1 Injective constructs of order-enriched categories

Let \mathbf{O} - \mathbf{Cat}_l be the category of order-enriched categories and lax semifunctors. Let \mathcal{E}^{ls}_{\leq} be the class of all lax semifunctors in \mathbf{O} - \mathbf{Cat}_l satisfying the following conditions:

(1) $F: \mathcal{C}_0 \to \mathcal{D}_0$ is bijective;

(2)
$$F(f_1) \circ F(f_2) \circ \cdots \circ F(f_n) \leq F(f)$$
 implies $f_1 \circ f_2 \circ \cdots \circ f_n \leq f$ for $f_1 \circ f_2 \circ \cdots \circ f_n$, $f \in C(a, b)$, $a, b \in \mathcal{C}_0$.

Lemma 4.1 In the category \mathbf{O} - \mathbf{Cat}_l , every retract of a quantaloid is a quantaloid.

Proof. Let S be a retract of a quantaloid Q. Then there exist lax semifunctors $I: S \to Q$ and $F: Q \to S$ such that $F \circ I = \mathrm{id}_S$. Suppose $S, T \in S_0$. Then S(X,T) is a retract of Q(IX, IY). By the fact that Q(IX, IY) is a complete lattice, we can deduce that S(X,Y) is a complete lattice and $F(\bigvee I(A))$ is the least upper bound of A in S(X,Y). Suppose $A \subseteq S(X,Y), g \in S(Y,Y'), t \in S(X',X)$. Then $g \circ (\bigvee A)$ is an upper bound of $g \circ A$. If h is an upper bound of $g \circ A$, then $I(g) \circ \bigvee_{f \in A} I(f) = \bigvee_{f \in A} (I(g) \circ I(f)) \leq \bigvee_{f \in A} (I(g) \circ F(Y)) = F(G) \circ F(Y) = F(G) \circ F(Y)$.

 $\bigvee_{f \in A} (I(g \circ f)) \leq I(h). \text{ Thus, } h = FI(h) \geq F\left(I(g) \circ \bigvee_{f \in A} I(f)\right) \geq FI(g) \circ F\left(\bigvee_{f \in A} I(f)\right) = g \circ (\bigvee A).$ Thus, $g \circ (\bigvee A) = \bigvee(g \circ A).$ Similarly, we have $(\bigvee A) \circ t = \bigvee(A \circ t).$ Therefore, \mathcal{S} is a quantaloid. \Box

Theorem 4.2 Let \mathcal{A} be an order-enriched category. Then \mathcal{A} is \mathcal{E}^{ls}_{\leq} -injective in \mathbf{O} - \mathbf{Cat}_l if and only if \mathcal{A} is a quantaloid.

Proof. Suppose \mathcal{Q} is a quantaloid, $H : \mathcal{S} \to \mathcal{T}$ a morphism in \mathcal{E}^{ls}_{\leq} , and $F : \mathcal{S} \to \mathcal{Q}$ a morphism in \mathbf{O} -Cat_l. Define $G : \mathcal{T} \to \mathcal{Q}$ as follows:

(1) $GX = FH^{-1}(X), \forall X \in \mathcal{T}_0;$

(2) $G(g) = \bigvee \{F(f_1) \circ F(f_2) \circ \cdots \circ F(f_n) \mid H(f_1) \circ H(f_2) \circ \cdots \circ H(f_n) \leq g, f_1 \circ f_2 \circ \cdots \circ f_n \in \mathcal{S}(H^{-1}X, H^{-1}Y)\}$ for $g \in \mathcal{T}(X, Y), X, Y \in \mathcal{T}_0$.

Then $G: \mathcal{T}(X, Y) \to \mathcal{Q}(GX, GY)$ is order-preserving for $X, Y \in \mathcal{T}_0$. Suppose $g_1 \in \mathcal{T}(X, Y), g_2 \in \mathcal{T}(Y, Z)$. Since composition in a quantaloid distribute over arbitrary joins, we can deduce that $G(g_2) \circ G(g_1) \leq G(g_2 \circ g_1)$. Thus $G: \mathcal{T} \to \mathcal{Q}$ is a lax semifunctor. For $X \in \mathcal{S}$, we have $GH(X) = FH^{-1}H(X) = F(X)$. For $f \in \mathcal{S}(X, Y)$, we have $H(f) \in \mathcal{T}(HX, HY)$. By the fact that F is a morphism in **O-Cat**_l, we can deduce that $GH(f) = \bigvee \{F(f_1) \circ F(f_2) \circ \cdots \circ F(f_n) \mid H(f_1) \circ H(f_2) \circ \cdots \circ H(f_n) \leq H(f), f_1 \circ f_2 \circ \cdots \circ f_n \in \mathcal{S}(X, Y)\} = F(f)$. Thus, $G: \mathcal{T} \to \mathcal{Q}$ is a morphism in **O-Cat**_l such that GH = F. So we can conclude that \mathcal{Q} is $\mathcal{E}_{s}^{l_s}$ -injective.

Conversely, suppose \mathcal{A} is \mathcal{E}^{ls}_{\leq} -injective in **O-Cat**_l. Define $F : \mathcal{A} \to \mathcal{D}(\mathcal{A})$ as follows:

(1) $F: \mathcal{A}_0 \to \mathcal{D}(\mathcal{A})_0$ is the identity map;

(2) $F(f) = \downarrow f$ for $f \in \mathcal{A}(a, b), a, b \in \mathcal{A}_0$.

Then its routine to check that $F \in \mathcal{E}^{ls}_{\leq}$. Thus, for the identity functor $\mathrm{id}_{\mathcal{A}} : \mathcal{A} \to \mathcal{A}$, there is a lax semifunctor $G : \mathcal{D}(\mathcal{A}) \to \mathcal{A}$ such that $G\overline{F} = \mathrm{id}_{\mathcal{A}}$. So, \mathcal{A} is a quantaloid, as it is a retract of the quantaloid $\mathcal{D}(\mathcal{A})$.

Let \mathcal{A} be an order-enriched category. Define $\eta : \mathcal{A} \to \mathcal{P}(\mathcal{A})_{cl}$ as follows:

- (1) $\eta: \mathcal{A}_0 \to (\mathcal{P}(\mathcal{A})_{cl})_0$ is the identity map;
- (2) $\eta(f) = \downarrow f$ for $f \in \mathcal{A}(a, b), a, b \in \mathcal{A}_0$.

Then it is routine to check that η is a lax semifunctor and it is \mathcal{E}^{ls}_{\leq} -essential. As the proof is quite similar to that of Theorem 5.8 in [12], we leave it to the reader.

Theorem 4.3 Let \mathcal{A} be an order-enriched category. Then $\mathcal{P}(\mathcal{A})_{cl}$ is an $\mathcal{E}_{<}^{ls}$ -injective hull of \mathcal{A} in \mathbf{O} -Cat_l.

4.2 Free quantaloids

Let **LocSm** be the category of locally small categories and functors between them. Let **O-Cat** be the category of order-enriched categories and 2-functors. Let **Qtlds** be the category of quantaloids and quantaloidal homomorphisms.

Theorem 4.4 The functor $\mathcal{D}: \mathbf{O}\text{-}\mathbf{Cat} \to \mathbf{Qtlds}$ is left adjoint to the forgetful functor $\mathbf{Qtlds} \to \mathbf{O}\text{-}\mathbf{Cat}$.

Proof. Let \mathcal{A} be an order-enriched category. Define $\eta : \mathcal{A} \to \mathcal{D}(\mathcal{A})$ as follows:

(1) $\eta: \mathcal{A}_0 \to (\mathcal{D}(\mathcal{A}))_0$ is the identity map;

(2) $\eta(f) = \downarrow f$ for $f \in \mathcal{A}(a, b), a, b \in \mathcal{A}_0$.

Then η is a 2-functor in **O-Cat**.

Suppose that \mathcal{Q} is a quantaloid and that $F : \mathcal{A} \to \mathcal{Q}$ is a 2-functor in **O-Cat**. Define $\overline{F} : \mathcal{D}(\mathcal{A}) \to \mathcal{Q}$ as follows:

(1) $\overline{F}(a) = F(a)$ for every $a \in (\mathcal{D}(\mathcal{A}))_0$;

(2) $\overline{F}(S) = \bigvee \{F(f) \mid f \in S\}$ for every $S \in \mathcal{D}(\mathcal{A})(a, b)$.

For $a \in (\mathcal{D}(\mathcal{A}))_0$, we have $\overline{F}(\downarrow 1_a) = \bigvee \{F(f) \mid f \in \downarrow 1_a\} = \bigvee \{F(f) \mid f \leq 1_a\} = F(1_a) = 1_{F(a)}$. For $T \in \mathcal{D}(\mathcal{A})(b,c), S \in \mathcal{D}(\mathcal{A})(a,b)$, we have $\overline{F}(T \circ S) = \bigvee \{F(h) \mid h \in T \circ S\} = \bigvee \{F(g \circ f) \mid g \in T, f \in S\} = \bigvee \{F(g) \mid g \in T\} \circ \bigvee \{F(f) \mid f \in S\} = \overline{F}(T) \circ \overline{F}(S)$. For $S_i \in \mathcal{D}(\mathcal{A})(a,b), i \in I$, we have $\overline{F}(\bigvee_{i \in I} S_i) = \overline{F}(\bigcup_{i \in I} S_i) = \bigvee \{F(f) \mid f \in \bigcup_{i \in I} S_i\} = \bigvee_{i \in I} \bigvee \{F(f) \mid f \in S_i\} = \bigvee_{i \in I} \overline{F}(S_i)$. Thus, \overline{F} is a quantaloidal homomorphism. Furthermore, we can check that $\overline{F} \circ \eta = F$.

Suppose $G: \mathcal{D}(\mathcal{A} \to \mathcal{Q})$ is a quantaloidal homomorphism with $G \circ \eta = F$. Then we have

(1) $\forall a \in (\mathcal{D}(\mathcal{A}))_0, \ \bar{F}(a) = \bar{F}(\eta(a)) = F(a) = (G \circ \eta)(a) = G(a);$

 $(2) \ \forall S \in \mathcal{D}(\mathcal{A})(a,b), \ \bar{F}(S) = \bar{F}(\bigcup\{\downarrow f \mid f \in S\}) = \bigvee_{f \in S} \bar{F}(\downarrow f) = \bigvee_{f \in S} \bar{F}(\eta(f)) = \bigvee_{f \in S} F(f) = \bigvee_{f \in S} G(\downarrow f) = G\left(\bigvee_{f \in S} \downarrow f\right) = G(S).$ Thus, $\bar{F} : \mathcal{D}(\mathcal{A} \to \mathcal{Q} \text{ is the unique quantaloidal homomorphism such that } \bar{F} \circ \eta = F.$

Every locally small category can be viewed as an order-enriched category with the discrete order on hom-sets. We know $\mathcal{D}(\mathcal{A}) = \mathcal{P}(\mathcal{A})$ for every locally small category with discrete order on hom-sets. Thus, we can recover the following results [20].

Corollary 4.5 The functor $\mathcal{P} : \mathbf{LocSm} \to \mathbf{Qtlds}$ is left adjoint to the forgetful functor $\mathbf{Qtlds} \to \mathbf{LocSm}$.

5 Conclusion and some further work

In this paper, we only considered quantaloidal completions for order-enriched categories. As order-enriched category with other completeness have deep applications in domain theory [15, 26, 33], other types of completions and applications deserve to be developed further.

Acknowledgement

The authors would like to thank the anonymous referees for their valuable comments.

References

- [1] Abramsky, S., and S. Vickers, Quantales, observational logic and process semantics, Mathematical Structures in Computer Science 3 (1993), 161–227, https://doi.org/10.1017/S0960129500000189
- [2] Adámek, J., H. Herrlich, and G. E. Strecker, "Abstract and Concrete Categories," Wiley, NewYork, 1990. http://www.tac.mta.ca/tac/reprints/articles/17/tr17.pdf
- [3] Banaschewski, B., and G. Bruns, Categorical characterization of the MacNeille completion, Archiv der Mathematik 18 (1967), 369-377, https://link.springer.com/article/10.1007/BF01898828
- [4] Banaschewski, B., and E. Nelson, Completions of partially ordered sets, Siam Journal on Computing 11 (2006), 521–528, https://epubs.siam.org/doi/10.1137/0211041
- [5] Cattani, G. L., and M. P. Fiore, The Bicategory-Theoretic Solution of Recursive Domain Equations, Electronic Notes in Theoretical Computer Science 172 (2007), 203-222, https://doi.org/10.1016/j.entcs.2007.02.008
- [6] Clementino, M. M., D. Hofmann, and I. Stubbe, Exponentiable functors between quantaloid-enriched categories, Applied Categorical Structures 17 (2009), 91–101, https://link.springer.com/article/10.1007/s10485-007-9104-5
- [7] Erné, M., The Dedekind-MacNeille completion as a reflector, Order 8 (1991), 159–173, https://link.springer.com/article/10.1007/BF00383401
- [8] Garner, R., Topological functors as total categories, Theory and Applications of Categories 29 (2014), 406-421, http://www.tac.mta.ca/tac/volumes/29/15/29-15abs.html
- Han, S. W., and B. Zhao, The quantale completion of ordered semigroup, Acta Mathematica Sinica, Chinese Series 51 (2008), 1081-1088, https://www.actamath.com/Jwk_sxxb_cn/CN/10.12386/A20080125
- [10] Kelly, G. M., "Basic Concepts of Enriched Category Theory," London Mathematical Society Lecture Notes Series 64, Cambridge University Press, Cambridge, 1982. ISBN: 0521287022
- [11] Lai, H., and L. Shen, Fixed points of adjoint functors enriched in a quantaloid, Fuzzy Sets and Systems 321 (2017), 1–28, https://doi.org/10.1016/j.fss.2016.12.001

- [12] Lambek, J., M. Barr, J. F. Kennison, and R. Raphael, *Injective hulls of partially ordered monoids*. Theory Appl. Categ. 26 (2012), 338-348, http://www.tac.mta.ca/tac/volumes/26/13/26-13abs.html
- [13] Liu, M., and B. Zhao, Closure operators and closure systems on quantaloid-enriched categories, Journal of Mathematical Research with Applications 33 (2013), 23-34, http://jmre.ijournals.cn/en/ch/reader/view_abstract.aspx?doi=10.3770/j.issn:2095-2651.2013.01.003
- [14] MacNeille, H. M., Partially ordered sets, Transactions of the American Mathematical Society 42 (1937), 416-460, https://www.ams.org/journals/tran/1937-042-03/S0002-9947-1937-1501929-X/
- [15] Martin, C. E., C. A. R. Hoare, and J. F. He, Pre-adjunctions in order enriced categories, Math. Struct. in Comp. Science 1 (1991), 141–158, https://doi.org/10.1017/S0960129500001262
- [16] Höhle, U., Categorical foundations of topology with applications to quantaloid enriched topological spaces, Fuzzy Sets and Systems 256 (2014), 166-210, https://doi.org/10.1016/j.fss.2013.03.010
- [17] Pitts, A., Applications of sup-lattice enriched category theory to sheaf theory, Proceedings of the London Mathematical Society 57 (1988), 433-480, https://www.cl.cam.ac.uk/~amp12/papers/appsec/appsec.pdf
- [18] Rasouli, H., Completion of S-posets, Semigroup Forum **85** (2012), 571-576, https://link.springer.com/article/10.1007/s00233-012-9443-x
- [19] Rosenthal, K. I., "Quantales and Their Applications," Pitman Research Notes in Mathematics Series, 234, Longman, Essex, 1990. ISBN: 0582064236.
- [20] Rosenthal, K. I., Free quantaloids, Journal of Pure and Applied Algebra 72 (1991), 67–82, https://doi.org/10.1016/0022-4049(91)90130-T
- [21] Rosenthal, K. I., Quantaloids, enriched categories and automata theory, Applied Categorical Structures 3 (1995), 279–301, https://doi.org/10.1007/BF00878445
- [22] Rosenthal, K. I., "The Theory of Quantaloids," Pitman Research Notes in Mathematics Series, Vol.348, Longman, Essex, 1996. ISBN: 0582294401.
- [23] Shen L., Q-closure spaces, Fuzzy Sets and Systems 300 (2016), 102–133, https://doi.org/10.1016/j.fss.2015.12.019
- [24] Shen, L., Y. Tao, and D. Zhang, Chu connections and back diagonals between Q-distributors, Journal of Pure and Applied Algebra 220 (2016), 1858–1901, https://doi.org/10.1016/j.jpaa.2015.10.005
- [25] Shen, L., and W. Tholen, Topological categories, quantaloids and Isbell adjunctions, Topology and its Applications 200 (2016) 212-236, https://doi.org/10.1016/j.topol.2015.12.020
- [26] Smyth, M., and G. Plotkin, The category-theoretic solution of recursive domain equations, SIAM Journal of Computing 11 (1982), 761–783, https://epubs.siam.org/doi/10.1137/0211062
- [27] Stubbe, I., Categorical structures enriched in a quantaloid: Categories, distributors, functors, Theory and Applications of Categories 14 (2005), 1–45, http://www.tac.mta.ca/tac/volumes/14/1/14-01.pdf
- [28] Stubbe, I., Categorical structures enriched in a quantaloid: Tensored and cotensored categories, Theory and Applications of Categories 16 (2006), 283-306, http://www.tac.mta.ca/tac/volumes/16/14/16-14.pdf
- [29] Stubbe, I., Categorical structures enriched in a quantaloid: Orders and ideals over a base quantaloid, Applied Categorical Structures 13 (2005), 235-255, https://doi.org/10.1007/s10485-004-7421-5
- [30] Stubbe, I., Towards "dynamic domains": Totally continuous cocomplete Q-categories, Theoretical Computer Science 373 (2007), 142-160, https://doi.org/10.1016/j.tcs.2007.01.002
- [31] Stubbe, I., "Hausdorff distance" via conical cocompletion, Cahiers Topologie Géométrie Différentielle Catégoriques 51 (2010) 51–76.
- [32] Stubbe, I., An introduction to quantaloid-enriched categories, Fuzzy Sets and Systems 256 (2014), 95–116, https://doi.org/10.1016/j.fss.2013.08.009

- 6–10 Quantaloidal completions of rrder-enriched categories and their applications
- [33] Wand, M., Fixed-point constructions in order-enriched categories, Theoretical Computer Science 8 (1979), 13–30, https://doi.org/10.1016/0304-3975(79)90053-7
- [34] Xia, C. C., B. Zhao, and S. W. Han, Some further results on quantale completions of ordered semigroups, Acta Mathematica Sinica, Chinese Series **61** (2018), 811-822, https://www.actamath.com/Jwk_sxxb_cn/CN/10.12386/A20180075
- [35] Zhang, X., and J. Paseka, On injective constructions of S-semigroups, Fuzzy Sets and Systems 373 (2019), 78–93, https://doi.org/10.1016/j.fss.2019.02.012