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Abstract

By introducing the concept of quantaloidal completions for an order-enriched category, relationships between the category
of quantaloids and the category of order-enriched categories are studied. It is proved that quantaloidal completions for an
order-enriched category can be fully characterized as compatible quotients of the power-set completion. As applications, we
show that a special type of injective hull of an order-enriched category is the MacNeille completion; the free quantaloid over
an order-enriched category is the Down-set completion.
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1 Introduction

An order-enriched category is a locally small category such that the hom-sets are partially ordered sets
and composition of morphisms preserve order in both variables. An order-enriched category with only
one object can be viewed as a partially ordered semigroup. Thus order-enriched categories can be viewed
as categorical generalization of partially ordered semigroups. Several works devoted to this subject are
from computer science [15,33], especially with strong background of the study of programming languages.
In 1979, M. Wand studied fixed-point constructions in order-enriched categories, which extended Scott’s
result based on continuous lattices. Note that an order-enriched category in the sense of [33] means a
category with hom-sets not only ordered but also with certain completeness. Later, M. Smyth and G.
Plotkin considered solving recursive domain equations in this framework [26]. In 2007, this ideal was
further extended to the framework of bicategories [5]. In 1991, C. E. Martin, C. A. R. Hoare and He
Jifeng studied pre-adjunctions in order enriched-categories [15]. In [15], the concepts of lax functors,
natural transformations and pre-adjunctions are studied with the purpose to explain their understanding
of programming languages. We also note that an order-enriched category in the sense of [15] means a
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category with hom-sets preordered. These works are all devoted to study special kind of order-enriched
categories. There are little works devoted to study on them systematically.

A quantaloid Q [1, 20–22] is a category enriched in the symmetric monoidal closed category Sup of
complete lattices and morphisms that preserve arbitrary sups. Just as every complete lattice is a special
partially ordered set, every quantaloid is a special order-enriched categories. A quantaloid with only
one object is a quantale [19], thus quantaloids are naturally viewed as quantales with many objects.
Quantaloids were studied by Pitts [17] in investigating distributive categories of relations and topos theory
under the name of sup-lattice enriched categories. In [1] quantaloids are studied in order to include a notion
of type on the processes. Quantaloids and their applications were further developed in the monograph [22].
In recent years, Quantaloid-enriched categories received considerable attention [6,8,11,13,16,23–25,27–32].

The process of completion is a classic approach to study ordered structures. Various completion meth-
ods for ordered structures are developed with different characteristics [3, 4, 7, 9, 14, 18, 34]. Relationships
between order-enriched categories and quantaloids have not received enough attention, though they have
similar backgrounds and close relations. Inspired by research on completion methods for ordered semi-
groups and their applications [9, 12, 20, 34], this paper is devoted to study quantaloidal completions of
order-enriched categories and their applications.

The contents of the paper are arranged as follows. Section 2 lists some preliminary notions and results
about order-enriched categories and quantaloids. In Section 3, based on compatible nuclei on quantaloids,
quantaloidal completions for an order-enriched category are fully characterized as compatible quotients
of the power-set completion. In Section 4, two aspects of applications of quantaloidal completions are
given. It is proved that the injective hull of an order-enriched category with respect to a special kind
of morphisms is the MacNeille completion; the free quantaloid over an order-enriched category is the
Down-set completion.

2 Preliminaries on order-enriched categories and quantaloids

For category theory, we refer to [2, 10]. Let C0 be the class of objects of a category C. C(a, b) denotes the
hom-set for a, b ∈ C0. For a ∈ C0, 1a denotes the identity on a.

Definition 2.1 ( [15]) An order-enriched category is a locally small category A such that:

(1) for a, b ∈ A0, the hom-set A(a, b) is a poset,

(2) composition of morphisms of A preserves order in both variables.

Definition 2.2 ( [35]) Let C, D be order-enriched categories. A lax semifunctor F : C → D is given by
functions F : C0 → D0 and Fa,b : C(a, b) → D(Fa, Fb) for all a, b ∈ C0 such that Fa,b is order-preserving
and (Fg) ◦ (Ff) ≤ F (g ◦ f) for all a, b, c ∈ C0, f ∈ C(a, b), g ∈ C(b, c). A lax functor F : C → D is a lax
semifunctor such that 1Fa ≤ F (1a) for all a ∈ C0. A 2-functor F : C → D is a functor such that

Fa,b : C(a, b) → D(Fa, Fb)

is order-preserving for all a, b ∈ C0.

A quantaloid Q [22] is a category enriched in the symmetric monoidal closed category Sup of complete
lattices and morphisms that preserve arbitrary sups. In elementary terms:

Definition 2.3 ( [20]) A quantaloid is a locally small category Q such that:

(1) for a, b ∈ Q0, the hom-set Q(a, b) is a complete lattice,

(2) composition of morphisms of Q presevers sups in both variables.

In this paper, Q always denotes a small quantaloid, and Q0 denotes the set of its objects. The identity
Q-arrow on q ∈ Q0 will be denoted by 1q. The greatest element of the complete lattice Q(p, q) will be
denoted by ⊤p,q. For a Q-arrow u : p −→ q, we denote the domain and the codomain of u by dom(u) and
cod(u), respectively. Given Q-arrows u : p −→ q, v : q −→ r, the corresponding adjoints induced by the
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compositions −◦u : Q(q, r) −→ Q(p, r) and v ◦− : Q(p, q) −→ Q(p, r) are denoted by u →l − and v →r −
respectively.

For more details on quantaloids, we refer to [20,22].

Definition 2.4 ( [20]) Let Q, S be quantaloids. A quantaloidal homomorphism F : Q → S is a functor
such that

F : Q(X,Y ) → S(FX,FY )

is sup-preserving for all X,Y ∈ Q0.

A quantaloidal isomorphism is a quantaloidal homomorphism such that it is bijictive on objects and
hom-sets.

Example 2.5 Let A be an order-enriched category.

(1) P(A) is a quantaloid [20]. The objects of P(A) are those of A. For a, b ∈ A, the hom-set
P(A)(a, b)=P(A(a, b)), the power set of the hom-set A(a, b). For S ∈ P(A)(a, b), T ∈ P(A)(b, c),
T ◦ S = {g ◦ f | g ∈ T, f ∈ S}.

(2) D(A) is a quantaloid. The objects of D(A) are those of A. For a, b ∈ A, the hom-set
D(A)(a, b)=D(A(a, b)), the set of down sets 4 of the hom-set A(a, b). For S ∈ D(A)(a, b), T ∈
D(A)(b, c), T ◦ S =↓ {g ◦ f | g ∈ T, f ∈ S}. We note that ↓ 1a ∈ D(A(a, a)) is the identity morphism.

Definition 2.6 ( [20]) Let Q be a quantaloid. A quantaloidal nucleus is a lax functor j : Q → Q, which
is the identity on the objects of Q and such that the maps ja,b : Q(a, b) → Q(a, b) satisfy:

(1) f ≤ ja,b(f) for all f ∈ Q(a, b),

(2) ja,b(ja,b(f)) = ja,b(f) for all f ∈ Q(a, b),

(3) jb,c(g) ◦ ja,b(f) ≤ ja,c(g ◦ f) for all g ∈ Q(b, c) f ∈ Q(a, b).

For a quantaloidal nucleus j on a quantaloid Q, let Qj be the bicategory with the same objects as
Q and Qj(a, b) = {f ∈ Q(a, b) | ja,b(f) = f} for a, b ∈ (Qj)0. Composition in Qj is defined as follows:
g ◦j f = ja,c(g ◦ f) for f ∈ Qj(a, b), g ∈ Qj(b, c).

Proposition 2.7 ( [20]) If j is a quantaloidal nucleus on a quantaloid Q, then Qj is a quantaloid and
j : Q → Qj is a quantaloidal homomorphism.

Proposition 2.8 ( [20]) Let S be a subcategory of a quantaloid Q, which contains all the objects of Q.
Then, S is a quotient quantaloid of the form Qj for some quantaloidal nucleus j iff

(1) each hom-set S(a, b) is closed under infs, and

(2) if f ∈ S(a, c), then g →l f ∈ S(b, c) for all g ∈ Q(a, b) and h →r g ∈ S(a, b) for all h ∈ Q(b, c).

3 Quantaloidal completions of order-enriched categories

In order to study quantaloidal completions of order-enriched categories, let us begin with the concept of
a compatible nucleus on a quantaloid.

Definition 3.1 Let A be an order-enriched category, j : P(A) → P(A) a quantaloidal nucleus. j is said
to be compatible if for a, b ∈ A0, f ∈ A(a, b), we have ja,b({f}) =↓ f .

Definition 3.2 Let A be an order-enriched category, Q a quantaloid, F : A → Q a 2-functor. The pair
(F,Q) is said to be a quantaloidal completion of A, if the following conditions are satisfied:

(1) F : A0 → Q0 is bijective,

(2) Fa,b : A(a, b) → Q(Fa, Fb) is an order embedding for all a, b ∈ A0,

4 A set D in a poset P is a down set, if D =↓ D, where ↓ D = {x | ∃d ∈ D, s. t. x ≤ d}.
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(3) for every a, b ∈ A0 and f ∈ Q(Fa, Fb), there exists Uf ⊆ A(a, b) such that f =
∨

F (Uf ).

Theorem 3.3 If j is a compatible nucleus on an order-enriched category A, then (Fj ,P(A)j) is a quan-
taloidal completion of A, where Fj : A → P(A)j is defined as follows:

(1) Fj : A0 → (P(A)j)0 is the identity map,

(2) Fj(f) = ↓f for every f ∈ A(a, b), a, b ∈ A0.

Proof. By definition, Fj : A0 → (P(A)j)0 is bijective, and Fj : A(a, b) → P(A)j(a, b) is an order-

embedding. For S ∈ P(A)j(a, b), we have S = ja,b(S) = ja,b(
⋃

f∈S{f}) =
∨P(A)j (a,b)

f∈S ja,b({f}) =
∨P(A)j(a,b)

f∈S ↓ f =
∨P(A)j (a,b)

f∈S Fj(f). This completes the proof. ✷

Corresponding to several classical completion methods of posets and ordered semigroups, we can obtain
a series of compatible nucleus. We leave detail to the reader.

Example 3.4 (Down-set completion) Let A be an order-enriched category. Define a lax functor
↓: P(A) → P(A) as follows:

(1) ↓: P(A)0 → P(A)0 is the identity map,

(2) ↓a,b (S) =↓ S for S ∈ P(A)(a, b), a, b ∈ P(A)0.

Then ↓ is a compatible nucleus. The quotient corresponding to ↓ is D(A).

Example 3.5 (MacNeille completion) Let A be an order-enriched category. Define a lax functor cl :
P(A) → P(A) as follows:

(1) cl : P(A)0 → P(A)0 is the identity map,
(2) cla,b(S) = {f ∈ P(A)(a, b) | ∀g ∈ P(A)(a′, a), h ∈ P(A)(b, b′), k ∈ P(A)(a, b), h ◦ S ◦ g ⊆↓

k implies h ◦ f ◦ g ≤ k} for S ∈ P(A)(a, b), a, b ∈ P(A)0.
Then cl is a compatible nucleus.

Example 3.6 (Equivariant completion) Let A be an order-enriched category. Suppose S ⊆ P(A)(a, b).
If the join of S exists and is preserved by composition, i.e., f ◦ (

∨

S) =
∨

(f ◦ S), (
∨

S) ◦ g =
∨

(S ◦ g)
whenever the composition is well-defined, then

∨

S is said to be an equivariant join with respect to S.
Clearly, every f ∈ P(A)(a, b) is an equivariant join respect to ↓ f. If k is an equivariant join with respect
to S, then g ◦ k (resp., k ◦ h) is an equivariant join with respect to g ◦ S (resp., S ◦ h), whenever the
composition is well-defined. For S ⊆ P(A)(a, b), let

SEJ = {f ∈ P(A)(a, b) | ∃T ⊆ S, s.t. f =
∨

T is an equivariant join with respect to T}.

Let EJ(A) be the subcategory of A, which contains all the objects of A. The hom-sets

EJ(A)(a, b) = {S ∈ D(A)(a, b) | S = SEJ}.

Then EJ(A) is a quotient of A such that ↓ f ∈ EJ(A)(a, b) for every f ∈ P(A)(a, b). Consequently, the
corresponding quantaloidal nucleus is compatible.

For an order-enriched category A, CN(A) denotes the class of all compatible nuclei on P(A), QC(A)
denotes the set of all quantaloidal completions of A.

Let A be an order-enriched category, (F,Q) ∈ QC(A). Define j(F,Q) : P(A) → P(A) as follows:

(1) j(F,Q) : P(A)0 → P(A)0 is the identity map,

(2) j(F,Q)(S) = {f ∈ A(a, b) | F (f) ≤
∨

g∈S F (g)} for every S ∈ P(A)(a, b), a, b ∈ A0.

Lemma 3.7 Let A be an order-enriched category, (F,Q) ∈ QC(A). Then j(F,Q) is a compatible nucleus
on P(A).
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Proof. By definition, j(F,Q) : P(A)0 → P(A)0 is bijective, j(F,Q) : P(A)(a, b) → P(A)(a, b) is order
preserving and increasing for all a, b ∈ A0. Suppose S ∈ P(A)(a, b), f ∈ j(F,Q)(j(F,Q)(S)). Then, F (f) ≤
∨

g∈j(F,Q)(S)
F (g). For every g ∈ j(F,Q)(S), we have F (g) ≤

∨

k∈S F (k). Thus, F (f) ≤
∨

k∈S F (k).

Consequently, f ∈ j(F,Q)(S). So we can conclude that j(F,Q) ◦ j(F,Q) = j(F,Q). Thus, j(F,Q) : P(A)(a, b) →
P(A)(a, b) is a closure operator for every a, b ∈ A0.

Suppose K ∈ P(A)(b, c), S ∈ P(A)(a, b). Then j(F,Q)(K) ◦ j(F,Q)(S) = {g ◦ f | g ∈ A(b, c), f ∈
A(a, b), F (g) ≤

∨

k∈K F (k), F (f) ≤
∨

t∈S F (t)}. If F (g) ≤
∨

k∈K F (k), F (f) ≤
∨

t∈S F (t), then F (g ◦ f) ≤
∨

k∈K,t∈S F (k) ◦ F (t) =
∨

k∈K,t∈S F (k ◦ t) ≤
∨

p∈K◦S F (p). Thus, j(F,Q)(K) ◦ j(F,Q)(S) ⊆ j(F,Q)(K ◦ S).

For f0 ∈ A(a, b), by the fact that F : A(a, b) → Q(F (a), F (b)) is an order embedding, we have
j(F,Q)({f0}) = {f ∈ A(a, b) | F (f) ≤ F (f0)} =↓ f0.

So we can conclude that j(F,Q) is a compatible nucleus on P(A). ✷

Theorem 3.8 Let A be an order-enriched category, (F,Q) ∈ QC(A). Then Q is quantaloidal isomor-
phism to P(A)j(F,Q)

.

Proof. Let F−1 : Q0 → A0 be the inverse of the map F : A0 → Q0. Define G : Q → P(A)j(F,Q)
as follows:

(1) G(a) = F−1(a) for every a ∈ Q0,
(2) G(p) = {f ∈ A(F−1(c), F−1(d)) | F (f) ≤ p} for every p ∈ Q(c, d).

Then G : Q0 → (P(A)j(F,Q)
)0 is bijective. For f ∈ j(F,Q)(G(p)), we have F (f) ≤

∨

g∈G(p) F (g) ≤ p,

thus f ∈ G(p). Thus, j(F,Q)(G(p)) ⊆ G(p). Consequently, G(p) = j(F,Q)(G(p)) ∈ P(A)j(F,Q)
. Thus, G is

well-defined.
Suppose a, b ∈ Q0, S ⊆ Q(a, b). Then G(

∨

S) = {f ∈ A(F−1(a), F−1(b)) | F (f) ≤
∨

S},

P(A)j(F,Q)
∨

t∈S

G(t) = j(F,Q)

(

⋃

t∈S

G(t)

)

= j(F,Q)

(

⋃

t∈S

{g ∈ A(F−1(a), F−1(b)) | F (g) ≤ t}

)

= j(F,Q){g ∈ A(F−1(a), F−1(b)) | ∃t ∈ S, s.t. F (g) ≤ t}

= {f ∈ A(F−1(a), F−1(b)) | F (f) ≤
∨

{F (g) | g ∈ A(F−1(a), F−1(b)),∃t ∈ S,

s.t. F (g) ≤ t}}.

For s0 ∈ S, we have

s0 =
∨

{F (g) | g ∈ A(F−1(a), F−1(b)), F (g) ≤ s0}

≤
∨

{F (g) | g ∈ A(F−1(a), F−1(b)),∃t ∈ S, s.t. F (g) ≤ t}.

Thus,
∨

S ≤
∨

{F (g) | g ∈ A(F−1(a), F−1(b)),∃t ∈ S, s.t. F (g) ≤ t}, whence G(
∨

S) ≤
∨

P(A)j(F,Q)

t∈S G(t).

The inverse inequality holds trivially. Therefore, G(
∨

S) =
∨

P(A)j(F,Q)

t∈S G(t).

For a ∈ Q0, we have G(1a) = {f ∈ A(F−1(a), F−1(a)) | F (f) ≤ 1a} =↓ 1G(a), which is the identity in
P(A)j(F,Q)

.

Suppose f ∈ Q(a, b), g ∈ Q(b, c). Then

G(g) ◦j(F,Q)
G(f) = j(F,Q)(G(g) ◦G(f))

= {t ∈ A(F−1(a), F−1(c)) | F (t) ≤
∨

{F (h) | h ∈ G(g) ◦G(f)}}.
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Since,

∨

{F (h) | h ∈ G(g) ◦G(f)}

=
∨

{F (t2 ◦ t1) | t1 ∈ A(F−1(a), F−1(b)), t2 ∈ A(F−1(b), F−1(c)), F (t1) ≤ f, F (t2) ≤ g}

=
(

∨

{F (t2) | t2 ∈ A(F−1(b), F−1(c)), F (t2) ≤ g}
)

◦
(

∨

{F (t1) | t1 ∈ A(F−1(a), F−1(b)), F (t1) ≤ f}
)

=g ◦ f,

we have G(g) ◦j(F,Q)
G(f) = {t ∈ A(F−1(a), F−1(c)) | F (t) ≤ g ◦ f} = G(g ◦ f).

So we can conclude that G is a quantaloidal homomorphism.
Suppose p1, p2 ∈ Q(c, d) with G(p1) = G(p2). Then p1 =

∨

F (G(p1)) =
∨

F (G(p2)) = p2. Thus,
G : Q(c, d) → (P(A)j(F,Q)

)(F−1(c), F−1(d)) is injective for all c, d ∈ Q0.

Suppose S ∈ P(A)j(F,Q)
(a, b). Then S ⊆ A(a, b). For every f ∈ A(a, b), we have G(F (f)) = {g ∈

A(F−1(a), F−1(b)) | F (g) ≤ F (f)} = {g ∈ A(F−1(a), F−1(b)) | g ≤ f} =↓ f . Thus, S = j(F,Q)(S) =

j(F,Q)

(

⋃

f∈S{f}
)

=
∨

P(A)j(F,Q)
(a,b)

f∈S j(F,Q)({f}) =
∨

P(A)j(F,Q)
(a,b)

f∈S ↓ f =
∨

P(A)j(F,Q)
(a,b)

f∈S G(F (f)) =

G
(

∨Q(F (a),F (b))
f∈S F (f)

)

. Thus, G : Q(a, b) → (P(A)j(F,Q)
)(F−1(a), F−1(b)) is surjective. Therefore, G

is a quantaloidal isomorphism. ✷

As a combination of the above results, we obtain that quantaloidal completions of an order-enriched
category A are completely determined by compatible quantaloidal nuclei on P(A).

Theorem 3.9 Let A be an order-enriched category. Then (F,Q) is a quantaloidal completion of A if and
only if there is a compatible nucleus j on P(A) such that Q is quantaloidal isomorphism to P(A)j .

4 Applications

In this section, we shall give two kinds of applications for the quantaloidal completions of order-enriched
categories.

4.1 Injective constructs of order-enriched categories

Let O-Catl be the category of order-enriched categories and lax semifunctors. Let E ls
≤ be the class of all

lax semifunctors in O-Catl satisfying the following conditions:

(1) F : C0 → D0 is bijective;

(2) F (f1)◦F (f2)◦· · · ◦F (fn) ≤ F (f) implies f1 ◦f2 ◦· · · ◦fn ≤ f for f1 ◦f2 ◦· · · ◦fn, f ∈ C(a, b), a, b ∈ C0.

Lemma 4.1 In the category O-Catl, every retract of a quantaloid is a quantaloid.

Proof. Let S be a retract of a quantaloid Q. Then there exist lax semifunctors I : S → Q and F : Q → S
such that F ◦ I = idS . Suppose S, T ∈ S0. Then S(X,T ) is a retract of Q(IX, IY ). By the fact that
Q(IX, IY ) is a complete lattice, we can deduce that S(X,Y ) is a complete lattice and F (

∨

I(A)) is the
least upper bound of A in S(X,Y ). Suppose A ⊆ S(X,Y ), g ∈ S(Y, Y ′), t ∈ S(X ′,X). Then g ◦ (

∨

A) is
an upper bound of g ◦ A. If h is an upper bound of g ◦ A, then I(g) ◦

∨

f∈A I(f) =
∨

f∈A(I(g) ◦ I(f)) ≤
∨

f∈A(I(g ◦ f)) ≤ I(h). Thus, h = FI(h) ≥ F
(

I(g) ◦
∨

f∈A I(f)
)

≥ FI(g) ◦ F
(

∨

f∈A I(f)
)

= g ◦ (
∨

A).

Thus, g ◦ (
∨

A) =
∨

(g ◦A). Similarly, we have (
∨

A) ◦ t =
∨

(A ◦ t). Therefore, S is a quantaloid. ✷

Theorem 4.2 Let A be an order-enriched category. Then A is E ls
≤ -injective in O-Catl if and only if A

is a quantaloid.



Liu and Li 6–7

Proof. Suppose Q is a quantaloid, H : S → T a morphism in E ls
≤ , and F : S → Q a morphism in O-Catl.

Define G : T → Q as follows:
(1) GX = FH−1(X), ∀X ∈ T0;
(2) G(g) =

∨

{F (f1) ◦ F (f2) ◦ · · · ◦ F (fn) | H(f1) ◦ H(f2) ◦ · · · ◦ H(fn) ≤ g, f1 ◦ f2 ◦ · · · ◦ fn ∈
S(H−1X,H−1Y )} for g ∈ T (X,Y ), X,Y ∈ T0.
Then G : T (X,Y ) → Q(GX,GY ) is order-preserving for X,Y ∈ T0. Suppose g1 ∈ T (X,Y ), g2 ∈ T (Y,Z).
Since composition in a quantaloid distribute over arbitrary joins, we can deduce that G(g2) ◦ G(g1) ≤
G(g2 ◦ g1). Thus G : T → Q is a lax semifunctor. For X ∈ S, we have GH(X) = FH−1H(X) = F (X).
For f ∈ S(X,Y ), we have H(f) ∈ T (HX,HY ). By the fact that F is a morphism in O-Catl, we can
deduce that GH(f) =

∨

{F (f1) ◦F (f2) ◦ · · · ◦F (fn) | H(f1) ◦H(f2) ◦ · · · ◦H(fn) ≤ H(f), f1 ◦ f2 ◦ · · · ◦ fn ∈
S(X,Y )} = F (f). Thus, G : T → Q is a morphism in O-Catl such that GH = F . So we can conclude
that Q is E ls

≤ -injective.

Conversely, suppose A is E ls
≤ -injective in O-Catl. Define F : A → D(A) as follows:

(1) F : A0 → D(A)0 is the identity map;
(2) F (f) =↓ f for f ∈ A(a, b), a, b ∈ A0.

Then its routine to check that F ∈ E ls
≤ . Thus, for the identity functor idA : A → A, there is a lax

semifunctor G : D(A) → A such that GF = idA. So, A is a quantaloid, as it is a retract of the quantaloid
D(A). ✷

Let A be an order-enriched category. Define η : A → P(A)cl as follows:

(1) η : A0 → (P(A)cl)0 is the identity map;

(2) η(f) = ↓f for f ∈ A(a, b), a, b ∈ A0.

Then it is routine to check that η is a lax semifunctor and it is E ls
≤ -essential. As the proof is quite similar

to that of Theorem 5.8 in [12], we leave it to the reader.

Theorem 4.3 Let A be an order-enriched category. Then P(A)cl is an E ls
≤ -injective hull of A in O-Catl.

4.2 Free quantaloids

Let LocSm be the category of locally small categories and functors between them. Let O-Cat be the
category of order-enriched categories and 2-functors. Let Qtlds be the category of quantaloids and quan-
taloidal homomorphisms.

Theorem 4.4 The functor D : O-Cat → Qtlds is left adjoint to the forgetful functor Qtlds → O-Cat.

Proof. Let A be an order-enriched category. Define η : A → D(A) as follows:
(1) η : A0 → (D(A))0 is the identity map;
(2) η(f) =↓ f for f ∈ A(a, b), a, b ∈ A0.

Then η is a 2-functor in O-Cat.
Suppose that Q is a quantaloid and that F : A → Q is a 2-functor in O-Cat. Define F̄ : D(A) → Q

as follows:
(1) F̄ (a) = F (a) for every a ∈ (D(A))0;
(2) F̄ (S) =

∨

{F (f) | f ∈ S} for every S ∈ D(A)(a, b).
For a ∈ (D(A))0, we have F̄ (↓ 1a) =

∨

{F (f) | f ∈↓ 1a} =
∨

{F (f) | f ≤ 1a} = F (1a) = 1F (a).

For T ∈ D(A)(b, c), S ∈ D(A)(a, b), we have F̄ (T ◦ S) =
∨

{F (h) | h ∈ T ◦ S} =
∨

{F (g ◦ f) | g ∈
T, f ∈ S} =

∨

{F (g) | g ∈ T} ◦
∨

{F (f) | f ∈ S} = F̄ (T ) ◦ F̄ (S). For Si ∈ D(A)(a, b), i ∈ I, we have
F̄
(
∨

i∈I Si

)

= F̄
(
⋃

i∈I Si

)

=
∨

{F (f) | f ∈
⋃

i∈I Si} =
∨

i∈I

∨

{F (f) | f ∈ Si} =
∨

i∈I F̄ (Si). Thus, F̄ is a

quantaloidal homomorphism. Furthermore, we can check that F̄ ◦ η = F .
Suppose G : D(A → Q is a quantaloidal homomorphism with G ◦ η = F . Then we have
(1) ∀a ∈ (D(A))0, F̄ (a) = F̄ (η(a)) = F (a) = (G ◦ η)(a) = G(a);
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(2) ∀S ∈ D(A)(a, b), F̄ (S) = F̄ (
⋃

{↓ f | f ∈ S}) =
∨

f∈S F̄ (↓ f) =
∨

f∈S F̄ (η(f)) =
∨

f∈S F (f) =
∨

f∈S(G ◦ η)(f) =
∨

f∈S G(↓ f) = G
(

∨

f∈S ↓ f
)

= G(S). Thus, F̄ : D(A → Q is the unique quantaloidal

homomorphism such that F̄ ◦ η = F . ✷

Every locally small category can be viewed as an order-enriched category with the discrete order on
hom-sets. We know D(A) = P(A) for every locally small category with discrete order on hom-sets. Thus,
we can recover the following results [20].

Corollary 4.5 The functor P : LocSm → Qtlds is left adjoint to the forgetful functor Qtlds → LocSm.

5 Conclusion and some further work

In this paper, we only considered quantaloidal completions for order-enriched categories. As order-enriched
category with other completeness have deep applications in domain theory [15, 26, 33], other types of
completions and applications deserve to be developed further.
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