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Abstract

Several different topoi have played an important role in the development and applications of synthetic guarded domain theory
(SGDT), a new kind of synthetic domain theory that abstracts the concept of guarded recursion frequently employed in the
semantics of programming languages. In order to unify the accounts of guarded recursion and coinduction, several authors
have enriched SGDT with multiple “clocks” parameterizing different time-streams, leading to more complex and difficult to
understand topos models. Until now these topoi have been understood very concretely qua categories of presheaves, and the
logico-geometrical question of what theories these topoi classify has remained open. We show that several important topos
models of SGDT classify very simple geometric theories, and that the passage to various forms of multi-clock guarded recursion
can be rephrased more compositionally in terms of the lower bagtopos construction of Vickers and variations thereon due to
Johnstone. We contribute to the consolidation of SGDT by isolating the universal property of multi-clock guarded recursion as
a modular construction that applies to any topos model of single-clock guarded recursion.
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1 Introduction

1.1 Synthetic guarded domain theory

Beginning with Scott and Strachey’s groundbreaking investigations in 1969, the scientific study of program-
ming semantics has been guided by the search for a topology of computation — embodied in monoidal
closed categories of spaces called domains whose points can be thought of as the values of datatypes and
computer programs [47,48,49,50]. The thesis of denotational semantics under Scott and Strachey is that the
computational behavior of expressions in a programming language can be studied by characterizing what
values they take when interpreted as continuous functions between domains; the advantage of denotational
semantics over the direct/operational study of program behavior is that, unlike the latter, it is compositional
and amenable to mathematical methods of reduction and abstraction.

The need to reason about increasingly complex programming languages has drawn researchers toward
alternative theories of domains based on (complete, bounded, ultra-) metric spaces [37,1,46,17,8]. Metric
domain theory has proved instrumental in untangling the circularities of programming language semantics
involving higher-order store [9]; categories of metric spaces come equipped with a pointed endofunctor 1

2 · −
to scale a given space by half, which in combination with Banach’s fixed point theorem can be used to
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prove algebraic compactness relative to mixed-variance endofunctors whose recursive variables are guarded
by 1

2 · −. From this one obtains a relatively simple interpretation of both recursive types and programs.
Ideas from metric domain theory have been later simplified and generalized to categories of sheaves on

frames with well-founded bases and the even simpler case of presheaves on well-founded posets [6], allowing
for a synthetic and topos-theoretic approach to guarded domain theory along the lines of synthetic domain
theory [28] or synthetic differential geometry [35]. The core idea of synthetic guarded domain theory
(SGDT) is to work with a topos S that is equipped with an endofunctor I called the later modality ,
together with a natural transformation next : idS I and a “guarded” fixed point operator −† ensuring
that for each f : IA A, there exists a unique f † : 1S A such that f ◦ nextA ◦ f † = f †. Under mild
assumptions (e.g . left exactness of I), it can be seen that I extends to an endofunctor on the fundamental
fibration PS S and therefore gives rise to a true connective in the internal dependent type theory of S.

Synthetic guarded domain theory has been employed as a metalanguage for the denotational and
operational semantics of simple programming languages such as PCF and FPC [45,41,44]; the models of
op. cit . can be seen as synthetic versions of Escardó’s “analytic” metric model of PCF [24]. Synthetic
guarded domain theory also provides the mathematical basis [11] for Iris, a higher-order guarded separation
logic that has been used to develop operationally-based program logics for sophisticated programming
languages involving higher-order store, concurrency, and a number of other computational effects [33,32].

1.2 Multi-clock guarded recursion and coinduction

Unlike both classical and ordinary synthetic domain theory, the synthetic guarded domain theory is
effective in the sense that it gives rise to type theories satisfying the canonicity property [26]; this means
that synthetic guarded domain theory is a programming language in addition to a semantic universe for
denotational semantics. One early application of guarded recursion in this sense was to provide a more
ergonomic and compositional method to write programs involving coinductive types or final coalgebras.

Consider the type of infinite streams SA as an example; this type is the final coalgebra for the
endofunctor FAX = A ×X, and because FA is ω-cocontinuous we may compute SA as the limit of the
ω-chain FnA1 ∼= An by Adámek’s theorem. A stream producer α : X SA must therefore decompose into a
cone of finite approximations αn : X An for all n ∈ ω; in simpler terms, we must be able to compute any
finite approximation of a stream. It is not difficult to imagine programming partial functions on streams
β : SA SB by general recursion; such a programming style is easily supported in languages like Haskell.
But what is the appropriate linguistic construct for defining total functions β : SA SB? Just as in the
dual case for inductive data, a programming language must verify that recursive calls are justified and
reject any recursive calls that would make (for instance) the projections βn : SA Bn ill-defined.

One method to ensure that recursive functions on coinductive types are total is to impose a syntactic
guardedness check: every recursive call must be wrapped in a call to a constructor. Syntactic guardedness
checks are employed in several type theoretic languages, such as Agda [43], Coq [22], and Idris [15,16], but
they are unfortunately very brittle and not at all conducive to compositional and modular programming
with higher-order functions. Type-based approaches such as sized types have been proposed as a more
compositional alternative to syntactic checks [27], but the meaning of sized types as they are used in
practice remains poorly understood — for instance, the version of sized types implemented in Agda is
clearly inconsistent as it asserts the well-foundedness of an order with ∞ ≺ ∞; yet it remains unclear
whether many sized Agda programs would survive the transition to a system in which ∞ 6≺ ∞. 1

A sound and thus more promising type-based approach to ensuring the guardedness of recursive calls
arises from the later modality I, first viewed as a programming construct by Nakano [42]. 2 The idea is to
approximate the coinductive type SA ∼= A× SA by the guarded recursive type SIA ∼= A×ISIA:

SI : Type→ Type (::) : A→ ISIA→ SIA

1 See https://github.com/agda/agda/issues/2820 for a discussion of the inconsistency of Agda’s sized types.
2 The calculus of Nakano [42] was subsequently connected to metric domain theory by Birkedal, Schwinghammer,
and Støvring [7].

https://github.com/agda/agda/issues/2820
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The guarded fixed point operator then allows recursive definitions of functions on guarded streams, with
the caveat that recursive calls must appear underneath the later modality. While this semantic / type-based
restriction does automatically ensure totality, it is too conservative: we cannot, for instance, define the
projection functions SIA→ An. For instance, the following attempted definition is not well-typed:

take : N→ SIA→ List A
take 0 u = []
take (n+ 1) (x :: u) = x :: take n u

1.2.1 Atkey and McBride’s clock-indexed guarded recursion
At the heart of the problem discussed above is the fact that the guarded streams only approximate the
coinductive streams. The remarkable suggestion of Atkey and McBride [3] is to define real coinductive
types in terms of their guarded approximations by adding an additional notion of clock to the language;
with this combination of features, arbitrary functions on coinductive types can be defined using guarded
recursion. In the setting of Atkey and McBride, the later modality ensures that functions are well-
defined and the clocks allow the later modality to be removed in a type-constrained way. The language
of Atkey and McBride contains a new sort of clocks k, together with a clock-indexed family of later
modalities Ik as well as a clock quantifier ∀k.A[k]. In the case where A does not depend on the clock
variable k, a clock irrelevance principle is asserted stating that A = ∀k.A; finally the canonical map
λx.Λk.next(x[k]) : ∀k.A[k] ∀k.Ik A[k] is asserted to have an inverse force.

A clock can be thought of metaphorically as a “time stream”; thus an element of ∀k.Ik A exhibits an
element of Ik A in all time streams k; thus under this metaphor, the force operation simply instantiates
this family at an earlier time stream to obtain an element of A. With the clock-indexed later modality in
hand, it is now possible to define coinductive streams in terms of their guarded approximations by setting
SA := ∀k.SIkA; thus we may use guarded recursion to define the take function on coinductive streams:

SIk : Type→ Type
(::) : A→ Ik SIkA→ SIkA

unconsk : SIkA→ A× (Ik SIkA)
unconsk (x :: u) = (x, u)

head : SA→ A
head u = Λk.fst (unconsk u[k])

tail : SA→ SA
tail u = force(Λk.snd (unconsk u[k]))

take : N→ SA→ List A
take 0 u = []
take (suc n) u = (head u) :: (take n (tail u))

1.2.2 Bizjak and Møgelberg’s clock synchronization; Sterling and Harper’s variant
One aspect of Atkey and McBride’s clocks that has proved difficult to account for in a well-behaved way is
that the substitution of clock variables is restricted to avoid identifying “time streams” within types: to be
precise, arbitrary substitutions [k′/k] are permitted in terms, but a substitution in a type is only permitted
when it does not cause two distinct clocks to be identified. To implement this restriction, a somewhat
bizarre side condition on the instantiation rule for ∀k.A[k] is needed, which unfortunately appears to
preclude the generalization of Atkey and McBride’s clocks to the dependently typed setting, pace a worthy
attempt by Møgelberg [40] which was thwarted by the failure of the substitution lemma.

Bizjak and Møgelberg [13] subsequently resolved these difficulties in 2015 by simply removing the
restriction on clock substitution entirely: to substantiate this simplified language, they construct a fibered
presheaf model that supports diagonal substitutions of clocks, which they refer to as clock synchronization .
With synchronization in place, there were two remaining problems left unresolved by op. cit .:

(i) the fibered character of the model caused coherence problems that impede the interpretation of the
syntax of dependent type theory;

(ii) also missing was the clock irrelevance principle, which should at a minimum ensure that the
canonical map A ∀k.A is an isomorphism for any type A that doesn’t depend on k.

A solution to the coherence problem was found in 2017 by Sterling and Harper [52], who employed the
Grothendieck construction to replace the fibered presheaf model by an equivalent ordinary presheaf model.
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Sterling and Harper also addressed clock irrelevance in two steps: first, they interpreted the clock quantifier
∀k as an intersection type in an internal realizability model; 3 then they ensured that this intersection
is non-trivial by forcing the proposition ∃k.> in the ambient topos. Around the same time, Bizjak and
Møgelberg [14] returned to the clock synchronization model with an analogous solution to the coherence
problem and a more general approach to clock irrelevance: the quantifier ∀k remains a dependent product,
but they restrict the language to types that are orthogonal to the object of clock names. The solution of
Bizjak and Møgelberg is more broadly applicable than that of Sterling and Harper because intersection
need not be meaningful in an arbitrary category whereas products have a very simple universal property.

1.3 Goals and structure of this paper

Most models of single-clock synthetic guarded domain theory are given by presheaf topoi; the models of
multi-clock synthetic guarded domain theory are also taken in presheaves, but of a different kind than the
single-clock version. Thus the work of [3,13,14,52] on multi-clock guarded recurison raises two questions
concerning the relationship between the existing models of single-clock and multi-clock guarded recursion:

(i) Does the passage from single-clock to multi-clock topos models have a universal property?

(ii) Can the multi-clock model be rephrased as a special case of the single-clock model of SGDT?

In this paper we answer both questions positively. Each multi-clock topos can be seen to be a partial
product or bagtopos [55,29,30] for a certain cocartesian fibration of topoi applied at a given model of single-
clock guarded recursion as hinted by Sterling [51, §2.2.6]; moreover we show that the model of synthetic
guarded domain theory in the multi-clock setting is an instance of the single-clock model generalized to
the relative Grothendieck topos theory over a given elementary topos S. Thus we have contributed a
completely modular toolkit for negotiating the two orthogonal axes of variation in multi-clock synthetic
guarded domain theory: the properties of the object of clocks, and the properties of each later modality Ik.

Structure of this paper
In Section 2, we introduce the topos and category theory that is needed for our technical development. As
relative topos theory plays an important role in our work, we pay special attention to it. In Section 3, we
define elementary axioms for both single-clock and multi-clock synthetic guarded domain theory in a topos,
and we contribute a toolkit for constructing and transforming models of both.

(i) In Sections 3.3 and 3.4 we show that synthetic guarded domain theory is stable under both presheaves
and localization, hence any bounded geometric morphism into a topos model of SGDT lifts this model
into its domain.

(ii) In Section 3.5 we generalize the results of Birkedal et al . [6] by constructing models of SGDT in
sheaves on frames with a well-founded basis over an arbitrary base topos with a natural numbers
object. This generalization requires a subtle change to the definition of well-founded poset, as well as
new constructive proofs of the existence of term-level guarded fixed points.

In Section 4 we provide an explicit description of the geometric theories that extant presheaf models of
single-clock guarded recursion classify. In Section 5 we give a general construction of a multi-clock model
from a single-clock model using the bagtopoi of Vickers [55]: in particular, a multi-clock topos classifies the
theory of a “bag” or “multi-set” of points of the corresponding single-clock topos. Our characterization
thus provides a geometrical universal property for multi-clock guarded recursion as a model construction
on topoi, and as an explicit transformation of geometric theories. Finally in Section 6, we use these new
universal properties to give a new and more abstract proof that the multi-clock topoi are in fact models of
synthetic guarded domain theory in each clock.

3 See also Bizjak and Birkedal [10] for a different realizability approach to multi-clock guarded recursion via generalized
equilogical spaces.
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2 Geometric universes, topoi, and logoi

Because the topic of the present paper is logico-geometric duality in guarded domain theory, we are careful
to distinguish the spatial aspects of topoi from the logical ones in both our terminology and notations.
Similar conventions are employed by Vickers [56], Bunge and Funk [21], and Anel and Joyal [2].

Definition 2.1. A geometric universe 4 is a cartesian closed category E that has finite limits, a subobject
classifier Ω, and a natural numbers object N. A morphism F : E F of geometric universes is given
by a left exact functor ∆F : E F equipped with a right adjoint ∆F a ΓF : F E. A 2-morphism
α : F G in [E,F] is given by a natural transformation ∆F ∆G.

We will write GU for the meta-2-category of all geometric universes.

Definition 2.2. A left exact localization of a geometric universe S is defined to be a morphism
L : S T of geometric universes such that the right adjoint functor ΓL : T S is fully faithful.

Definition 2.3. A topos over a geometric universe S is defined to be a geometric universe SX equipped with
a structure morphism X : S SX of geometric universes such that the gluing fibration GX = SX ↓ ∆X S
has a small separator. A morphism of S-topoi f : X Y is then a morphism in the pseudo-coslice S ↓
GU, i.e. a morphism Sf : SY SX of geometric universes equipped with an isomorphism φf : X Y;Sf
in GU[S,SX] as depicted in the wiring diagram below:

φf

X

Y Sf

S SX

SY

We will write f∗ a f∗ for the adjunction ∆Sf a ΓSf . A 2-morphism α : f g in [X,Y] is defined to
be a 2-morphism Sα : Sf Sg such that the following wiring diagrams are equal (denote the same 2-cell):

φf

Sα

X

Y

Sf

Sg

S SX

SY

φg

X

Y Sg

S SX

SY

4 Geometric universes in this sense are usually referred to as elementary topoi with natural numbers objects.
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We will write TopS for the meta-2-category of S-topoi for a geometric universe S. We will write
LogS = Top◦S for the meta-2-category obtained by reversing the 1-cells but not the 2-cells; we refer to
an object of LogS as an S-logos. Given a topos X, we may think of the dual logos SX as the category
of S-valued sheaves on the space X. Indeed, the relative Giraud theorem states that the logos SX can
be equivalently presented as a left exact localization of a category of internal diagrams [C,S] for some
internal category C in S.

2.1 Geometric theories and classifying topoi

The notion of geometric theory elucidates the relationship between topoi and logoi.

Each geometric theory T determines a classifying topos [T] whose points form the category of T-models
and T-model homomorphisms; the dual logos S[T] is then the classifying category or category of contexts
and substitutions for the theory T. It is also useful to think of S[T] as the universal extension of the
geometric universe S by an indeterminate T-model in the same way that the polynomial ring A[x] is the
free extension of a ring A by an indeterminate element.

There are several possible notions of geometric theory over S; for the sake of this paper, we choose
a particularly syntactical one. Informally a geometric theory over S is given by a collection of sorts σ
and predicates x : σ | φ(x), together with a collection of sequents x : σ | φ(x) ` ψ(x) in which φ, ψ are
defined using

{∨
I ,
∧
n,∃, ∃!,=

}
where I ranges over an object of S. To be precise, all these collections are

parameterized in objects of S, so the correct category of geometric theories arises as a fibration ThyS S
whose fiber at J ∈ S is the category of J-indexed families of geometric theories with morphisms given by
translations of sorts, operations, and derivable sequents. In practice, all these notions are conveniently
manipulated in the internal type theory of S.

Construction 2.4. The free finite product completion C× of any internal S-category C can be
computed explicitly in the internal language of S as follows:

(i) an object Ψ ∈ C× is a finite S-cardinal 5 |Ψ| together with a “type assignment” ∂Ψ ∈ C|Ψ|,
(ii) a morphism ψ : Φ Ψ in C× is given by a renaming |ψ| : |Ψ| |Φ| together with a morphism

∂ψ : ∂
|ψ|
Φ ∂Ψ in the product category C|Ψ|.

We will write 〈−〉 : C C× for the functor sending an object to the corresponding unary product.

Example 2.5. The theory of an object ob over S has a single sort K, no operations, and no axioms. To
be more formal, the sorts of ob are parameterized by the terminal object 1S ∈ S and the operations and
axioms are parameterized by the initial object ∅S ∈ S. Letting O = 1× be the free internal S-category
with finite products generated by a single object, then S[ob] is the category of S-valued presheaves on O.

Example 2.6. The theory of a pointed object el over S has a single sort K, a single constant k : K,
and no axioms. Recalling O from Example 2.5, then S[el] is the category of S-valued presheaves on O ↓ 〈∗〉.

5 To be very clear, by a finite cardinal we mean an element of the natural numbers object of S; a morphism of finite
cardinals m n is a function from N<m to N<n.
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2.2 Morphisms of topoi as relative topoi

Let γ : E B be a morphism of S-topoi. In other words, we have morphisms E : S SE, B : S SB,
Sγ : SB SE, and an isomorphism φγ : E B;Sγ as in the following wiring diagram:

φγ

E

B Sγ

S SE

SB

Forgetting the rest of the structure, the morphism Sγ : SB SE of geometric universes also exhibits
SE as the geometric universe underlying a SB-topos [31, Lemma B3.1.10(ii)]. In this scenario, we shall
write Eγ : SB SE = SEγ for this SB-topos. This perspective allows us to take any property P of topoi,
e.g . local connectedness, and rephrase it as a property of morphisms of topoi by viewing the morphism as a
topos over a different base geometric universe:

Convention 2.7 (Relative point of view). A morphism γ : E B of S-topoi is said to have property P
if Eγ has property P when viewed as a SB-topos.

2.3 Internal presheaves, algebraic topoi, algebraic morphisms

Let C be an internal category in a geometric universe S; we may consider the category PrSC of S-valued

presheaves on C. The constant presheaves functor Ĉ : S PrSC is then an S-topos with SĈ = PrSC;
following the terminology of Vickers [56] and Johnstone [29] we will refer to any S-topos equivalent to one

of the form Ĉ as a algebraic S-topos. 6 Thus:

Definition 2.8 (Algebraic topos). An S-topos X is called algebraic when there exists an internal category

C ∈ S and an equivalence of S-topoi X Ĉ.

Employing Convention 2.7 we generalize Definition 2.8 to morphisms of topoi. 7

Definition 2.9 (Algebraic morphism). A morphism β : E B of S-topoi is likewise called algebraic
when Eβ is an algebraic SB-topos, i.e. there exists an internal category C ∈ SB such that there exists an

equivalence of SB-topoi Eβ Ĉ.

In the scenario of Definition 2.9, we will speak of β : E B as the algebraic morphism presented by
the SB-category C.

Observation 2.10 (Johnstone [31, Lemma B2.5.3]). If E B is the algebraic morphism presented by
an internal category E ∈ SB and F E is the algebraic morphism presented by an internal category
O ∈ SE ' PrSB

E, then the composite F B is the algebraic morphism presented by the internal category
E o O ∈ SB whose objects are given by pairs (u, v) with u ∈ E and v ∈ Ou such that a morphism
(u, v) (u′, v′) is given by a pair (f, g) where f : u u′ and g : v f∗v′.

6 The “algebraic topos” terminology tracks an precise analogy with algebraic dcpos discussed by Vickers [56].
7 Not to be confused with the convention of referring to the inverse image f∗ : SY SX of a morphism of topoi
f : X Y as an “algebraic morphism”, which we do not employ in this paper.
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Thus algebraic morphisms are closed under composition, and moreover, composition of algebraic
morphisms corresponds to the Grothendieck construction for the internal categories that determine them.

2.3.1 Slices and étale morphisms
Let S be a geometric universe and fix an object A ∈ S. It is sometimes referred to as the “fundamental
theorem of topos theory” that the slice S ↓ A is again a geometric universe; moreover, the pullback
functor A∗ : S S ↓ A can be seen to be the left adjoint part of a morphism of geometric universes
[A] = (A∗ a A∗). Thus [A] can be viewed as a discrete S-topos where S[A] = S ↓ A such that the points
of the S-valued topos [A] are exactly the elements of A. Such a topos is usually referred to as étale:

Definition 2.11. An S-topos A is called étale when there exists an object A ∈ S and an equivalence of
S-topoi A [A].

Via Convention 2.7 we generalize the notion of étale S-topos to morphisms between S-topoi:

Definition 2.12. A morphism p : E B of S-topoi is called étale when the SB-topos Ep is étale, i.e.
there exists a sheaf B ∈ SB together with an equivalence of SB-topoi Ep [B].

As any object A ∈ S determines a discrete internal S-category elA, it is not difficult to see that any

étale S-topos is also algebraic in a canonical way: we have [A] = êlA. There is furthermore an analogue to
Observation 2.10 concerning the composition of étale morphisms of topoi:

Observation 2.13. If E B is the étale morphism presented by a sheaf E ∈ SB and F E is the étale
morphism presented by a sheaf F ∈ SE ' SB ↓ E, then the composite F B is the étale morphism
presented by the dependent sum

∑
EF ∈ SB.

2.4 Partial products of topoi

We recall the theory of partial products from Johnstone [31]. Let K be a finitely complete 2-category and
let p : E B be an cocartesian fibration in K in the sense of [31, Definition B4.4.1]. 8 Given an object
A ∈ K, a partial product cone over (p,A) at stage C ∈ K is defined to be a diagram of the following form
in K, which we write as a pair (u, ε):

u∗E

C

u∗p

E

B

q

p

u

A
ε

Johnstone defines a morphism between partial product cones (u, ε) (u′, ε′) to be a pair (α, β) of

8 Op. cit. refers to these as opfibrations.
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2-cells as depicted below, where α! : u∗E u′∗E is the 1-cell assigning cocartesian lifts along α : u u′:

α

u

u′

C B β

ε

α! ε′

u∗E A

u′∗E

We have a 2-fibration [18] of partial product cones PPCone(p,A) K whose fiber at each C ∈ K is
the category of partial product cones for (p,A) with vertex C as defined above. Then the partial product
of (p,A) is defined to be a representing object PpA ∈ K for the fibration PPCone(p,A) K, if it exists.
In other words, for any C ∈ K the category of morphisms C PpA is equivalent to the category of partial
product cones for (p,A) with vertex C. Johnstone [31] points out that the partial product can be written
in the “internal language” of the 2-category K as the polynomial expression PpA =

∑
b:B

∏
e:p[b]A.

3 Elementary synthetic guarded domain theory

In this section, we set down elementary axioms for synthetic guarded domain theory in a geometric universe
S. In Sections 3.3 and 3.4 we study the stability of these axioms under the two fundamental topos-theoretic
constructions: presheaves and left exact localization. In Section 3.5 we generalize the results of Birkedal et
al . to construct a base model from a frame with a well-founded basis over any base geometric universe.

3.1 Elementary axioms for synthetic guarded domain theory

Definition 3.1. A later modality structure on S is given by a left exact endofunctor I : S S called
the later modality together with a natural transformation next : idS I.

Definition 3.2. Following the terminology of Kelly [34] we refer to a later modality structure as well-
pointed when the following identity of wiring diagrams holds:

next

II

= next

I I

Scholium 3.3. When the later modality has a left adjoint J a I, the well-pointedness condition of
Definition 3.2 is equivalent to the tick irrelevance property isolated by Mannaa, Møgelberg, and Veltri [38].

Remark 3.4. As the later modality is left exact, it internalizes as a modality I : Ω Ω on the subobject
classifier that preserves finite conjunctions. Likewise, the later modality internalizes as a fibered endofunctor
on the fundamental fibered category of S as in Birkedal et al . [6], and can hence be used informally in the
internal dependent type theory of S.

Definition 3.5. A later modality structure is said to support Löb induction when the sequent φ : Ω |
Iφ⇒ φ ` φ holds in the internal logic of S. It is said to support guarded recursive terms when for
any morphism f : IA A there exists a unique element f † : 1S A such that f † = f †; nextA; f .
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The following result follows from the unique choice principle valid in any geometric universe.

Lemma 3.6. A well-pointed later modality structure supports guarded recursive terms if and only if it
supports Löb induction.

Scholium 3.7. As a consequence of Lemma 3.6, it is rarely necessary to verify the guarded recursive
terms property, which is always more complex to check than Löb induction. In fact, Lemma 3.6 is an
important ingredient to our constructivization of the results of Birkedal et al . [6] in Section 3.5: it allows
us to sidestep the very technical and non-constructive proof of Lemma 8.13 in op. cit .

We do not here consider algebraic compactness conditions on S with respect to contractive functors,
although these usually play an important role in the solution of domain equations in synthetic guarded
domain theory [6]. Instead we take the point of view of Birkedal and Møgelberg [5] and advocate solving
domain equations internally to S using term-level guarded recursion on universe objects. Thus we adopt
the following elementary definition of a model of synthetic guarded domain theory.

Definition 3.8. An elementary geometric model of synthetic guarded domain theory is given by a
geometric universe S equipped with a well-pointed later modality (I, next) that supports Löb induction.

Every geometric universe S carries a trivial model of synthetic guarded domain theory where IA = 1S.
It is therefore important to distinguish non-trivial models in order to implement adequate denotational
semantics; the following definition is one possible restraint on the later modality:

Definition 3.9. Let S be a geometric universe equipped with a later modality structure (I, next), and
let S : U S be a morphism of geometric universes. We say that (I, next) is globally adequate
relative to S : U S when the following 2-cell is an isomorphism, i.e. we have a canonical isomorphism
force : ΓS IN ∼= ΓSN where N is the natural numbers object of S:

next

IN ΓS

1

S

U

3.2 Elementary axioms for multi-clock synthetic guarded domain theory

The multi-clock variants of synthetic guarded domain theory are also accommodated under Definition 3.8;
indeed, we may define an elementary geometric model of multi-clock synthetic guarded domain theory
to be a geometric universe S equipped with an object K ∈ S and an elementary geometric model of
synthetic guarded domain theory in the slice S ↓ K. In this scenario, K is the object of clocks and clock
quantification is implemented by the dependent product functor K∗ : S ↓ K S.

3.3 Stability under presheaves

Let C be an internal category in a geometric universe S, i.e. a small category over S. Supposing in
addition that S is an elementary geometric model of synthetic guarded domain theory, we may define a
later modality structure pointwise on the geometric universe SĈ of internal presheaves. In particular, we

define IC : SĈ SĈ to take an internal presheaf E to c 7→ IEc in the internal language of S; likewise

the natural transformation nextC : idSĈ
IC is given pointwise. The following Lemma 3.10 is verified by

rewriting in the pictorial language of wiring diagrams, using the fact that when C has a terminal object, the
global sections functor ΓĈ : SĈ S is S-cocontinuous and hence preserves the natural numbers object.



Palombi and Sterling 12–11

Lemma 3.10 (Global adequacy in presheaves). If the internal category C has a terminal object and
(I, next) is globally adequate relative to S : U S, then (IC, nextC) is globally adequate relative to the

composite map S; Ĉ : U SĈ.

Theorem 3.11 (Stability under presheaves). The pointwise later modality structure (IC, nextC) on SĈ is
well-pointed and supports Löb induction. Hence the category of diagrams SĈ is an elementary geometric
model of synthetic guarded domain theory.

3.4 Stability under left exact localization

Construction 3.12 (Localized later modality). Let L : S T be a left exact localization, and let (I, next)
be a later-modality structure on S. We may define a canonical later-modality structure (IL, nextL) on T
by conjugating with the adjunction ∆L a ΓL. We define IL : T T to be the composite functor ΓL;I; ∆L

and we define nextL : idT IL to be the natural transformation depicted in the following wiring diagram,
in which ε−1 is the inverse to the counit ε : ΓL; ∆L idE of the adjunction ∆L a ΓL.

nextL

IL

T

:=

ε−1

next

T

S

ΓL ∆LI

The following can be proved pictorially in the language of wiring diagrams; see Appendix A.2 for details.

Lemma 3.13. If (I, next) is a well-pointed later modality structure on S and L : S T is a left exact
localization, then the later modality structure (IL, nextL) defined in Construction 3.12 is well-pointed.

Theorem 3.14 follows nearly immediately from an internal logic argument, using the closure modality
associated to any left exact localization.

Theorem 3.14 (Stability under localization). If the later modality structure (I, next) on S supports Löb
induction, then so does (IL, nextL) for a left exact localization L : S T. Hence if S is an elementary
geometric model of synthetic guarded domain theory, then so is any left exact localization of S.

By the above, we may conclude that any category E of S-valued sheaves inherits an elementary model of
synthetic guarded domain theory from the base geometric universe S, if it is so-equipped; note this model
could depend on the chosen presentation of E by an S-site. Special care must be taken, as localizations
need not preserve global adequacy; for example, the localization could trivialize the later modality in the
sense of making ILA = 1T for all A ∈T.

3.5 Base models from intuitionistic well-founded posets

In the preceeding sections we have shown stability of elementary geometric models of synthetic guarded
domain theory under basic topos theoretic constructions: presheaves and localization; from these stability
properties it follows that the logos presented by any E-site inherits guarded recursion from an elementary
geometric model E. But how do we construct a geometric model E in the first place? Birkedal et al . [6]
provide a simple recipe for constructing such models, working in the more restrictive setting of Set-logoi;
in particular, it is verified that for any Set-locale X whose frame of opens OX has a well-founded basis, the
logos SX is an elementary geometric model of synthetic guarded domain theory.
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In this section, we carry out a (non-trivial) generalization of the results of op. cit . to S-locales for an
arbitrary geometric universe S. Indeed, not only are the arguments of op. cit . non-constructive and thus
invalid over an arbitrary geometric universe: the definition of well-founded poset must be adjusted as well:

(i) It will not do to define u < v as ¬(v ≤ u) unless S is boolean; thus the well-founded order on a poset
must be an additional structure that is compatible with the original order in a certain way.

(ii) The classical definition of well-foundedness in terms of infinite descending chains is correct if and only
if S satisfies dependent choice.

3.5.1 Basic definitions: intuitionistic well-founded posets and frames
Definition 3.15. Let R ⊆ P × P be a binary relation in S. The R-accessible elements of P are the
smallest subset AccR ⊆ P spanned by elements u ∈ P such that for all v R u we have v ∈ AccR. We say
that R is well-founded when AccR ⊆ P is P itself.

Definition 3.16. Let (P,≤) be a preorder in S; we define a compatible well-founded relation on
(P,≤) to be a transitive binary subrelation ≺ ⊆ ≤ ⊆ P× P satisfying the following additional axioms:

(i) Left compatibility. If u ≤ v and v ≺ w then u ≺ w.

(ii) Right compatibility. If u ≺ v and v ≤ w then u ≺ w.

(iii) Well-foundedness. The relation ≺ ⊆ P× P is well-founded.

Definition 3.17. We define an intuitionistic well-founded preorder to be a triple (P,≤,≺) in S such
that (P,≤) is a preorder and ≺ is a compatible well-founded relation on (P,≤). Likewise we will speak
of an intuitionistic well-founded poset to refer to an intuitionistic well-founded preorder for which ≤
satisfies anti-symmetry.

Definition 3.18 (Connected poset). Let P poset object in S. We say that u, v ∈ P are comparable if u ≤ v
or v ≤ u. A poset object is connected if for each u, v ∈ P there exists a finite sequence u = c0, . . . , cn = v
in P such that ci and ci+1 are comparable for each i.

Definition 3.19 (Internal frames). A frame in S is defined to be a poset object that is closed under
S-joins and finite meets, such that finite meets distribute over S-joins.

Definition 3.20 (Basis for a frame). Let A be a frame in S and let K ⊆ A be a subposet of A; then K is
called a basis for A when every u ∈ A is the least upper bound of all the k ∈ K such that k ≤ u.

3.5.2 A base model in sheaves on a frame with well-founded basis
Any frame A in S gives rise to an internal site; the underlying internal category is A itself, and a family

{vi ≤ u} is covering when u =
∨
ivi. We will write Ã for the S-topos obtained by setting SÃ to be the

category of S-valued sheaves on the internal site A, letting the structure map Ã : S SÃ take any object

of S to its constant sheaf. Of course we have an embedding of S-topoi i : Ã Â such that the direct
image i∗ regards a sheaf as a presheaf and the inverse image i∗ sheafifies a presheaf.

We first construct a later modality structure on the presheaf logos SÂ = PrSA = [A◦,S] assuming
that there exists an intuitionistic well-founded preorder (K,≤,≺) that forms a basis for A. For each u ∈ A,
we will write K≤u ⊆ K for the subposet spanned by k ∈ K such that k ≤ u and K≺u for the subposet
spanned by k ∈ K such that there exists l ∈ K≤u with k ≺K l. Following Birkedal et al . [6] we may define
a predecessor operation on A as a monotone endofunction:

p : A A
pu =

∨
k∈K≺u

k

The predecessor operation induces an essential morphism of S-topoi p̂ : Â Â whose inverse image
functor p̂∗ : SÂ SÂ is given by precomposition with p. We have a natural transformation ν : idSp̂

p̂∗
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defined pointwise by restriction like so:
νE : E p̂∗E
νuE e = e|pu

The following result follows immediately by computation.

Lemma 3.21. The pair (p̂∗, ν) comprise a well-pointed later modality structure on SÂ.

Note that the later modality structure on SÂ so-defined need not support Löb induction. Using
Construction 3.12 we obtain a later modality structure (I, next) on the sheaf logos SÃ via the localization
Si : SÂ SÃ, and this structure remains well-pointed by Lemma 3.13. The following result is proved
using the Kripke–Joyal semantics of SÃ over S; see Appendix A.3 for the details.

Theorem 3.22 (Base model). The well-pointed later modality structure (I, next) on SÃ supports Löb
induction, hence SÃ is an elementary geometric model of synthetic guarded domain theory.

4 Classifying topoi in single-clock guarded recursion

As Birkedal et al . [6] have pointed out, presheaves on a well-founded poset are an instance of the sheaf
models of guarded recursion considered in Section 3.5. This is so because presheaves on a well-founded

poset P are the same as sheaves on the algebraic locale P̂, whose frame of opens OP̂ is the free cocompletion

of P under all S-joins and whose poset of points [1, P̂] is the free filtered cocompletion of P◦. Thus P will
turn out to be a (well-founded) basis for OP̂.

Explication. Let (P,≤,≺) be an intuitionistic well-founded poset in S; we may define an S-locale

P̂ whose frame of opens OP̂ consists of all the downsets of P ordered by inclusion, i.e. the S-poset of

S-poset homomorphisms [P◦,Ω]. 9 Then the Yoneda embedding P OP̂ exhibits P as a basis for OP̂,
hence by Theorem 3.22 we have an elementary geometric model of synthetic guarded domain theory in SP̂.
Furthermore, the geometric universe SP̂ can be seen to be the category PrSP of S-valued presheaves on
the internal site P.

Lemma 4.1. Let (P,≤,≺) be an intuitionistic well-founded poset in S. We will write P≺ = {u | ∃v.u ≺ v}
for the subposet spanned by elements lying strictly below another element. If both P and P≺ are connected,

then the later modality structure on SP̂ is globally adequate relative to P̂ : S SP̂.

Proof. We note that ΓP̂IN may be computed as the limit lim←−u∈Plim←−v≺uN, which is also the connected

limit lim←−u∈P≺
N; hence ΓP̂IN ∼= N ∼= lim←−u∈PN

∼= ΓP̂N.

Most models of guarded recursion used in practice are indeed of this kind; in addition to the global
adequacy result (Lemma 4.1) and the simplicity of working with presheaves, another advantage of the
presheaf models is that they can be characterized as classifying topoi for remarkably simple and elegant
geometric theories.

Lemma 4.2. For any poset (P,≤) in S, the algebraic S-topos P̂ classifies the geometric theory of filters
on P, i.e. the theory filter(P) axiomatized below:

u ∈ P
· ` 〈u〉 : prop

u ≤ v ∈ P
· | 〈u〉 ` 〈v〉 · | > `

∨
u∈P〈u〉

u, v ∈ P
· | 〈u〉 ∧ 〈v〉 `

∨
w∈P,w≤u,w≤v〈w〉

9 The frame OP̂ was referred to by Birkedal et al . [6] as the ideal completion of P. When P is a total order, OP̂ is
indeed the ideal completion of P but this need not be the case otherwise; on the other hand, the poset of points of

the locale P̂ under the specialization order is indeed the ideal completion of P◦ by Diaconescu’s theorem [23].
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Proof. By Diaconescu’s theorem [23], the topos P̂ classifies the theory of (internally) S-valued flat functors
on P. A flat functor a poset is the same as a filter on that poset.

Example 4.3 (The topos of trees). The topos of trees [6] over a geometric universe S is defined to be the
algebraic topos ω̂ where ω is the natural numbers object of S with its usual order; this is the “standard”
model of synthetic guarded domain theory. We recall that ω̂ = [filter(ω)] from Lemma 4.2; because (ω,≤) is
a total order in S, the downward-directedness axiom for filters can be dropped and we see that ω̂ classifies
models of the following even simpler geometric theory:

n : ω

· | 〈n〉 : prop

m ≤ n : ω

· | 〈m〉 ` 〈n〉 · | > `
∨
i∈ω〈i〉

Example 4.4 (Successor ordinals). We may consider the successor ω+ = ω ? {∞} that adjoins a terminal

element to ω. The algebraic topos ω̂+ classifies a geometric theory analogous to that of Example 4.3, but it
can also be seen to classify a simpler cartesian theory by virtue of the fact that ω+ has all finite meets:

α : ω+

· | 〈α〉 : prop

α ≤ β : ω+

· | 〈α〉 ` 〈β〉 · | > ` 〈∞〉

Lemma 4.5. Let (P,v,<) be an intuitionistic well-founded preorder and let q : (P,v) (P′,≤) be its
poset reflection. We may define a compatible well-founded order ≺⊆≤ on P′ by considering the image of <
in P′, i.e. u ≺ v ⇐⇒ ∀x, y.u = qx→ v = qy → x < y.

Example 4.6 (Well-founded trees and the plump ordering). Let p : E B be a morphism in S and
consider the corresponding polynomial endofunctor Pp : S S taking X ∈ S to PpX =

∑
b:B

∏
e:p[b]X.

As S supports W-types [39, Proposition 3.6], we may form the initial algebra σ : PpWp Wp of this
polynomial endofunctor. Following Fiore, Pitts, and Steenkamp [25, Example 5.4] we may equip Wp as an
intuitionistic well-founded preorder, letting (v,<) be the smallest relations closed under the following:

(∀x : p[a].cx < w)→ σ(a, c) v w (∃x : p[a].w v cx)→ w < σ(a, c)

The order above is adapted from Taylor [53] and called the plump ordering on Wp. By Lemma 4.5 we
have a weakly equivalent intuitionistic well-founded poset (Wp/ ∼,≤,≺), and thus the classifying topos
of filters on this poset carries a model of SGDT. It is not difficult to see by unrolling definitions that
Example 4.3 is the special case of this construction for the family p : E 2 whose fibers are ∅S and 1S.

5 The universal property of multi-clock guarded recursion

5.1 Bagtopoi as partial products

Given a geometric theory T over S, there exists a geometric theory bag(T) over S of families of T-models
indexed by an object of S. We will give an explicit description of bag(T) for T a propositional geometric
theory (i.e. a theory with no sorts and only nullary predicates).

Definition 5.1 (Johnstone [29]). Let T be a propositional geometric theory. Then bag(T) is the theory
with a single sort K together with:

(i) for every proposition symbol φ of T, a predicate k : K | φ[k] : prop;

(ii) for every axiom · | φ ` ψ of T, an axiom k : K | φ[k] ` ψ[k].

Definition 5.2 (Johnstone [31, Proposition B4.4.16]). Let E be an S-topos. Let p : [el] [ob] be the
generic étale morphism of S-topoi projecting the underlying object from a pointed object. The (lower)
bagtopos over E is the partial product BLE := PpE.
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Observation 5.3 (Johnstone [31, Proposition B4.4.16]). For a geometric theory T, the bagtopos BL[T] is
the classifying S-topos for the theory bag(T), i.e. we have BL[T] ' [bag(T)].

5.2 A universal property for Bizjak and Møgelberg’s clocks

Let K be the S-category having as its objects pairs (U, f ∈ ωU ) with U a finite S-cardinal, while morphisms
(U, f)→ (V, g) are given by functions h : U → V such that h; g ≤ f ∈ ωU in the pointwise ordering. The
internal category K above is exactly the category of time objects written T by Bizjak and Møgelberg [14],
relativized over an arbitrary geometric universe. It was left unmentioned by op. cit . that K is the free finite
coproduct completion of ω◦, an observation that sets the stage for our present results.

We observe that K◦ is the free finite product completion ω× of ω; thus we define the Bizjak–Møgelberg

topos over S to be the algebraic S-topos BM := ω̂× whose total geometric universe is SBM = [K,S].

Lemma 5.4 (Johnstone [31, Example B4.4.17]). If E is the algebraic S-topos presented by an S-category

C, then the bagtopos BLE admits an algebraic presentation by C×; in other words, we have BLĈ ' Ĉ×.

Corollary 5.5 (Universal property). The Bizjak–Møgelberg topos BM is equivalent to the bagtopos BLω̂,
hence BM classifies the geometric theory bag(filter(ω)). In other words, the category of morphisms of topoi
X BM is exactly the category of pairs (K,φ) where K ∈ SX and φ ⊆ K × ω is an K-indexed family of
filters on ω internal to SX.

5.3 A universal property for Sterling and Harper’s clocks

Let � be the S-category having as its objects pairs (U, f ∈ ωU ) with U a finite, nonzero S-cardinal, while
morphisms (U, f) → (V, g) are given by functions h : U → V such that h; f ≤ g ∈ ωU in the pointwise
ordering. Observe how � is exactly the category of clocks described by Sterling and Harper [52], relativized
over an arbitrary geometric universe.

Remark 5.6 (Image factorization [2, 3.2.11–12]). Each morphism of topoi f : X Y can be factored in a
composition of a surjection followed by an embedding. If moreover f is étale, then the components of its
factorization are also étale.

Example 5.7. The theory of an inhabited object inh over S has a single sort K together with the axiom
` ∃k : K.>. Let C be an internal S-category, and let C×inh be the full subcategory of C× whose objects are

nonzero cardinals. Then S[inh] is the category of S-valued presheaves on 1×inh.

Definition 5.8. Let T be a geometric theory. Then baginh(T) is obtained by extending bag(T) with an
additional axiom requiring that the sort K is inhabited.

Definition 5.9. Let e : [el] [inh] be the surjective part of the image factorization for the generic étale
morphism of S-topoi. Then the inhabited bagtopos of an S-topos E is the partial product Binh

L E := PeE.

Observation 5.10. For a geometric theory T, the inhabited bagtopos Binh
L [T] is the classifying S-topos

for the theory baginh(T), i.e. we have Binh
L [T] ' [baginh(T)].

We observe that � ∼= ω×inh; thus we define the Sterling–Harper topos over S to be the algebraic

S-topos SH := ω̂×inh whose total geometric universe is SSH = PrS(ω×inh).

Lemma 5.11. If E is the algebraic S-topos presented by an S-category C, then the inhabited bagtopos

Binh
L E admits an algebraic presentation by C×inh; in other words, we have Binh

L Ĉ ' Ĉ×inh.

Corollary 5.12 (Universal property). The Sterling–Harper topos SH is equivalent to the inhabited bagtopos
Binh

L ω̂, hence SH classifies the geometric theory baginh(filter(ω)). In other words, the category of morphisms
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of topoi X SH is exactly the category of pairs (K,φ) where K ∈ SX is inhabited and φ ⊆ K × ω is a
K-indexed family of filters on ω internal to SX.

6 Lifting guarded recursion to the bagtopos

In this section, we combine the relative point of view with our general stability results for models of SGDT
to obtain an abstract proof that the Bizjak–Møgelberg topos BM carries a model of multi-clock guarded
recursion. The results of this section carry over mutatis mutandis to the other variants of the bagtopos
considered in the preceeding section.

Observation 6.1. The universal property of the Bizjak–Møgelberg topos BM as the partial product Ppω̂
determines a morphism of S-topoi ε : [K] ω̂ in the following configuration, where [K] BM is the étale
morphism corresponding to the generic object:

[K]

BM

K∗p

[el]

[ob]

K

p

K

ω̂
ε

Recall that a point of ω̂ is an ω-filter and a point of BM is an indexed family of ω-filters, and moreover
a point of [K] is such an family equipped with a distinguished index; then the morphism ε : [K] ω̂ should
be thought of as taking that distinguished index to the corresponding filter.

Lemma 6.2. The morphism ε : [K] ω̂ is an algebraic morphism of S-topoi that presents [K] as the

algebraic Sω̂-topos Ĉ for an internal Sω̂-category C with a terminal object.

Proof. Letting 1 be the terminal S-topos (so S1 = S), we observe that the composite [K] → ω̂ → 1 is
the algebraic morphism of S-topoi presented by the semidirect product ω× o K and ω̂ is the algebraic
S-topos presented by ω itself. There is a small fibration π : ω× o K ω that projects out the “value”
assigned to the generic clock, in which cartesian morphisms are those that leave everything but the value
of the generic clock unchanged. As this fibration is small, there exists an internal category E in Sω̂ such
that π : ω× o K ω is its externalization; explicitly, the fiber E(n) for n ∈ ω is equivalent to the full
subcategory of ω× spanned by objects of the form Γ × 〈n〉. We finally deduce that ε : [K] ω̂ is the
algebraic morphism of S-topoi presented by the Sω̂-category E: the inverse image functor ε∗ takes the
generic ω-filter yω− to the relatively constant ω-filter ∆Êyω− = π∗yω−.

Corollary 6.3. The Bizjak–Møgelberg topos BM carries a globally adequate model of multi-clock synthetic
guarded domain theory, parameterized in the generic indexing object K ∈ SBM.

Proof. The result follows from Lemma 6.2 via Lemma 4.1. Viewing [K] as an algebraic topos over ω̂, we
automatically have a model of synthetic guarded domain theory by Theorem 3.11. Global adequacy follows
from Lemma 4.1 via Lemma 3.10.
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coinductive types, in: B. Jacobs and C. Löding, editors, Foundations of Software Science and Computation Structures:
19th International Conference, FOSSACS 2016, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2016, Eindhoven, The Netherlands, April 2–8, 2016, Proceedings, pages 20–35, Springer Berlin
Heidelberg, Berlin, Heidelberg (2016), ISBN 978-3-662-49630-5. 1601.01586.
https://doi.org/10.1007/978-3-662-49630-5_2

[13] Bizjak, A. and R. E. Møgelberg, A model of guarded recursion with clock synchronisation, Electronic Notes in Theoretical
Computer Science 319, pages 83–101 (2015), ISSN 1571-0661.
https://doi.org/10.1016/j.entcs.2015.12.007

[14] Bizjak, A. and R. E. Møgelberg, Denotational semantics for guarded dependent type theory, Mathematical Structures in
Computer Science 30, pages 342–378 (2020).
https://doi.org/10.1017/S0960129520000080

[15] Brady, E., Idris, a general-purpose dependently typed programming language: Design and implementation, Journal of
Functional Programming 23, pages 552–593 (2013).
https://doi.org/10.1017/S095679681300018X

[16] Brady, E., Idris 2: Quantitative Type Theory in Practice, in: A. Møller and M. Sridharan, editors, 35th European Conference
on Object-Oriented Programming (ECOOP 2021), volume 194 of Leibniz International Proceedings in Informatics (LIPIcs),
pages 9:1–9:26, Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany (2021), ISBN 978-3-95977-190-0,
ISSN 1868-8969.
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9

https://doi.org/10.1017/9781108854429.007
https://doi.org/10.1145/2500365.2500597
https://doi.org/10.1109/LICS.2013.27
1208.3596
https://doi.org/10.1109/LICS.2011.16
https://hal.science/hal-00512377/document
https://doi.org/10.1016/j.tcs.2010.07.010
https://doi.org/10.1017/S0960129510000162
https://doi.org/10.1016/j.tcs.2018.02.012
https://doi.org/10.1016/j.entcs.2018.03.016
1601.01586
https://doi.org/10.1007/978-3-662-49630-5_2
https://doi.org/10.1016/j.entcs.2015.12.007
https://doi.org/10.1017/S0960129520000080
https://doi.org/10.1017/S095679681300018X
https://doi.org/10.4230/LIPIcs.ECOOP.2021.9


12–18 Classifying Topoi in Synthetic Guarded Domain Theory

[17] Breugel, F. and J. Warmerdam, Solving domain equations in a category of compact metric spaces, Technical report, NLD
(1994).
https://core.ac.uk/reader/301654090

[18] Buckley, M., Fibred 2-categories and bicategories (2013). Available online at
https://arxiv.org/abs/1212.6283.

[19] Bunge, M. and J. Funk, Spreads and the symmetric topos, Journal of Pure and Applied Algebra 113, pages 1–38 (1996),
ISSN 0022-4049.
https://doi.org/10.1016/0022-4049(95)00150-6

[20] Bunge, M. and J. Funk, Spreads and the symmetric topos II, Journal of Pure and Applied Algebra 130, pages 49–84
(1998), ISSN 0022-4049.
https://doi.org/10.1016/S0022-4049(97)00086-8

[21] Bunge, M. and J. Funk, Singular coverings of toposes, volume 1890 of Lecture Notes in Mathematics, Springer, Berlin
(2006), ISBN 3-540-36359-9.

[22] Coq Development Team, T., The Coq Proof Assistant Reference Manual (2016). Available online at
https://coq.inria.fr/distrib/current/refman/.

[23] Diaconescu, R., Change of base for toposes with generators, Journal of Pure and Applied Algebra 6, pages 191–218 (1975),
ISSN 0022-4049.
https://doi.org/10.1016/0022-4049(75)90015-8
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A Proofs of results

A.1 Guarded recursive terms vs. Löb induction

Notation A.1 (Internal language). When working in the internal language of an elementary geometric
model E of synthetic guarded domain theory, we will make use of the notations of guarded dependent type
theory [12]. In particular, we employ the notation of delayed substitutions for the dependent version of the
later modality defined schematically below for a pair of dependent types Γ ` A type and Γ, x : A ` Bx type:

Γ, u : IA ` I[x← u]Bx

Γ ` IA

πI[x←u]Bx

I(Γ, x : A ` Bx)

I(Γ ` A)

IπBx

Γ IΓ

Γ ` A

Γ

Γ, x : A ` Bx
nextB[x← u]

nextA

πA

πBx

IπAπIA

nextΓ

Observation A.2. Let φ : A Ω be a predicate that holds for at most one element of A; then I∃x : A.φx
implies ∃u : IA.I[x← u]φx.

Lemma 3.6. A well-pointed later modality structure supports guarded recursive terms if and only if it
supports Löb induction.

Proof. The only-if direction is immediate. For the converse, we will employ the principle of unique choice.
In particular, we consider the predicate x : A | φx defined like so:

φx := (x = f (nextA x) ∧ ∀y.y = f (nextA y)⇒ y = x)

To show that there exists x : A such that φx holds, it suffices by Löb induction to assume I∃x : A.φx
and then exhibit x : A satisfying φx. By Observation A.2 we may assume that there exists some u : IA
such that I[z ← u]φz holds. We choose x := fu and must check that φ (fx) holds.
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(i) Existence. To check that fu = f (nextA (fu)), we will verify that u = nextA (fu) in IA, or equivalently
I[z ← u](z = fu). By well-pointedness, this is the same as I[z ← u](z = f (nextA z)); but z =
f (nextA z) follows from φz, hence our assumption I[z ← u]φz suffices.

(ii) Uniqueness. Next we must check that for all y : A where y = f (nextA y), we have y = fu; in other
words, we must check that f (nextA y) = fu. By congruence with f it suffices to check that nextA y = u
in IA, which (as above) is the same as to check that I[z ← u](y = z). This again follows from our
assumption I[z ← u]φz.

A.2 Stability properties for geometric models of SGDT

Observation A.3. If the internal category C has a terminal object, then the pointwise later modality of
SĈ commutes with global sections in the sense that the following canonical 2-cell is an isomorphism:

β

ΓĈ I

IC ΓĈ

SĈ S

The 2-cell β depicted above is the distribution of I over the limit of a given presheaf.

Lemma 3.10 (Global adequacy in presheaves). If the internal category C has a terminal object and
(I, next) is globally adequate relative to S : U S, then (IC, nextC) is globally adequate relative to the

composite map S; Ĉ : U SĈ.

Proof. We want to show that the following 2-cell is an isomorphism:

nextC

N

N

IC ΓĈ

ΓĈ

ΓS

ΓS

1

SĈ

S U (A.1)

We may paste an isomorphism onto Diagram A.1 and check that the result is an isomorphism: the
left-hand isomorphism witnesses the preservation of the natural numbers object by ΓĈ and the right-hand
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isomorphism is from Observation A.3:

∼=

nextC

β−1

N

N I

ΓĈ

ΓS

ΓS

1

SĈ

S

U (A.2)

Diagram A.2 is equal to the following, which is an isomorphism by assumption:

∼=
next

N ΓĈ

N I ΓS

ΓS

1

SĈ
S

U (A.3)

Thus Diagram A.1 is an isomorphism.

Lemma 3.13. If (I, next) is a well-pointed later modality structure on S and L : S T is a left exact
localization, then the later modality structure (IL, nextL) defined in Construction 3.12 is well-pointed.

Proof. We proceed by rewiring in several steps.

nextL

IL IL

(A.4)

First we unfold definitions.

ε−1

next

ΓL ∆LI ΓL I∆L

(A.5)
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Next we rewire using the fact that under direct image the inverse to the counit becomes the unit.

next

η

∆L ΓLΓL I I∆L

(A.6)

Then we rewire using our assumption that (I, next) is well-pointed.

next

η

∆L ΓLΓL II ∆L

(A.7)

We rewire using the fact that the unit becomes the inverse to the counit under inverse image.

next

ε−1

II∆LΓL ΓL ∆L

(A.8)

Folding definitions, we are done.

nextL

ILIL

A.3 A base geometric model of SGDT

In this section, recall that A is a frame in a geometric universe S equipped with a well-founded basis K.

We will write i : Ã Â for the corresponding embedding of S-topoi. We have obtained a well-pointed
later modality structure (I, next) on SÃ from the well-pointed later modality structure (p̂∗, ν) on SÂ using
Construction 3.12, but it remains to show that the former supports Löb induction.

Theorem 3.22 (Base model). The well-pointed later modality structure (I, next) on SÃ supports Löb
induction, hence SÃ is an elementary geometric model of synthetic guarded domain theory.

Proof. This is easily verified in the Kripke-Joyal semantics of SÃ. Fixing u ∈ A and a closed sieve φ ∈ Ωu
such that u  (Iφ⇒ φ) = > we must check that u  φ = >. As K is a basis for A, we know that
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u =
∨
k∈Kuk, so by local character it suffices to verify that k  k∗φ = > for each k ∈ Ku. By well-founded

induction we may assume that l  l∗φ = > for all l ≺ k. From this assumption we have k  p̂∗(k∗φ = >)
and hence k  I(k∗φ = >), so by our assumption that u  (Iφ⇒ φ) = > we are done.


	1 Introduction
	1.1 Synthetic guarded domain theory
	1.2 Multi-clock guarded recursion and coinduction
	1.3 Goals and structure of this paper

	2 Geometric universes, topoi, and logoi
	2.1 Geometric theories and classifying topoi
	2.2 Morphisms of topoi as relative topoi
	2.3 Internal presheaves, algebraic topoi, algebraic morphisms
	2.4 Partial products of topoi

	3 Elementary synthetic guarded domain theory
	3.1 Elementary axioms for synthetic guarded domain theory
	3.2 Elementary axioms for multi-clock synthetic guarded domain theory
	3.3 Stability under presheaves
	3.4 Stability under left exact localization
	3.5 Base models from intuitionistic well-founded posets

	4 Classifying topoi in single-clock guarded recursion
	5 The universal property of multi-clock guarded recursion
	5.1 Bagtopoi as partial products
	5.2 A universal property for Bizjak and Møgelberg's clocks
	5.3 A universal property for Sterling and Harper's clocks

	6 Lifting guarded recursion to the bagtopos
	References
	A Proofs of results
	A.1 Guarded recursive terms vs@let@token . Löb induction
	A.2 Stability properties for geometric models of SGDT
	A.3 A base geometric model of SGDT


