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Abstract

Strong Scott topology introduced by X. Xu and D. Zhao is a kind of new topology which is finer than upper topology
and coarser than Scott topology. Inspired by the topological characterizations of continuous domains and hypercontinuous
domains, we introduce the concept of strongly continuous domains and investigate some properties of strongly continuous
domains. In particular, we give the definition of strong way-below relation and obtain a characterization of strongly continuous
domains via the strong way-below relation. We prove that the strong way-below relation on a strongly continuous domain
satisfies the interpolation property, and clarify the relationship between strongly continuous domains and continuous domains,
and the relationship between strongly continuous domains and hypercontinuous domains. We discuss the properties of strong
Scott topology and strong Lawson topology, which is the common refinement of the strong Scott topology and the lower
topology, on a strongly continuous domain.
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1 Introduction

In non-Hausdorff topology and domain theory, d-spaces, well-filtered spaces and sober spaces form three
of the most important classes of T0 spaces. In the past few years, some remarkable progresses have been
achieved in the research of these three kinds of spaces(see, e.g., [6,7,8,9,11]). In order to reveal finer links
between well-filtered spaces and d-spaces, X. Xu and D. Zhao introduced another class of T0 spaces–strong
d-spaces which lie between d-spaces and T1 spaces in [8]. It is well-known that a T0 space X is a d-space iff
X is a directed complete poset (dcpo, for short) and the topology on X is coarser than the Scott topology
on X with respect to its specialization order. In order to obtain some characterizations of strong d-spaces
([8, Proposition 3.22]), the authors [8] introduced the concept of strong Scott topology and showed that
for a T0 space X, if X is a strong d-space, then X is a d-space and the topology on X is coarser than
the strong Scott topology on X, and the converse is true if X is a sup semilattice with the specialization
order.
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12–2 Strongly Continuous Domains

Strong Scott topology is a kind of new topology which is finer than the upper topology and coarser
than the Scott topology. Inspired by the topological characterizations of continuous domains (resp., hy-
percontinuous domains) that a dcpo P is a continuous domain (resp., a hypercontinuous domain) if and
only if P is a C-space with respect to the Scott topology (resp., upper topology), we introduce the concept
of strongly continuous domains. That is to say, a dcpo P is called a strongly continuous domain if P is
a C-space with respect to the strong Scott topology. In this paper, we will investigate the properties of
strongly continuous domains from the aspects of order structure and topology structure. In particular,
we introduce the notion of strong way-below relation and obtain a characterization of strongly continuous
domains via this relation. We prove that the strong way-below relation on a strongly continuous domain
satisfies the interpolation property and clarify the relationship between strongly continuous domains and
continuous domains, and the relationship between strongly continuous domains and hypercontinuous do-
mains. We prove that a strongly continuous domain P endowed with the strong Scott topology is a locally
compact sober space, and P is a T2 space with respect to the strong Lawson topology which is the common
refinement of the strong Scott topology and the lower topology.

2 Preliminaries

We now recall some basic definitions and notations needed in this paper. For further details, we refer the
reader to [2,3]. For a set X, the family of all finite sets in X is denoted by X(<ω). For a poset L, if L
has a greatest element (resp., smallest element), it is called the unit or top element (resp., zero or bottom
element) of L and is written as 1 (resp., 0). For any x ∈ L and A ⊆ L, let ↓ x = {y ∈ L : y ≤ x},
↓A =

⋃
{↓x : x ∈ A}; ↑x and ↑A are defined dually. A subset A is called a lower set (resp., an upper set)

if A = ↓A (resp., A = ↑A). A nonempty subset D of L is called directed if every two elements in D have
an upper bound in D. L is called a directed complete poset, or dcpo for short, if every directed subset of
L has the least upper bound in L. A subset I ⊆ L is called an ideal of L if I is a directed and a lower
set. Dually, we define the concept of filters. L is called an (inf) semilattice if any two elements a, b have
an inf, denoted by a ∧ b. Dually, L is a sup semilattice if any two elements a, b have a sup, denoted by
a ∨ b. L is called a complete semilattice if L is a dcpo and every nonempty subset of L has an inf. L is
called a complete lattice if every subset of L has a sup and an inf. The upper topology on L, generated by
{L} ∪ {L\↓x : x ∈ L} (as a subbase), is denoted by υ(L). Dually, we define the lower topology on L and
denote it by ω(L). A subset U of L is called Scott open if U is an upper set and for any directed subset D
for which

∨
D exists,

∨
D ∈ U implies D ∩ U 6= ∅. All Scott open subsets of L form a topology, and we

call this topology the Scott topology on L and denote it by σ(L). The complement of a Scott open set is
called Scott closed.

For a topological space X, let O(X) (resp., C(X)) be the lattice of all open subsets (closed subsets) in
X. For A ⊆ X, the closure (resp., interior) of A in X is denoted by clXA (resp., intXA). For a T0 space
X, we use ≤X to represent the specialization order of X, that is , x ≤X y if and only if x ∈ clX({y}).
Unless otherwise stated, throughout the paper, whenever an order-theoretic concept is mentioned, it is to
be interpreted with respect to the specialization order.

Definition 2.1 ([2]) Let L be a poset.

(1) We say that x is way below y, in symbols x � y, iff for any directed subset D ⊆ L for which supD
exists, y ≤ supD implies the existence of a d ∈ D with x ≤ d.

(2) L is called continuous, if for any x ∈ L,⇓ x = {u ∈ L : u � x} is directed and x =
∨
⇓ x. A dcpo

which is continuous is called a continuous domain, or domain. A domain which is a complete lattice
is called a continuous lattice.

(3) We say that x ≺ y iff y ∈ intυ(L) ↑x. And L is called hypercontinuous if for any x ∈ L, {y ∈ L : y ≺ x}
is directed and x =

∨
{y ∈ L : y ≺ x}. A dcpo which is hypercontinuous is called a hypercontinuous

domain. A hypercontinuous domain which is a complete lattice is called a hypercontinuous lattice.

Definition 2.2 ([4]) Let L be a complete lattice. A binary relation � on L is defined as follows: x � y
iff for any S ⊆ L, y ≤

∨
S implies that x ∈↓S. L is a prime continuous lattice if for all x ∈ L, x =

∨
{y ∈
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L : y � x}.

Definition 2.3 ([14]) Let X be a T0 space. X is called a C-space if for any U ∈ O(X) and x ∈ U , there
exists y ∈ U such that x ∈ intX ↑y ⊆↑y ⊆ U .

Proposition 2.4 ([14]) For a T0 space X, X is a C-space if and only if (O(X),⊆) is a completely
distributive lattice.

Theorem 2.5 ([2]) Let L be a dcpo.

(1) L is a domain iff (L, σ(L)) is a C-space.

(2) L is a hypercontinuous domain iff (L, υ(L)) is a C-space.

Theorem 2.6 ([2]) Let L be a complete lattice. The following conditions are equivalent:

(1) L is completely distributive;

(2) L is distributive, and both L and Lop are continuous lattices;

(3) L is continuous and every element is the sup of co-primes.

Definition 2.7 ([8]) Let L be a dcpo. A subset U ⊆ L is called strongly Scott open if (i) U = ↑U , and
(ii) for any directed subset D of L and x ∈ L,

⋂
d∈D ↑ d ∩ ↑ x ⊆ U (that is ↑

∨
D ∩ ↑ x ⊆ U) implies

↑d ∩ ↑x ⊆ U for some d ∈ D. Let σs(L) denote the set of all strongly Scott open subsets of L.
Clearly, if U, V ∈ σs(L), then U ∩V ∈ σs(L). The topology generated by σs(L) (as a base) is called the

strong Scott topology on L and denote it by σs(L). The space (L, σs(L)) is called the strong Scott space of
L, and will be denoted by

∑
s L.

In order not to cause ambiguity, the elements in σs(L) will be called strong Scott topology open sets.

Proposition 2.8 ([8]) Let L be a poset, then υ(L) ⊆ σs(L) ⊆ σs(L) ⊆ σ(L).

3 Strongly continuous domains

In this section we introduce the notion of strongly continuous domains and give some characterizations of
strongly continuous domains from the aspect of order structure.

Definition 3.1 Let L be a dcpo. L is called a strongly continuous domain if (L, σs(L)) is a C-space, i.e.,
for any U ∈ σs(L) and x ∈ L, x ∈ U implies there exists a u ∈ U such that x ∈ intσs(L) ↑u ⊆↑u ⊆ U .

The reason we adopt the terminology “strongly continuous” in the paper is that we introduce the notion
of strongly continuous domains via strong Scott topology. It should be pointed out that the terminology
“strongly continuous” in this paper is completely different from that in [5].

Definition 3.2 ([5]) Let P be a poset and x, y ∈ P . We write x �l y, if for any directed set D and
any upper bound z of D with y ≤ supzD, there is a d ∈ D such that x ≤ d, where supzD denotes the
supremum of D in ↓z. P is called a strongly continuous poset if for all x ∈ P , ⇓l x = {y ∈ L : y �l x} is
directed and sup ⇓l x = x.

Definition 3.3 Let L be a poset. A binary relation �s on L is defined as follows: x �s y if for any
directed subset D ⊆ L and a ∈ L,

⋂
d∈D ↑d ∩ ↑a ⊆↑y implies ↑d ∩ ↑a ⊆↑x for some d ∈ D.

Remark 3.4 Let L be a dcpo and u, x, y, z ∈ L. We have the following.

(1) x�s y implies x� y, and x�s y is equivalent to x� y if L is a sup semilattice.

(2) u ≤ x�s y ≤ z implies u�s z.

(3) x�s z, y �s z implies x ∨ y �s z whenever x ∨ y exists in L.

(4) 0�s x whenever L has a smallest element 0.

Hence �s is an auxiliary relation on L.
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For x ∈ L, we write ⇓s x = {y ∈ L : y �s x} and ⇑s x = {y ∈ L : x�s y}.

Proposition 3.5 Let L be a dcpo. Suppose that there exists a directed set D ⊆ ⇓sx such that supD = x,
then we have the following conditions.

(1) ⇓sx is directed and sup ⇓sx = x;

(2) If y �s x in ↓x, then y �s x in L.

Proof. (1): Let y1, y2 ∈ ⇓sx, i.e., y1 �s x and y2 �s x. Since �s ⊆ �, then y1 � x and y2 � x.
Since supD = x, then y1 ≤ d1, y2 ≤ d2 for some d1, d2 ∈ D. Since D is directed, there exists d3 ∈ D
such that y1 ≤ d1 ≤ d3, y2 ≤ d2 ≤ d3, then d3 ≥ y1, y2. Thus ⇓s x is directed by d3 ∈ D ⊆ ⇓s x. Since
x = supD ≤ sup ⇓sx ≤ sup ↓x = x, we have sup ⇓sx = x.
(2): Let y �s x in ↓x. Then y � x. Since directed set D ⊆⇓s x and supD = x, y ≤ d for some d ∈ D.
Therefore y �s x by d ∈⇓sx. 2

Theorem 3.6 Let L be a dcpo. The following two conditions are equivalent:

(1) L is a strongly continuous domain;

(2) For any x ∈ L, ⇓sx is directed, x = sup ⇓sx and ⇑sx ∈ σs(L).

Proof. (1)⇒ (2): Suppose that L is a strongly continuous domain. Then (L, σs(L)) is a C-space. For any
a ∈ L, let Ha = {x ∈ L : a ∈ intσs(L)(↑x)}. Then since (L, σs(L)) is a C-space and a ∈ L ∈ σs(L), there
exists x ∈ L such that a ∈ intσs(L)(↑x) ⊆↑x ⊆ L. Hence Ha 6= ∅. For any x1, x2 ∈ Ha, since (L, σs(L)) is
a C-space, there exists x3 ∈ L such that a ∈ intσs(L)(↑x3) ⊆↑x3 ⊆ (intσs(L)(↑x1)) ∩ (intσs(L)(↑x2)), hence
x3 ∈ Ha and x1, x2 ≤ x3, thus Ha is directed. If x ∈ Ha and y ≤ x, then a ∈ intσs(L)(↑x) ⊆ intσs(L)(↑y),
thus y ∈ Ha, hence Ha is a lower set. We now show that

∨
Ha = a. Obviously, a is an upper bound of Ha.

Let b be an other upper bound of Ha, i.e., Ha ⊆↓b. Assume that a � b, then a ∈ L\ ↓b ∈ υ(L) ⊆ σs(L),
since (L, σs(L)) is a C-space, there exists x ∈ L\ ↓ b such that a ∈ intσs(L)(↑x) ⊆ ↑x ⊆ L\ ↓ b. Hence

x ∈ Ha and x � b, this is a contradiction. Thus
∨
Ha = a. We now show that Ha =⇓sa. On the one hand,

if x ∈ Ha, then there exists U ∈ σs(L) such that a ∈ U ⊆ intσs(L)(↑x). For any directed subset D ⊆ L and
z ∈ L, if ↑

∨
D ∩ ↑z ⊆↑a, then ↑

∨
D∩ ↑z ⊆↑a ⊆ U ∈ σs(L), hence ↑d ∩ ↑z ⊆ U ⊆ intσs(L)(↑x) ⊆↑x for

some d ∈ D. Thus x�s a. Therefore Ha ⊆⇓sa. On the other hand, for any y ∈⇓sa, i.e., y �s a =
∨
Ha,

then y � a =
∨
Ha. Since Ha is an ideal, y ∈↓Ha = Ha. Now we prove that ⇑sa ∈ σs(L). Since x ∈⇑sa

iff a ∈⇓sx = Hx iff x ∈ intσs(L)(↑a), we have ⇑sa = intσs(L)(↑a) ∈ σs(L).
(2) ⇒ (1): Suppose a, b ∈ L such that a �s b. Since ⇑s a ∈ σs(L) and ⇑s a ⊆ ↑ a, then we have
b ∈ ⇑s a ⊆ intσs(L)(↑a). We now show that (L, σs(L)) is a C-space. Suppose that U ∈ σs(L) and b ∈ U ,
then

∨
{x ∈ L : x �s b} = b ∈ U . Since σs(L) ⊆ σ(L),

∨
{x ∈ L : x �s b} = b ∈ U ∈ σs(L) ⊆ σ(L), thus

{x ∈ L : x�s b} ∩ U 6= ∅, hence x ∈ U for some x ∈⇓s b. Thus b ∈ intσs(L)(↑x). Therefore (L, σs(L)) is a
C-space. 2

According to the Definition 3.1 and Theorem 3.6, strongly continuous domains can be characterized
by means of strong way-below relation.

Proposition 3.7 Let L be a strongly continuous domain. If x�s z and z ≤
∨
D for a directed set in L,

then x�s d for some d ∈ D.

Proof. Let I =
⋃
{⇓s d : d ∈ D}. Since L is strongly continuous,

∨
I =

∨
D and I is an ideal. If x�s z

and z ≤
∨
D, then x � z ≤

∨
D =

∨
I. Since strongly continuous domains are continuous domains by

definition, x ∈ I. Thus x�s d for some d ∈ D. 2

Proposition 3.8 In a strongly continuous domain L, �s satisfies the interpolation property, i.e., for all
x, y ∈ L, x�s y implies that there exists a z ∈ L such that x�s z �s y.

Proof. Suppose x, y ∈ L such that x �s y, we now show that x �s z �s y for some z ∈ L. Let
D =

⋃
a∈⇓sy ⇓s a = {b ∈ L : there is an a ∈ L with b �s a �s y}. We claim that D is directed. For any

b1, b2 ∈ D, we have b1 �s a1 �s y for some a1 ∈ L and b2 �s a2 �s y for some a2 ∈ L. Since ⇓s y is
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directed, there exists a3 ∈ ⇓s y such that a1, a2 ≤ a3. Hence b1, b2 �s a3. Since ⇓s a3 is directed, there
exists b3 ∈⇓s a3 such that b1, b2 ≤ b3 �s a3 �s y. Thus b3 ∈D and b1, b2 ≤ b3. Therefore D is directed.
Since

∨
D =

∨
{
∨
⇓s a : a ∈⇓s y} =

∨
{a : a ∈⇓s y} =

∨
⇓s y = y,

⋂
d∈D ↑d ⊆↑y. It follows from x�s y

that ↑d ⊆↑x for some d ∈D. Thus there exists a ∈ L such that d�s a�s y. Therefore x�s a�s y. 2

Recall that hypercontinuous domains are continuous domains. Now we discuss the relationship be-
tween strongly continuous domains and hypercontinuous domains, and the relationship between strongly
continuous domains and continuous domains.

Lemma 3.9 ([2]) Let L be a dcpo. Then the following conditions are equivalent:

(1) L is hypercontinuous;

(2) L is continuous and �=≺;

(3) L is continuous and υ(L) = σ(L).

Theorem 3.10 Let L be a dcpo. Then the following conditions are equivalent:

(1) L is hypercontinuous;

(2) L is strongly continuous and �s=≺;

(3) L is strongly continuous and υ(L) = σs(L).

Proof. (1)⇒ (2): Let L be a hypercontinuous domain, thus �=≺ by Lemma 3.9. Since ≺⊆�s⊆�, we
have ≺=�s. For any x ∈ L, ⇑sx = {y ∈ L : x ≺ y} = intυ(L) ↑x ∈ υ(L) ⊆ σs(L).
(2) ⇒ (3): Obviously, υ(L) ⊆ σs(L). For each U ∈ σs(L), we show that U ∈ υ(L). For any x ∈ U ,

x =
∨↑ ⇓s x =

∨↑{y ∈ L : y ≺ x} ∈ U ∈ σs(L) ⊆ σ(L), hence there is a y ≺ x with y ∈ U . Since y ≺ x,
x ∈ intυ(L) ↑y. Then x ∈ intυ(L) ↑y ⊆↑y ⊆ U . Thus U ∈ υ(L). Therefore υ(L) = σs(L).
(3)⇒ (1): L is strongly continuous iff (L, σs(L)) is a C-space iff (L, υ(L)) is a C-space iff L is hypercon-
tinuous. 2

Example 3.11 Let L = {0} ∪ {a1, a2, · · · , an, · · ·} with the order generated by

(a) an > 0 for all n ∈ N;

(b) There is no order relationship between ai and aj for all i, j ∈ N (Fig. 1).

Then L is a strongly continuous domain, but not a hypercontinuous domain.

Fig. 1. The poset L.

Proof. Since the directed subset in L can only be a single point set or a binary set {0, an}(n ∈ N), L is
a dcpo. It is easy to show that L is not a hypercontinous domain. Now we prove that L is a strongly
continuous domain. Let x ∈ L, we now show that ⇓sx is directed. Obviously, 0�s 0, then ⇓s 0 = {0}. For
each n ∈ N, let directed set D ⊆ L and z ∈ L such that

⋂
d∈D ↑d∩ ↑z ⊆↑an = {an}. Then there are only

the following cases: (i) D = {0}, z = {an}; (ii) D = {an}, z ∈ L; (iii) D = {am}(m 6= n), z 6= {0} and
z 6= {am}; (iv) D = {0, an}, z ∈ L; (v) D = {0, am}(m 6= n), z 6= {0} and z 6= {am}. Clearly, there exists
d ∈ D such that ↑ d ∩ ↑ z ⊆ ↑ an = {an} in each case. Hence an �s an. therefore ⇓s an = {0, an}. Thus
⇓sx is directed and x =

∨
⇓sx for all x ∈ L. Now we prove that ⇑sx ∈ σs(L). Clearly, ⇑s 0 = L ∈ σs(L).
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For each n ∈ N, ⇑s an = {an} and ⇑s an ∈ σs(L) ⊆ σs(L) according to the above proof. Therefore L is a
strongly continuous domain. 2

According to the Theorem 3.10 and Example 3.11, a hypercontinuous domain is a strongly continuous
domain, but the converse is not true.

Theorem 3.12 Let L be a dcpo. Then the following conditions are equivalent:

(1) L is strongly continuous;

(2) L is continuous, �s=� and ⇑sx ∈ σs(L) for all x ∈ L;

(3) L is continuous and σs(L) = σ(L).

Proof. (1) ⇒ (2): Since L is strongly continuous and �s⊆�, L is continuous. If x � y =
∨↑{z ∈ L :

z �s y}, then there exists z ∈⇓s y such that x ≤ z, hence x�s y. Clearly, ⇑sx ∈ σs(L) for all x ∈ L.

(2) ⇒ (3): We only need prove that σ(L) ⊆ σs(L). Let U ∈ σ(L), for each x ∈ U , x =
∨↑ ⇓ x =

∨↑ ⇓s
x ∈ U ∈ σ(L), then there exists y ∈ ⇓s x such that y ∈ U . Thus x ∈ ⇑s y ⊆ ↑ y ⊆ U . Since ⇑s y ∈ σs(L),
U ∈ σs(L).
(3)⇒ (1): L is continuous iff (L, σ(L)) is a C-space iff (L, σs(L)) is a C-space iff L is strongly continuous.2

The following example shows that a continuous domain need not be a strongly continuous domain.

Example 3.13 ([8]) Let C = {a1, a2, · · · , an, · · ·} ∪ {ω0} and L = C ∪ {b} ∪ {ω1, ω2, · · · , ωn, · · ·} with the
order generated by

(a) a1 < a2 < · · · < an < an+1 < · · ·;
(b) an < ω0 for all n ∈ N;

(c) b < ωn and am < ωn for all n,m ∈ N with m ≤ n (Fig. 2).

Fig. 2. The poset L.

Then L is a dcpo and D is a directed set of L iff D ⊆ C or D has a largest element, and hence x� x
for all x ∈ L\{ω0}. Therefore L is a continuous domain. However, L is not a strongly continuous domain.
In fact, choose D = {an : n ∈ N}, then

⋂
d∈D ↑d∩↑b ⊆↑ω1 = {ω1}, but ↑an ∩ ↑b = {ωn, ωn+1, · · ·} * ↑ω1

for each n ∈ N. Hence ω1 /∈⇓sω1. Since ⇓sω1 ⊆↓ω1 = {ω1, a1, b}, ⇓sω1 ⊆ {a1, b}, we have ω1 6=
∨
⇓sω1.

According to the Theorem 3.12 and Example 3.13, a strongly continuous domain is a continuous domain,
but the converse is not true. Therefore strongly continuous domains lie strictly between hypercontinuous
domains and continuous domains.
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4 Topologies on strongly continuous domains

In this section, we study some properties of strongly continuous domains endowed with strong Scott
topology and strong Lawson topology.

Proposition 4.1 Let L be a dcpo. Then we have the following conditions.

(1) clσs(L){x} = ↓x for all x ∈ L;

(2) σs(L) is a T0-topology;

(3) If A = ↑A, then A =
⋂
{U ∈ σs(L) : A ⊆ U}.

Proposition 4.2 Let L be a dcpo. Consider the following two conditions:

(1) y ∈ intσs(L) ↑x;

(2) x�s y.

Then (1)⇒ (2); if L is strongly continuous, then (2)⇒ (1), and (1) and (2) are equivalent.

Proof. (1)⇒ (2): By the proof of Theorem 3.6.
(2) ⇒ (1): Let x �s y, then y ∈ ⇑s x ⊆ ↑x. Since L is strongly continuous, ⇑s x ∈ σs(L). Hence
y ∈⇑sx ⊆ intσs(L) ↑x. 2

Proposition 4.3 Let L be a strongly continuous domain. Then we have the following conditions.

(1) If U = ↑U , then U ∈ σs(L) iff there is a u ∈ U such that x ∈⇑su for all x ∈ U ;

(2) {⇑su : u ∈ L} form a basis for the strong Scott topology;

(3) intσs(L) ↑x = ⇑sx for all x ∈ L;

(4) For any subset X ⊆ L, intσs(L)X =
⋃
{⇑su :⇑su ⊆ X}.

Proof. (1) For each x ∈ U , since L is strongly continuous, ⇓sx is directed and x =
∨
⇓s x. And hence

x =
∨
⇓s x ∈ σs(L) ⊆ σ(L), thus ⇓s x ∩ U 6= ∅. Therefore there exists u ∈ U such that x ∈⇑s u. On the

other hand, it is trivial.
(2) It follows directly from (1).
(3) It follows from Proposition 4.2.
(4) On the one hand, obviously,

⋃
{⇑s u : ⇑s u ⊆ X} ⊆ X and

⋃
{⇑s u : ⇑s u ⊆ X} ∈ σs(L), then⋃

{⇑su : ⇑su ⊆ X} ⊆ intσs(L)X. On the other hand, for each y ∈ intσs(L)X, there exists u ∈ intσs(L)X
such that y ∈ ⇑s u ⊆ intσs(L)X. Thus ⇑s u = intσs(L) ↑ u ⊆ ↑ u ⊆ intσs(L)X ⊆ X. Therefore intσs(L)X ⊆⋃
{⇑su :⇑su ⊆ X}. 2

Now we recall the definitions of prime elements, sober spaces. An element p in a poset L is called prime
iff p = 1 or L\ ↓ p is a filter. An element is co-prime iff it is prime of Lop. The sets of all prime and
co-prime elements of L are denoted by PRIME(L) and COPRIME(L), respectively. A nonempty subset
A of a T0 space X is said to be irreducible if for any {B,C} ⊆ C(X), A ⊆ B ∪C implies A ⊆ B or A ⊆ C.
Obviously, cl{x} is a irreducible closed set for all x ∈ X. A space is called sober, if for any irreducible
closed set C, there is a unique point x ∈ X such that C = cl{x}.

Lemma 4.4 ([2]) Let X be a space and A a subset of X. Then the following conditions are equivalent:

(1) A is a irreducible closed set of X;

(2) A is a co-prime in lattice C(X);

(3) X \A is a prime in lattice O(X);

(4) For any U, V ∈ O(X), if U ∩A 6= ∅ and V ∩A 6= ∅, then U ∩ V ∩A 6= ∅.

Definition 4.5 Let L be a dcpo. The set of all strong Scott topology open filters of L is denoted by
SOFilt(L), i.e., U ∈ SOFilt(L) iff U ∈ σs(L) and U is a filter.
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Proposition 4.6 Let L be a dcpo and U ∈ σs(L).

(1) U is a co-prime in σs(L) iff U ∈ SOFilt(L);

(2) L\ ↓ a ∈ PRIME(σs(L)) for all a ∈ L; For each U ∈ PRIME(σs(L)), U 6= L, if L is strongly
continuous, then there exists a ∈ L such that U = L\ ↓a.

Proof. (1): On the one hand, suppose that U ∈ COPRIME(σs(L)), we only need to show that U is
a filter. For any x, y ∈ U , assume that U ∩ ↓ x ∩ ↓ y = ∅, then U ⊆ (L\ ↓ x) ∪ (L\ ↓ y). Since
U ∈ COPRIME(σs(L)), U ⊆ L\ ↓ x or U ⊆ L\ ↓ y, which is in contradiction with U is an upper set.
Therefore there is a z ∈ U such that z ≤ x and z ≤ y. On the other hand, suppose that U ∈ SOFilt(L), if
V,W ∈ σs(L) and U * V,U * W , we only need check U * V ∪W . Since U * V and U * W , then there
exists v ∈ U \V and w ∈ U \W . Note that U is a filter, hence there exists u ∈ U such that u ≤ v, w, then
u ∈ U \ (V ∪W ). Therefore U * V ∪W .
(2): By Proposition 4.1 and Lemma 4.4, L\ ↓a = L\clσs(L){a} ∈ PRIME(σs(L)) for all a ∈ L. Conversely,
for each U ∈ PRIME(σs(L)) and U 6= L, let A = L\U , then A is an irreducible closed set in (L, σs(L)). We
have to show that A has a largest element e; since A is a lower set, this will show that A = ↓e as desired.
Let A∗ =

⋃
{⇓s a : a ∈ A} =⇓sA ⊆↓A = A, we claim that A∗ is directed. For each b, c ∈ A∗, there exists

ab, ac ∈ A such that b �s ab and c �s ac, respectively. We first show that ⇑s b ∩ ⇑s c ∩ A 6= ∅, if not,
then ⇑s b∩ ⇑s c ⊆ U , but ⇑s b,⇑s c ∈ σs(L) and U ∈ PRIME(σs(L)), then ⇑s b ⊆ U or ⇑s c ⊆ U . But ⇑s b
contains an ab ∈ A = L \ U which is impossible, similarly ⇑s c ⊆ U is impossible. Pick a ∈⇑s b∩ ⇑s c ∩A,
since ⇑s b ∩ ⇑s c ∈ σs(L), there exists d ∈ ⇑s b ∩ ⇑s c such that a ∈ ⇑s d ⊆ ⇑s b ∩ ⇑s c. Thus d ∈ A∗ and
b, c ≤ d. Hence A∗ is directed and

∨
A∗ exists. Note that A∗ ⊆ A and A is a strong Scott topology closed

set, then A is also a Scott closed set. Let e =
∨
A∗, then e =

∨
A∗ ∈ A. Now we show that e is the largest

element in A. For any x ∈ A, since ⇓sx ⊆ A∗, x =
∨
⇓sx ≤

∨
A∗ = e. 2

Corollary 4.7 Let L be a strongly continuous domain. Then (L, σs(L)) is a sober space.

Proof. By Lemma 4.4 and Proposition 4.6. 2

Corollary 4.8 Let L be a strongly continuous domain. Then (L, σs(L)) is a locally compact sober space.
If L has a smallest element, then (L, σs(L)) is compact.

Proof. Suppose that x ∈ U ∈ σs(L), by Proposition 4.3, there exists y ∈ U such that x ∈⇑s y ⊆↑y ⊆ U .
Note that ↑y is compact with respect to any topology whose open sets are upper sets, thus the assertion
is proved. If L has a smallest element, let {Ui : i ∈ I} ⊆ σs(L) and L ⊆

⋃
i∈I Ui, then there exists i ∈ I

such that 0 ∈ Ui, hence L = ↑0 ⊆ Ui. Therefore (L, σs(L)) is compact. 2

Theorem 4.9 Let L be a dcpo. Then the following conditions are equivalent:

(1) L is strongly continuous;

(2) For each x ∈ L, ⇑sx ∈ σs(L) and if U ∈ σs(L), then U =
⋃
{⇑su : u ∈ U};

(3) SOFilt(L) is a basis of σs(L) and σs(L) is a continuous lattice;

(4) σs(L) has enough co-primes and is a continuous lattice;

(5) σs(L) is completely distributive;

(6) Both σs(L) and σs(L)op are continuous.

If L is a complete semilattice, then these conditions are equivalent to

(7) For each point x ∈ L, ⇑sx ∈ σs(L) and x = sup{infU : x ∈ U ∈ σs(L)}.

Proof. (1)⇔ (5): By Proposition 2.4 and Definition 3.1.
(1)⇒ (2): By Proposition 4.3 (1).
(2) ⇒ (1): Let x ∈ L. If u �s x, v �s x, then there exists w ∈⇑s u∩ ⇑s v such that x ∈⇑sw. Thus ⇓s x
is directed. Set y =

∨
⇓s x ≤ x, if y < x, then L\ ↓ y is a strong Scott topology open neighborhood of

x. Hence there exists z ∈ L\ ↓ y such that x ∈ ⇑s z, then z �s x, and thus z ≤
∨
⇓s x = y, which is a

contradiction.
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(3)⇔ (4): By Proposition 4.6 (1).
(4)⇔ (5)⇔ (6): By Theorem 2.6.
(3) ⇒ (7): Suppose that L is a complete semilattice, then for each U ∈ σs(L) and each x ∈ U , inf U
exists. Let y = sup{infU : x ∈ U ∈ σs(L)}. Then y ≤ x. Assume that x � y, then x ∈ L\ ↓ y ∈ σs(L).
Since σs(L) is a continuous lattice, there exists V ∈ σs(L) such that x ∈ V � L\ ↓ y. And by the
conditions, there exists U ∈ SOFilt(L) such that x ∈ U ⊆ V � L\ ↓ y. Note that inf U ≤ y, hence
L\ ↓ y ⊆ L\ ↓ infU = L \

⋂
{↓ u : u ∈ U} =

⋃
{L\ ↓ u : u ∈ U}. Since U is a filter, {L\ ↓ u : u ∈ U} form

a directed family of strong Scott topology open sets. Since U � L\ ↓ y, there is a u ∈ U with U ⊆ L\ ↓ u,
which is a contradiction. Thus x ≤ y. Since (2)⇔ (3), we have ⇑sx ∈ σs(L) for all x ∈ L.
(7)⇒ (1): We only need to show that for each U ∈ σs(L) and each x ∈ U , infU �s x. For any directed set
D ⊆ L and z ∈ L, if ↑

∨
D ∩ ↑z ⊆↑x, since x ∈ U ∈ σs(L), there exists V ∈ σs(L) such that x ∈ V ⊆ U ,

and hence ↑
∨
D∩ ↑z ⊆↑x ⊆ V . Thus there is a d ∈ D with ↑d∩ ↑z ⊆ V , then ↑d∩ ↑z ⊆ V ⊆ U ⊆↑ infU .

Therefore inf U �s x. 2

Corollary 4.10 If L is a complete semilattice, then L is hypercontinuous iff x = sup{inf U : x ∈ U ∈
υ(L)} for all x ∈ L.

Proof. By Theorem 3.10 and Theorem 4.9. 2

Now we introduce the notation of strong Lawson topology and discuss the properties of strongly
continuous domains endowed with the strong Lawson topology.

Definition 4.11 Let L be a dcpo. The common refinement σs(L) ∨ ω(L) of the strong Scott topology
and the lower topology is called the strong Lawson topology and is denoted by λs(L).

Lemma 4.12 ([2]) Let L be a complete semilattice. Then λ(L) is a compact T1 topology.

Theorem 4.13 Let L be a complete semilattice. Then λs(L) is a compact T1 topology.

Proof. By Lemma 4.12, (L, λs(L)) is compact. For each x ∈ L, {x} = ↓ x ∩ ↑ x. Since ↓ x is a strong
Scott topology closed set and ↑ x is a lower topology closed set, {x} is a strong Lawson topology closed
set. Thus (L, λs(L)) is a T1 space. 2

Theorem 4.14 Let L be a strongly continuous domain. Then (L, λs(L)) is a T2 space.

Proof. Let x, y ∈ L, and x 6= y, assume that x � y, then there exists u �s x, such that u � y. Thus
x ∈⇑su ∈ σs(L), y ∈ L\ ↑u ∈ ω(L), and ⇑su ∩ (L\ ↑u) = ∅. Therefore (L, λs(L)) is a T2 space. 2

Corollary 4.15 Let L is a strongly continuous complete semilattice. Then λs(L) is compact and Haus-
dorff.

Proof. By Theorem 4.13 and Theorem 4.14. 2

Recall that the definition of Scott-continuous functions. For a function f from a dcpo P into a dcpo
Q, if f is continuous with respect to the Scott topologies, that is, f−1(U) ∈ σ(P ) for all U ∈ σ(Q), then
f is called a Scott-continuous function.

A function f is called strongly Scott-continuous if it is continuous with respect to the strong Scott
topologies. Next we discuss the properties of strongly Scott-continuous functions.

Proposition 4.16 Let P , Q be dcpos and f : P → Q. Consider the following conditions:

(1) f : (P, σs(P ))→ (Q, σs(Q)) is continuous;

(2) f−1(U) ∈ σs(P ) for all U ∈ σs(Q);

(3) f−1(U) ∈ σs(P ) for all U ∈ σs(Q);

(4) For each directed set D ⊆ P and x ∈ P , ↑f(
⋂
d∈D ↑d∩ ↑x) =

⋂
d∈D ↑f(d)∩ ↑f(x).

Then (4) ⇒ (3) ⇒ (2) ⇔ (1); if both P and Q are sup semilattices and f preserves finite sups, then
(1)⇒ (4), and the four conditions are equivalent.
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Proof. (1)⇔ (2): Trivial.
(4) ⇒ (3): First we show that f is order preserving. Suppose that x ≤ y. Let D = {y}. Then
↑ f(↑ y ∩ ↑ x) = ↑ f(y) ∩ ↑ f(x). Hence ↑ f(↑ y ∩ ↑ x) = ↑ f(↑ y), then f(y) ∈ ↑ f(y) ∩ ↑ f(x) ⊆ ↑ f(x).
Thus f(x) ≤ f(y). For each U ∈ σs(Q), since f is order preserving, f−1(U) = ↑ f−1(U). Suppose
directed set D ⊆ P and x ∈ P such that

⋂
d∈D ↑ d ∩ ↑ x ⊆ f−1(U), then f(

⋂
d∈D ↑ d ∩ ↑ x) ⊆ U ,

hence
⋂
d∈D ↑ f(d) ∩ ↑ f(x) = ↑ f(

⋂
d∈D ↑ d ∩ ↑ x) ⊆ U . Since U ∈ σs(Q), there is a d ∈ D with

↑f(d)∩ ↑f(x) ⊆ U . Thus ↑d∩ ↑x ⊆ f−1(U). Therefore f−1(U) ∈ σs(P ).
(3)⇒ (1): For each U ∈ σs(Q), there exists {Ui : i ∈ I} ⊆ σs(Q) such that U =

⋃
i∈I Ui by the definition

of σs(Q). Then f−1(U) = f−1(
⋃
i∈I Ui) =

⋃
i∈I f

−1(Ui). By precondition (2), f−1(Ui) ∈ σs(P ) for all

i ∈ I. Thus f−1(U) ∈ σs(P ).
(1) ⇒ (4): Suppose that both P and Q are sup semilattices and f preserves finite sups, then σs(P ) =
σ(P ), σs(Q) = σ(Q). For each directed set D ⊆ P and x ∈ P , we have

⋂
d∈D ↑d∩ ↑x =

⋂
d∈D ↑(d∨ x) =↑∨

d∈D(d∨x), thus ↑f(
⋂
d∈D ↑d∩ ↑x) =↑f(

∨
d∈D(d∨x)) =↑

∨
d∈D f(d∨x) =↑

∨
d∈D f(d)∨f(x) =

⋂
d∈D ↑

(f(d) ∨ f(x)) =
⋂
d∈D ↑f(d)∩ ↑f(x). 2

Proposition 4.17 Let P be a strongly continuous domain. Both f : (P, σs(P )) → (Q, σs(Q)) and g :
(Q, σs(Q)) → (P, σs(P )) are continuous functions, and f ◦ g = 1Q. Then Q is a strongly continuous
domain.

Proof. Let U ∈ σs(Q) and y ∈ U . Then g(y) ∈ f−1(U). Since f is continuous, f−1(U) ∈ σs(P ). Since
P is a strongly continuous domain, there exists u ∈ P such that g(y) ∈ intσs(P ) ↑ u ⊆ ↑ u ⊆ f−1(U),

thus y ∈ g−1(intσs(P ) ↑ u) ⊆ ↑ f(u) ⊆ U . Since g is continuous, g−1(intσs(P ) ↑ u) ∈ σs(Q). Hence
y ∈ intσs(Q) ↑f(u) ⊆ ↑f(u) ⊆ U . Therefore Q is a strongly continuous domain. 2
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