
Electronic Notes in Volume 3

Theoretical Informatics ENTICS Proceedings of

And Computer Science https://entics.episciences.org MFPS 2023

A Model of Stochastic Memoization and Name Generation in

Probabilistic Programming:

Categorical Semantics via Monads on Presheaf Categories

Younesse Kaddar and Sam Staton

Department of Computer Science, University of Oxford, UK

Abstract

Stochastic memoization is a higher-order construct of probabilistic programming languages that is key in Bayesian nonpara-
metrics, a modular approach that allows us to extend models beyond their parametric limitations and compose them in an
elegant and principled manner. Stochastic memoization is simple and useful in practice, but semantically elusive, particularly
regarding dataflow transformations. As the naive implementation resorts to the state monad, which is not commutative, it
is not clear if stochastic memoization preserves the dataflow property – i.e. whether we can reorder the lines of a program
without changing its semantics, provided the dataflow graph is preserved. In this paper, we give an operational and categorical
semantics to stochastic memoization and name generation in the context of a minimal probabilistic programming language,
for a restricted class of functions. Our contribution is a first model of stochastic memoization of constant Bernoulli functions
with a non-enumerable type, which validates data flow transformations, bridging the gap between traditional probability
theory and higher-order probability models. Our model uses a presheaf category and novel probability monad on it.

Keywords: probabilistic programming, quasi-Borel spaces, synthetic measure theory, stochastic memoization, name
generation, categorical semantics, commutative monads, nominal sets.

1 Introduction

Bayesian nonparametric models are a powerful approach to statistical learning. Unlike parametric models,
which have a fixed number of parameters, nonparametric models can have an unbounded number of pa-
rameters that grows as needed to fit complex data. This flexibility allows them to capture subtle patterns
in data that parametric models may miss, and it makes them more composable, because they are not
arbitrarily truncated.

Prominent examples of nonparametric models include Dirichlet process models for clustering similar
data points, and the Infinite Relational Model for automatically discovering latent groups and features,
amongst others. These infinite-dimensional models can accommodate an unbounded number of compo-
nents, clusters, or other features in order to fit observed data as accurately as possible.

Probabilistic programming is a powerful method for programming nonparametric models. Stochastic
memoization [47, 57] has been identified as a particularly useful technique in this. This paper is about
semantic foundations for stochastic memoization.

In deterministic memoization [38], the idea is to compute a function the first time it is called with a
particular argument, and store the result in a memo-table. When the function is called again with the
same argument, the memo-table is used, resulting in performance improvement but no semantic difference.

Published November 15, 2023 Proceedings Available Online at © Y. Kaddar, S. Staton

10.46298/entics.12291 https://doi.org/10.46298/entics.proceedings.mfps39 cba Creative Commons

https://entics.episciences.org
https://doi.org/10.46298/entics.12291
https://doi.org/10.46298/entics.proceedings.mfps39
https://creativecommons.org/licenses/by/4.0/

10–2 Stochastic memoization and name generation

Stochastic memoization is this memoization applied to functions that involve random choices, and so a
memoized function is semantically different from a non-memoized one, because the random choices will
only be made once for each argument.

We illustrate this with a simple example; this is informal and we consider a precise language and
semantics in Section 3. Consider a function f that returns a random number [0, 1] for each argument. It
might be written f(x) = uniform. One run of the program might call f with various arguments, and example
runs are as follows:

Calls to f in a particular run of a program : f(0) f(1) f(0) f(2) f(1) f(3) . . .

Results of calls in a run without memoization: 0.43 0.01 0.72 0.26 0.48 0.16 . . .

Results of calls in a run with memoization: 0.43 0.01 0.43 0.26 0.01 0.16 . . .

Thus in the memoized version, when the function is called again with the same value, the previous result is
recalled, and the random choices are not made again. (Note that although this is called ‘stochastic mem-
oization’, the terminology is perhaps confusing: the memoization always happens, and it is not ‘randomly
deciding whether or not to memoize’.)

From a semantic perspective, the role of stochastic memoization is clear when we use a monad-based
interpretation with a probability monad Prob. This might be thought of as the Giry monad [15] or a
probabilistic powerdomain [20, 25], or a Haskell monad (e.g. [10]).

A distribution on a type b with parameters from a has type a → Prob(b). On the other hand, a ran-
dom function is a probability distribution on the type of deterministic functions, having type Prob(a → b).
Whereas parameterized distributions are a key idea in parametric statistics, random functions are a key
idea in nonparametric statistics. And stochastic memoization is a higher-order function with probabilistic
effects, of type

mem :: (a → Prob b) → Prob (a → b)

that converts parameterized distributions into random functions, by making the random choice once for
each argument. This mem combinator plays a crucial role in Church [17] and WebPPL [19], and appears
with this type in our Haskell library LazyPPL [52]. Stochastic memoization also plays a role in Blog [39],
Hansei [29], and many other languages (e.g. [5,11]). It is not difficult to implement stochastic memoization,
by using a memo-table. Nonetheless, its semantic properties remain elusive and developers have noted bugs
and complications (e.g. [16,30]). Moreover, the existing semantic models of probability (such as [20,21,25])
only support mem for very restricted domain types a (see §1). In particular our own Haskell library [52]
supports stochastic memoization but the recent semantic analysis [10] only explains it at certain domain
types. The point of this paper is to extend this semantic analysis of stochastic memoization to a broader
class of domains.

First example: White noise in a non-parametric clustering model.
One common first example of stochastic memoization is as follows. Suppose we have a finite set of

individuals, and we want to group them into an unknown number of clusters, and then assign attributes
to the clusters. For example, we may want to form clusters and consider attributes on the clusters such as
‘Brexit-supporters’, ‘mean geographic latitude/longitude’, ‘geographic variance’, ‘mean salary’, and so on.
A popular route is the ‘Dirichlet process with memoization’, as follows, for which a generative model has
the following pseudocode (see e.g. [18, 19, 47] [14]):

(i) We randomly decide which proportion of individuals are in each cluster. We assign a unique identifier
to each cluster, from some space A of identifiers. One might use the Dirichlet process with a diffuse
base measure on A, for example the normal distribution on the real numbers.

(ii) Assign attributes to the cluster identifiers. For example, depending on whether that cluster supports
Brexit, assign either true or false to the identifier. This particular assignment is a sample from a
random function in (A → 2). This distribution might come from memoizing a constant Bernoulli
distribution, assigning ‘true’ to any cluster identifier with probability 0.5.

Kaddar and Staton 10–3

(iii) Steps (i)-(ii) are generative, and we could run them to get some synthetic data. The idea of Bayesian
clustering is to start with steps (i)–(ii) as a reasonable prior distribution, in generative form, and to
combine this with actual data to arrive at a posterior distribution. In this example the actual data
might come from a telephone survey, and we use conditional probability (aka Bayesian inversion) to
arrive at a posterior distribution on the cluster proportions and their attributes. We can then use this
to make predictions. The constant Bernoulli memoization is a reasonable prior for Brexit support,
but the posterior will typically be much more complicated, with various correlations, etc.

In this paper, we focus on step (ii), stochastic memoization: steps (i) and (iii) are studied extensively
elsewhere (e.g. see [14] in the statistics literature, or [2, 9, 51] in the semantics literature, and references
therein).

This simple example of a memoized constant Bernoulli function is easy to implement using a memo-
table, but already semantically complicated. If we put A = R, the real numbers, for the base measure,
as is common in statistical modelling, then the memoized constant Bernoulli distribution on (A → 2) is
1-dimensional white noise: intuitively, for every x ∈ R we toss a coin to pick true or false, making an
uncountable number of independent random choices. (As an aside, we note that we could combine steps (i)
and (ii), using a complicated base measure for the Dirichlet process that includes all the attributes. This
model would not be compositional, and in any case, some kind of memoization would still be needed to
implement the Dirichlet process.)

Challenge.
In this paper, we address the challenge of showing that the following items are consistent:

(1) a type A with a diffuse probability distribution (Def 2.2);

(2) a type bool of Booleans with Bernoulli probability distributions (i.e. tossing coins, including biased
coins);

(3) a type of functions [A→ bool], with function application (4);

(4) stochastic memoization of the constant Bernoulli functions (3);

(5) the language supports the dataflow property (Def. 2.3).

These items are together inconsistent with traditional measure theory, as we discuss in Section 2.3, where
we also make the criteria precise. Nonetheless (1)-(4) are together easy to implement in a probabilistic
programming language, and useful for Bayesian modelling. Item (5) is a very useful property for program
reasoning and program optimization. Item (5) is also a fundamental conceptual aspect of axiomatic prob-
ability theory, since in the measure-theoretic setting it amounts to Fubini’s theorem [32] and the fact that
probability measures have mass 1, and in the categorical abstraction of Markov categories [13] it amounts
to the interchange law of affine monoidal categories.

There are measure-theoretic models where some of these items are relaxed (§2.1–2.3). For example, if
we drop the requirement of a diffuse distribution, then there are models using Kolmogorov extension (§2.2).

A grand challenge is to further generalize these items, for example to allow memoization of functions
A→ B for yet more general A and B, and to allow memoization of all definable expressions. Since the above
five items already represent a significant challenge, and our semantic model is already quite complicated,
we chose to focus on a ‘minimal working example’ for this paper.

To keep things simple and minimal, in this paper we side-step measure-theoretic issues by noticing
that the equations satisfied by a diffuse probability distribution are exactly the equations satisfied by
name generation (e.g. [50, §VB]). Because of this, we can use categorical models for name generation
(following e.g. [41, §4.1.4], [49, §3.5]) instead of traditional measure theory. Name generation can certainly
be implemented using randomness, and there are no clashes of fresh names if and only if the names come
from a diffuse distribution (see also e.g. [48]). On the other hand, if we keep things simple by regarding the
generated names as pure names [40], we avoid any other aspects of measure theory, such as complicated
manipulations of the real numbers.

10–4 Stochastic memoization and name generation

Contributions.
To address the challenge of the consistency of items (1)–(5) above, our main contributions are then as

follows.

(i) We first provide an operational semantics for a minimal toy probabilistic programming language that
supports stochastic memoization and name generation (§4).

(ii) We then (§5) construct a cartesian closed (for function spaces) categorical model of this language
endowed with an affine commutative monad (Theorem 5.5). In common with other work on local
state (e.g. [28, 44]), we use a functor category semantics, indexing sets by possible worlds. In this
paper, those worlds are finite fragments of a memo-table.

(iii) We prove that our denotational semantics is sound with respect to the operational semantics, ensuring
the correctness of our approach and validating that lines can be reordered in the operational semantics
(Theorem 5.10). The class of functions that can be memoized includes constant Bernoulli functions.
We call these functions freshness-invariant (Definition 5.7).

The soundness theorem (5.10) is not trivial because the timing of the random choices differs between
the operational and denotational semantics. In the operational semantics, the memo-table is partial,
and populated lazily as needed, when functions are called with arguments. This is what happens
in all implementations. However, this timing is intensional, and so by contrast, in the denotational
semantics, the memo-table is always totally populated as soon as the current world is extended with
any functions or arguments.

(iv) Finally, we present a practical Haskell implementation [26] which compares the small-step, big-step
operational, and denotational semantics, demonstrating the applicability of our results (§6).

2 Stochastic memoization by example

This section discusses the law of stochastic memoization and provides examples in finite, countable, and
non-enumerable domain settings. We then address the challenges posed by the naive use of the state
monad, and we clarify our objective: finding a model of probability that supports stochastic memoization
over non-enumerable domains, satisfying the dataflow property, and that has function spaces.

In what follows, we use two calculi: (a) The internal metalanguage of a cartesian closed category with
a strong monad Prob, for which we use Haskell notation, but which is roughly Moggi’s monadic metalan-
guage [42, §2.2]. (b) An ML-like programming language which is more useful for practical programming, but
which would translate into language (a); this is roughly Moggi’s ‘simple programming language’ [42, §2.3].
We assume passing familiarity with probability and monadic programming in this section, but the informal
discussion here sets the context, and we move to more formal arguments in Section 3.

(Recall some Haskell notation: we write \x → t for lambda abstraction; ≫= for monadic bind, i.e. Kleisli
composition; return for the unit; a do block allows a sequence of monadic bound instructions. We write
const x for the constant x function, const x = \y → x.)

Memoization law.

Definition 2.1 A strong monad supports stochastic memoization of type a→ b if it is equipped with a mor-
phism mem :: (a → Prob b) → Prob (a → b) that satisfies the following equation in the metalanguage, for every
x0 :: a and f :: a → Prob b:

mem f = f x0≫= (\y0→ mem f ≫= (\fMem → return (\x → if x == x0 then y0 else fMem x))) (1)

As noted at the beginning of this section, we will pass between an internal metalanguage for strong
monads, and an ML-like programming language that would be interpreted using strong monads. In Sec-
tion 3 we introduce this programming language precisely, but for now we note that it has a special syntax
λמx. u, meaning mem (\x → u), since this is a common idiom 1 . The law of Definition 2.1 requires equations

1 borrowing Melliès’ use of the Hebrew letter מ (“mem”) [37]

Kaddar and Staton 10–5

such as:

let val f ← λמx. u

in f@n
1 sample

= u[n/x]

let val f ← λמx. u in

let val v1 ← f@n in

let val v2 ← f@n in

return(v1, v2)

several samples
=

let val v ← u[n/x] in

return(v, v)
(2)

The examples in the introduction use memoization of a constant Bernoulli function, i.e.

mem (\x → bernoulli p) = mem (const (bernoulli p)) :: Prob(a → Bool) (3)

i.e. λמ x. bernoulli p, where bernoulli p :: Prob Bool is a Bernoulli probability distribution (biased coin toss)
with bias p. An intuition is that this is a binary white noise; every point in a has an independently chosen
random Boolean value.

Notice that for the laws we have also needed function application

@ :: ((a → b) , a) → b (4)

In summary, memoized constant Bernoulli functions (3), and function application (4), are a bare minimum
to discuss semantic issues around stochastic memoization.

We now consider interpretations where the domain a is finite (§2.1), countable (§2.2), and uncountable
(§2.3).

2.1 Memoization with finite domain

For finite domains a, memoization is straightforward. It involves simply sampling a value of f(x) for all
inhabitants of x ∈ X and returning the assignment as a finite mapping. For example, when a = bool, we
can implement memoization in Haskell as follows:

mem f = do { fT ← f True ; fF ← f False ; return (\b → if b then fT else fF)}

Semantic interpretation with finite domain.
Memoization with finite domains is supported by a denotational semantics using any strong monad.

For example, the category of sets and the monad of finitely supported probability distributions (e.g. [23]).
For a = bool, this is nothing but the double-strength:

(bool → Prob b) ∼= (Prob b,Prob b)
double-strength
−−−−−−−−−→ Prob (b,b).

For other finite a, it is defined using the double-strength by induction.

2.2 Memoization with countable/enumerable domain

When a is enumerable, such as a=Int, memoization is useful for defining point processes. Memoization can
be regarded as providing an infinite stream of random choices, since the streams over b are isomorphic with
the functions a → b.

Infinite streams of random choices are crucial examples of statistical processes [14]. For an example of
an application, recall the one-dimensional Poisson point process. This is a random sequence of real numbers
in which the gaps between consecutive numbers are exponentially distributed. Assuming an exponential
distribution with a given rate, exponential rate :: Prob RealNum, we can sample a sequence of these exponential
gaps from mem (const (exponential rate)) :: Prob (Int → RealNum). To get the corresponding list of points of the
Poisson point process (with exponential interoccurence times), we simply keep a cumulative sum total of
the points, starting from the lower point:

10–6 Stochastic memoization and name generation

poissonPP :: Double → Double → Prob [Double]
poissonPP lower rate = do { gaps ← mem (const (exponential rate)) ; return (scanl1 (+) lower (map gaps [1 ..])) }

We implement memoization with enumerable a in the Haskell LazyPPL library [10] without using state,
instead using Haskell’s laziness and tries, following [22] (see [10]). We use the Poisson process extensively
in the demonstrations for LazyPPL [52].

Semantic interpretation with enumerable domains.
Memoization with enumerable domains is supported by a denotational semantics using the category of

measurable spaces and the Giry monad [15]. Although the category is not Cartesian closed, the function
space BN does exist for all standard Borel B, and is given by the countable product of B with itself,
∏

N
B. Memoization amounts to using Kolmogorov’s extension theorem to define a map (GB)N → G(BN)

(see [45, §4.8] and [9, Thm. 2.5]).

2.3 Memoization with non-enumerable/diffuse domain

We now move beyond enumerable domains, to formalize the challenge from Section 1. In Section 1 we
illustrated this with a clustering model. See [52] for the full implementation in our Haskell library, LazyPPL,
along with other models that also use memoization, including a feature extraction model that uses the
Indian Buffet Process, and relational inference with the infinite relational model (following [18]).

Rather than axiomatizing uncountability, we consider diffuse distributions.

Definition 2.2 [Diffuse distribution] Let a be an object with an equality predicate ((a,a)→ bool). A diffuse
distribution 2 is a term p such that

do {x ← p ; y ← p ; return (x == y)} is semantically equal to return (false).

For example, in a probabilistic programming language over the real numbers, we can let a be the type
of real numbers and let p be a uniform distribution on [0, 1], or a normal distribution, or an exponential
distribution. These are all diffuse in the above sense. The Bernoulli distribution on the booleans is not
diffuse, because there is always a chance that we may get the same result twice in succession.

For the reader familiar with traditional measure theory, we recall that if p is diffuse then a is necessarily
an uncountable space. For any probability distribution on a countable discrete space must give non-zero
measure to at least one singleton set.

The implementation trick using tries from Section 2.2 will not work for diffuse measures, because we
cannot enumerate the domain of a diffuse distribution. It is still possible to implement memoization using
state and a memo-table (e.g. [52]). Unlike a fully stateful effect, however, in this paper we argue that
stochastic memoization is still compatible with commutativity/dataflow program transformations:

Definition 2.3 [Dataflow property] A programming language is said to have the dataflow property if program
lines can be reordered (commutativity) and discarded (discardability, or affineness) provided that the
dataflow is preserved. In other words, the language satisfies the following commutativity and discardability
equations:

do {x1 ← t1 ; x2 ← t2 ; u} = do {x2 ← t2 ; x1 ← t1 ; u} (5)

do {x1 ← t1 ; t2} = t2 where x1 /∈ fv(t2) and x2 /∈ fv(t1). (6)

The dataflow property expresses the fact that, to give a meaning to programs, the only thing that
matters is the topology of dataflow diagrams. These transformations are very useful for inference algorithms
and program optimization. But above all, on the foundational side, dataflow is a fundamental concept

2 Diffuse measures are often called ‘atomless’ in probability theory. We will also want to regard names in name
generation as atomic, so we avoid this clash of terminology.

Kaddar and Staton 10–7

that corresponds to monoidal categories and is crucial to have a model of probability. As for monoidal
categories, a strong monad is commutative (5) if and only if its Kleisli category is monoidal (commutativity
is the monoidal interchange law), and affine (6) if the monoidal unit is terminal. In synthetic probability
theory, dataflow is regarded by various authors as a fundamental aspect of the abstract axiomatization
of probability: Kock [31] argues that any monad that is strong commutative and affine can be abstractly
viewed as a probability monad, and affine monoidal categories are used as a basic setting for synthetic
probability by several authors [7, 13, 55, 56]. The reader familiar with measure-theoretic probability will
recall that the proof that the Giry monad satisfies (5) amounts to Fubini’s theorem for reordering integrals
(e.g. [51]).

Semantic interpretations for diffuse domains
The point of this paper is to provide the first semantic interpretation for memoization of the constant

Bernoulli functions (3) with diffuse domain (Def. 2.2). We emphasize that although other models can
support some aspects of this, there is no prior work that supports everything.

• With countable domain, there is a model in measurable spaces, as discussed in Section 2.2. But there
can be no diffuse distribution on a countable space.

• In measurable spaces, we can form the uncountable product space
∏

R
2 of R-many copies of 2. We can

then define a white noise probability measure on
∏

R
2 via Kolmogorov extension (e.g. [45, 4.9(31)]).

Moreover, there are diffuse distributions on R, such as the uniform distribution on [0, 1]. However,
it is known that there is no measurable evaluation map R × (

∏

R
2) → 2 (see [1]), and so we cannot

interpret function application (4).

• In quasi-Borel spaces [21], there is a quasi-Borel space [R→ 2] of measurable functions, and a measur-
able evaluation map R × ([R → 2) → 2, but there is no white noise probability measure on [R → 2].
The intuitive reason is that, in quasi-Borel spaces, a probability measure on [R → 2] is given by a
random element, i.e. a morphism Ω → [R → 2], which curries to a measurable function Ω × R → 2.
But there is no such measurable function representing white noise (e.g. [27, Ex 1.2.5]).

• There are domain-theoretic treatments of probability theory that support Kolmogorov extension,
uniform distributions on R, and function spaces [20, 25]. However, these treatments regard the real
numbers R as constructive, and hence there are no non-trivial continuous morphisms R → 2, and
there is no equality test on R, so that we cannot regard R with a diffuse distribution as formalized
equationally in Definition 2.2. The same concern seems to apply to recent approaches using metric
monads [36].

• The semantic model of beta-bernoulli in [53] is a combinatorial model that includes aspects of the beta
distribution, which is diffuse in measure theory. That model does not support stochastic memoization,
but as a presheaf-based model it is a starting point for the model in this paper.

• There is a straightforward implementation of stochastic memoization that uses local state, as long
as the domain supports equality testing [52]. The informal idea is to make the random choices as
they are needed, and remember them in a memo-table, and keep this memo-table in a local state
associated with the function. Therefore one could use a semantic treatment of local state to analyze
memoization. For example, one could build a state monad in quasi-Borel spaces. However, state
effects in general do not support the dataflow property (Def. 2.3), since we cannot reorder memory
assignments in general. Ideally, one could use a program logic to prove that this particular use of state
does support the dataflow property. Although there are powerful program logics for local state and
probability (e.g. [3]), we have not been able to use them to prove this.

There are other models of higher-order probability (e.g. [6, 8, 12]). These do not necessarily fit into the
monad-based paradigm, but there may be other ways to use them to address the core challenge in Section 1.

3 A language for stochastic memoization and name generation

Our probabilistic programming language has a minimal syntax, emphasizing the following key features:

10–8 Stochastic memoization and name generation

• name generation: we can generate fresh names (referred to as atomic names or atoms, in the sense of
Pitts’ nominal set theory [43]) with constructs such as let x = fresh() in · · · . In the terminology of
Def. 2.2, this is like a generic diffuse probability measure, since fresh names are distinct.

• basic probabilistic effects: for illustrative purposes, the only distribution we consider, as a first step,
is the Bernoulli distribution (but it can easily be extended to other discrete distributions). Constructs
like let b = flip(θ) in · · · amount to flipping a coin with bias θ and storing its result in a variable b.

• stochastic memoization: if a probabilistic function f – defined with the new λמ operator – is called
twice on the same argument, it should return the same result (eq. (2)).

We have the following base types: bool (booleans), A (atomic names), and F (which can be thought
of as the type of memoized functions A → bool). For the sake of simplicity, we do not have arbitrary
function types. In fine-grained call-by-value fashion [33], there are two kinds of judgments: typed values,
and typed computations. The grammar and typing rules of our language are given in Figure 1. The typing
rules are standard, except for the λמ operator, which is the key novelty of our language. The typing rule
for λמ is given in Figure 1 and is explained in the next section. (Also, equality v = w and memoized
function application v@w are pure computations, i.e. in the categorical semantics (section 5.3), they will
be composed by the unit of the monad.)

Table 1: Grammar and typing rules of the language

Types

A,B ::= bool | A | F | A×B

Expressions

Values:
v,w ::= true | false | x | (v,w)

Computations:
u, t ::= return(v) | let val x ← u in t | if v then u else t | match v as (x, y) in t

| flip(θ) | fresh() | v = w | λמx. u | v@w

Typing judgements

Typed values:
−

Γ ⊢v true : bool

−

Γ ⊢v false : bool

−

Γ, x : A,Γ′ ⊢v x : A

Γ ⊢v v : A Γ ⊢v w : B

Γ ⊢v (v,w) : A×B

Typed computations:

Γ ⊢v v : A

Γ ⊢c return(v) : A

Γ ⊢c u : A Γ, x : A ⊢c t : B

Γ ⊢c let val x ← u in t : B

Γ ⊢v v : bool Γ ⊢c u : A Γ ⊢c t : A

Γ ⊢c if v then u else t : A

Γ ⊢v v : A×B Γ, x : A, y : B ⊢c t : C

Γ ⊢c match v as (x, y) in t : C

−

Γ ⊢c flip(θ) : bool

−

Γ ⊢c fresh() : A

Γ ⊢v v : A Γ ⊢v w : A

Γ ⊢c (v = w) : bool

Γ, x : A ⊢c u : bool

Γ ⊢c λמx. u : F

Γ ⊢v v : F Γ ⊢v w : A

Γ ⊢c (v@w) : bool

Kaddar and Staton 10–9

4 Operational Semantics

We now present a small-step operational semantics for our language. The operational semantics defines the
rules for reducing program expressions, which form the basis for understanding the behavior of programs
written in the language. Henceforth, we fix a countable set of variables x, y, z, . . . ∈ Var, and consider the
terms up to α-equivalence for the λמ operator. Since we focus on functions with boolean codomain, our
partial memo-tables are represented as partial bigraphs (bipartite graphs).

Definition 4.1 [Partial bigraph] A partial bigraph g
def
= (gL, gR, E) is a finite bipartite graph where the edge

relation E : gL × gR → {true, false,⊥} is either true, false or undefined (⊥) on each pair of left and right
nodes (¤, a) ∈ gL × gR. In the following, left nodes will be thought of as function labels and right nodes
as atom labels. By abuse of notation, syntactic truth values will be conflated with semantic ones. For a

partial graph g, E(¤, a) = β ∈ {true, false,⊥} will be written ¤

β
−→ a when g is clear from the context.

4.1 Extended expressions

We introduce extended expressions e, by extending the grammar of computations (1) with an extra con-

struct {{u}}¤,aγ , where u is a computation,(¤, a) is a pair of function and atom labels to memoize, and γ is the
environment to restore after the result of ¤ at a has been computed and stored. Intuitively, the decoration
{{−}}¤,aγ is thought of as a memoization context, indicating expressions where memoization should happen:

{{u}}¤,aγ is a computation that memoizes the result of u, and then restores the environment to the state it

was in before the computation u was evaluated. In the following, ∆ ∈
⋃

n≥0(gL × gR)
n is a finite stack of

function–atom label pairs, indicating that we are in the process of computing the result of these functions
at these atoms for the first time. Each newly introduced function–atom label pair is assumed not to already
belong to the memoization stack.

Table 2: Extended expression typing rules.

Extended expression typing judgements. Here, (¤, a) /∈ ∆ ∪∆1 ∪∆2.

Γ ⊢c u : A

Γ | ∅ ⊢c u : A

Γ | ∆ ⊢c u : A

Γ | (¤, a),∆ ⊢c {{u}}¤,aγ : A

Γ | ∆1 ⊢
c u : A Γ, x : A | ∆2 ⊢

c t : B

Γ | ∆1,∆2 ⊢
c let val x ← u in t : B

Γ | ∆1 ⊢
c u : A Γ, x : A | ∆2 ⊢

c t : B

Γ | (¤, a),∆1,∆2 ⊢
c let val x ← {{u}}¤,aγ in t : B

Γ | ∆1 ⊢
c u : A Γ, x : A | ∆2 ⊢

c t : B

Γ | (¤, a),∆1,∆2 ⊢
c let val x ← u in {{t}}¤,aγ : B

Γ ⊢v v : bool Γ | ∆1 ⊢
c u : A Γ | ∆2 ⊢

c t : A

Γ | ∆1,∆2 ⊢
c if v thenu else t : A

Γ ⊢v v : bool Γ | ∆1 ⊢
c u : A Γ | ∆2 ⊢

c t : A

Γ | (¤, a),∆1,∆2 ⊢
c if v then {{u}}¤,aγ else t : A

Γ ⊢v v : bool Γ | ∆1 ⊢
c u : A Γ | ∆2 ⊢

c t : A

Γ | (¤, a),∆1,∆2 ⊢
c if v thenu else {{t}}¤,aγ : A

Γ ⊢v v : A×B Γ, x : A, y : B | ∆ ⊢c t : C

Γ | ∆ ⊢c match v as (x, y) in t : C

Γ ⊢v v : A×B Γ, x : A, y : B | ∆ ⊢c t : C

Γ | (¤, a),∆ ⊢c match v as (x, y) in {{t}}¤,aγ : C

4.2 Configurations

We now define the set-theoretic interpretation of contexts. Context values are built by combining booleans,
atomic names and functions using pairing. Thus a context value is a tree, where the branches are understood

10–10 Stochastic memoization and name generation

as pairing.

Definition 4.2 If S is a finite set, Tree(S) ∼=
⊎

n≥0 Cn S
n+1 (where Cn is the n-th Catalan number, and

Cn S
n+1 is a coproduct of n copies of Sn+1, one for each possible bracketing) denotes the set of all possible

non-empty trees with internal nodes the cartesian product and leaf nodes taken in S.

Example 4.3 If S
def
= {s1, s2}, then s1 ∈ Tree(S), (s2, s1) ∈ Tree(S), (s1, (s1, s2)) ∈ Tree(S), . . .

Definition 4.4 [Set-theoretic denotation of contexts.] Let g be a partial bigraph. The set-theoretic deno-

tation L−M of a context Γ is defined as LboolM
def
= 2 ∼= {true, false}, LFM

def
= gL, LAM

def
= gR and L−M is readily

extended to every context Γ. Moreover, in the following, γ ∈ LΓM ⊆ Tree(2 + gL+ gR)
Var denotes a context

value.

Example 4.5 If Γ
def
= (x : bool, y : F, z : ((F × 2) × A)), then LΓM

def
= {x 7→ 2, y 7→ gL, z 7→ ((gL × 2) × gR)

and an example of a context value is γ
def
= {x 7→ true, y 7→ ¤0, z 7→ ((¤1, true), a0)}.

We now present terminal computations, redexes, reduction contexts, and configurations (table 3). Con-
figurations encapsulate the computation state (a context value, an extended expression, a partial graph,
and a map from the partial graph to closures), which helps keep track of different parts of the program as
the computation proceeds.

Table 3: Terminal computations, redexes, reduction contexts, and configurations.

Terminal computations r, Redexes ρ, and Reduction contexts C[−]

r ::= return(v) | λמx. u | fresh()

ρ ::= let val x ← r inu | {{return(v)}}¤,aγ where ¤ ∈ gL, a ∈ gR, γ ∈ Tree(2 + gL + gR)
Var

| match v as (x, y) in t | if v then t elseu | flip(θ) | (v = w) | (v@w)

C[−] ::= [−] | let val x ← C[−] inu | {{C[−]}}¤,aγ

Configurations (γ, u, g, λ)

γ ∈ Tree(2 + gL + gR)
Var is a context value.

u is an extended expression Γ | ∆ ⊢c u : A.

g
def
= (gL, gR, E) is a partial graph.

λ : gL → Closures, where Closures
def
=

{
(λמx. u, γ) | Γ ⊢

c λמx. u : F and γ ∈ LΓM
}

4.3 Reduction rules

Let L−Mγ be the function evaluating an expression value in a context value γ (e.g. LxMγ = γ(x), LtrueMγ =
true).

We can define the operational semantics of the language using reduction rules. They provide a step-by-
step description of how expressions are evaluated and transformed during execution, following a left-most
outer-most strategy, with lexical binding. Given a configuration (γ, u, g, λ) (note that if u is of the form

{{u′}}(¤,a)γ , then it is assumed that the function–atom label pair (¤, a) ∈ gL×gR), we will apply the following
reduction rules:

Kaddar and Staton 10–11

Table 4: Reduction rules.

Reduction Rules

(γ, let val x ← return(v) in u, g, λ) → (γ ⊔ {x 7→ LvMγ}, u, g, λ)

(γ, {{return(v)}}
(¤,a)
γ′ , g, λ) →

(γ′, return(LvMγ), (gL, gR, E ∪ {¤
LvMγ
−−→ a}), λ)

if LvMγ ∈ {true, false}

else, failure (cannot memoize a non-boolean function)

(γ, let val x ← λמ y. u in t, g, λ) →
(
γ ⊔ {x 7→ ¤}, t, (gL ⊔ {¤}, gR, E ⊔ {f

⊥
−→ a}a∈gR),

λ ⊔ {¤ 7→ (λמ y. u, γ)}
)

(γ, let val x ← fresh() in t, g, λ) →
(
γ ⊔ {x 7→ a}, t,

(gL, gR ⊔ {a}, gR, E ⊔ {¤
⊥
−→ a}

¤∈gL), λ
)

(γ, (v@w), g, λ) →

(γ, return(β), g, λ) if β
def
= E(LvMγ , LwMγ) 6= ⊥

(γ0 ⊔ {y 7→ LwMγ}, {{u}}
¤,a
γ , g, λ) else,

where λ(LvMγ)
def
= (λמ y. u, γ0)

(γ, v = w, g, λ) → (γ, return(β), g, λ) where β
def
= (LvMγ = LwMγ)

(γ, flip(θ), g, λ)
with proba. θ
→ (γ, return(β), g, λ) where β ∈ {true, false}

(γ,match v as (x, y) in t, g, λ) → (γ ⊔ {x 7→ LvMγ , y 7→ LwMγ}, t, g, λ)

(γ, if v then t elseu) →

{
(γ, t, g, λ) if v = true

(γ, u, g, λ) else, if v = false

(γ, e, g, λ) → (γ′, e′, g′, λ′)

(γ, C[e], g, λ) → (γ′, C[e′], g′, λ′)

Example 4.6 We now give an example showcasing how these reduction rules apply on a program combining
name generation, a coin flip, function abstraction, and stochastic memoization. An atom x0 is generated
and used as an argument for a function f1, which performs a coin flip if the argument matches x0. The
outcome is then memoized and the result is returned in the second application. There are two execution
traces, depending on the outcome of the coin flip (β ∈ true, false).

(

∅, let val x0 ← fresh() in

let val f1 ← λמx. (let val b ← (x = x0) in

if b then flip(12) else false) in

let val f2 ← λמ y. f1@y in f2@x0,

(∅, ∅, ∅), ∅
)

→

(

{x0 7→ a0},

let val f1 ← λמx. (let val b ← (x = x0) in

if b then flip(12) else false) in

let val f2 ← λמ y. f1@y in f2@x0,

(∅, {a0}, ∅), ∅
)

10–12 Stochastic memoization and name generation

→2
(

def
= γ0

︷ ︸︸ ︷

{x0 7→ a0, f1 7→ ¤1, f2 7→ ¤2}, f2@x0,

({¤1, ¤2}, {a0}, {¤1
⊥
−→ a0, ¤2

⊥
−→ a0}),

{
¤1 7→ (λמx. let val b ← (x = x0) in

if b then flip(12) else false), {x0 7→ a0}),

¤2 7→ (λמ y. f1@y, {x0 7→ a0, f1 7→ ¤1})
})

→

(

def
= γ1

︷ ︸︸ ︷

{x0 7→ a0, f1 7→ ¤1, y 7→ a0}, {{f1@y}}
¤2,a0
γ0

,

({¤1, ¤2}, {a0}, {¤1
⊥
−→ a0, ¤2

⊥
−→ a0}),

{
¤1 7→ (λמx. let val b ← (x = x0) in

if b then flip(12) else false), {x0 7→ a0}),

¤2 7→ (λמ y. f1@y, {x0 7→ a0, f1 7→ ¤1})
})

→
(

{x0 7→ a0, x 7→ a0},
{{{{

let val b ← (x = x0) in

if b then flip(12) else false
}}

¤1,a0

γ1

}}
¤2,a0

γ0
,

({¤1, ¤2}, {a0}, {¤1
⊥
−→ a0, ¤2

⊥
−→ a0}),

{
¤1 7→ (λמx. let val b ← (x = x0) in

if b then flip(12) else false), {x0 7→ a0}),

¤2 7→ (λמ y. f1@y, {x0 7→ a0, f1 7→ ¤1})
})

→

(

{x0 7→ a0, x 7→ a0, b 7→ true},
{{{{

if b then flip(12) else false
}}

¤1,a0

γ1

}}
¤2,a0

γ0
,

({¤1, ¤2}, {a0}, {¤1
⊥
−→ a0, ¤2

⊥
−→ a0}),

{
¤1 7→ (λמx. let val b ← (x = x0) in

if b then flip(12) else false), {x0 7→ a0}),

¤2 7→ (λמ y. f1@y, {x0 7→ a0, f1 7→ ¤1})
})

→
(

{x0 7→ a0, x 7→ a0, b 7→ true},
{{{{

flip(12)
}}

¤1,a0

γ1

}}
¤2,a0

γ0
,

({¤1, ¤2}, {a0}, {¤1
⊥
−→ a0, ¤2

⊥
−→ a0}),

{
¤1 7→ (λמx. let val b ← (x = x0) in

if b then flip(12) else false), {x0 7→ a0}),

¤2 7→ (λמ y. f1@y, {x0 7→ a0, f1 7→ ¤1})
})

proba.
1
2→

(

{x0 7→ a0, x 7→ a0, b 7→ true},
{{

{{return(β)}}¤1,a0γ1

}}
¤2,a0

γ0
,

({¤1, ¤2}, {a0}, {¤1
⊥
−→ a0, ¤2

⊥
−→ a0}),

{
¤1 7→ (λמx. let val b ← (x = x0) in

if b then flip(12) else false), {x0 7→ a0}),

¤2 7→ (λמ y. f1@y, {x0 7→ a0, f1 7→ ¤1})
})

→2
(

def
= γ0

︷ ︸︸ ︷

{x0 7→ a0, f1 7→ ¤1, f2 7→ ¤2}, return(β), ({¤1, ¤2}, {a0}, {¤1
β
−→ a0, ¤2

β
−→ a0}),

{
¤1 7→ (λמx. let val b ← (x = x0) in if b then flip(

1
2) else false), {x0 7→ a0}),

¤2 7→ (λמ y. f1@y, {x0 7→ a0, f1 7→ ¤1})
})

Configuration judgements.
We now show that the operational semantics satisfies the memoization equations eq. (2). Initial config-

urations are of the form (∅, e, ∅, ∅), where e is a non-extended expression. One can associate a configuration

judgment J(∅, e, ∅, ∅)
def
= ∅ | ∅ ⊢c e : A to every initial configuration. A configuration (γ, e, g, λ) is said to be

accessible (from (∅, e0, ∅, ∅)) if there exists a reduction trace s = (∅, e0, ∅, ∅)→
∗ (γ, e, g, λ) with probability

> 0. The big-step operational semantics of an initial configuration is defined in a standard way as the
resulting probability distribution over the set of configurations accessible from it. We can then prove that
a configuration is accessible only if it has a corresponding configuration judgment that is derivable:

Lemma 4.7 If a configuration (γ, e, g, λ) is accessible, there exists a corresponding configuration judgement

J(γ, e, g, λ)
def
= Γ | ∆ ⊢c e : A where γ ∈ LΓM and such that J(γ, e, g, λ) is derivable (with tables 1 and 2).

Due to the fact that we have at most one redex per (extended) expression and we do not have recursion
(so the dataflow graph does not have self-loops and is acyclic), we can prove that:

Kaddar and Staton 10–13

Lemma 4.8 If a configuration of the form (γ, C[v@w], g, λ) is accessible and E(LvMγ , LwMγ) = ⊥, then

J(γ, C[v@w], g, λ)
def
= Γ | ∆ ⊢c C[v@w] : A is such that the memoization stack ∆ does not contain a

function–atom label pair with LvMγ as first component.

As a corollary, we can then prove that a configuration is accessible only if its memoization stack has no
duplicates:

Lemma 4.9 If a configuration (γ, e, g, λ) is accessible and J(γ, e, g, λ)
def
= Γ | ∆ ⊢c e : A is its corresponding

configuration judgment, there is no duplicate in ∆.

This in turn enables us to ensure that the operational semantics satisfies the memoization equations:

Proposition 4.10 If e1 and e2 are programs of the form

e1
def
= let val x ← fresh() in let val f ← λמ y. e in let val v1 ← f@x in let val v2 ← f@x in return(v1, v2)

e2
def
= let val x ← fresh() in let val f ← λמ y. e in let val v1 ← f@x in return(v1, v1)

the configurations (∅, e1, ∅, ∅) and (∅, e2, ∅, ∅) have the same big-step operational semantics.

5 Denotational Semantics

In this section we propose a denotational model that verifies the dataflow property (Def. 2.3, Theorem 5.5)
and which supports memoization of constant Bernoulli functions (Theorem 5.8) and is sound with respect
to the operational semantics of Section 4 (Theorem 5.10). Thus we show that criteria (1)–(5) of Section 1
are consistent.

The memo-tables in memoization are a kind of hidden or local state, and our semantic domain is similar
to other models of local state [28, 37, 44, 46] in that it uses a possible worlds semantics in the guise of a
functor category.

Definition 5.1 A total bigraph is a partial bigraph (Def. 4.1) that does not have any undefined (⊥) elements.
This represents a fully populated memo-table. We notate this g = (gL, gR, E

g), omitting the superscript
when it is clear. An embedding between total bigraphs ι : g → g′ is a pair of injections (ιL : gL → g′L, ιR :

gR → g′R) that do not add or remove edges (Eg(¤, a) = Eg
′

(ιL(¤), ιR(a))). These can be thought of as
conservative extensions of the memo-table. We let BiGrphemb be the category where the objects are total
finite bigraphs and graph embeddings.

We will interpret our types as covariant presheaves, i.e. functors in [BiGrphemb,Set], and programs will
be interpreted as natural transformations. We discuss this category in Section 5.1, before defining a monad
(§5.2) and giving a denotational semantics (§5.3) and proving a soundness theorem (§5.4).

5.1 Base category

We work in the category [BiGrphemb,Set] of covariant presheaves on the category BiGrphemb of finite
bigraphs. The types of the language A are interpreted as presheaves JAK. The idea is that once some
functions and atomic names are fixed, and a memo-table g for them is given, then we can say what the
values or expressions are, JAK(g). The values can be renamed by permuting functions and atomic names,
and are monotonic in that they remain unchanged when we conservatively extend the memo-table. This is
the functorial action, JAKι : JAK(g)→ JAK(g′). Programs will be interpreted as natural transformations: the
naturality ensures that they are invariant under permuting the functions and atomic names, or extending
the memo-table.

We write ◦ and • for the one-vertex left and right graphs respectively. The denotation of basic types is
given by:

JFK
def
= BiGrphemb(◦,−) JAK

def
= BiGrphemb(•,−) so that JFK(g) ∼= gL, JAK(g) ∼= gR.

10–14 Stochastic memoization and name generation

The presheaf category [BiGrphemb,Set] has products and coproducts, given pointwise [35]. In particular,
the denotation of the type of booleans is the constant presheaf 2 ∼= 1 + 1.

The edge relations collect to form a natural transformation E : JFK×JAK→ 2 given by Eg(¤, a) = Eg(¤, a).
The category [BiGrphemb,Set] is cartesian closed, as is any presheaf category. By currying E , we have

an embedding of JFK in the function space 2JAK, i.e. JFK→ 2JAK. In fact, in this development to keep things

simpler, we will focus on JFK rather than the full function space 2JAK.

5.2 Probabilistic local state monad

In the following, X,Y,Z : BiGrphemb → Set denote presheaves, g = (gL, gR, E
g), g′, h, h′ ∈ BiGrphemb

bigraphs, and ι, ι′ : g →֒ g′ bigraph embeddings. We will omit subscripts when they are clear from the
context.

Let Pf be the finite distribution monad: Pf(X)(g) =
{
p : X(g) → [0, 1]

∣
∣ supp(p) finite and

∑

x p(x) =

1
}
. By considering the following ‘node-generation’ monad N(X)(g)

def
= colimg →֒ hX(h) on [BiGrphemb,Set],

one could be tempted to think that modeling name generation and stochastic memoization is a matter of
composing these two monads. But this is not quite enough. We also need to remember, in the monadic
computations, the probability of a function returning true for a fresh, unseen atom. To do so, inspired from
Plotkin and Power’s local state monad [44] (which was defined on the covariant presheaf category [Inj,Set],
where Inj is the category of finite sets and injections), we model probabilistic and name generation effects
by the following monad, defined using a coend [35], that we name ‘probabilistic local state monad’:

Definition 5.2 [Probabilistic local state monad] For all covariant presheaves X : BiGrphemb → Set and
bigraphs g ∈ BiGrphemb:

T (X)(g)
def
=

(

Pf

∫ g→֒h (

X(h)× [0, 1](h−g)L
))[0,1]gL

The monad T is similar to the read-only local state monad, except that any fresh node can be initialized.
Every λ ∈ [0, 1]gL is thought of as the probability of the corresponding function/left node yielding true on a
new fresh atom. We will refer to such a λ as a state of biases. The coend ‘glues together’ the extensions of
the memo-table that are compatible with the constraints imposed by the current computation. The monad
allows manipulating probability distributions over such extensions, while keeping track of the probability
of new nodes.

Equivalence classes in
∫ g→֒h

X(h) × [0, 1](h−g)L are written [xh, λ
h]g. In the coend, the quotient can

be thought of as taking care of garbage collection: nodes that are not used in the bigraph environment
can be discarded. We use Dirac’s bra-ket notation 3

∣
∣[xh, λ

h]g
〉

h
to denote a formal column vector of

equivalence classes ranging over a finite set of h’s. As such, a formal convex sum
∑

i pi[xhi , λ
hi]g ∈

Pf
∫ g→֒h

X(h) × [0, 1](h−g)L will be concisely denoted by
〈
p

∣
∣ [xh, λ

h]g
〉

h
.

Definition 5.3 [Action of T (X) on morphisms]

T (X)(g
ι
−֒→ g′) :

(

Pf

∫ g→֒h

X(h) × [0, 1](h−g)L
)[0,1]gL

→
(

Pf

∫ g′ →֒h′

X(h′)× [0, 1](h
′−g′)L

)[0,1]g
′

L

ϑ 7→ [0, 1]g
′

L
−◦ιL−−−→ [0, 1]gL

ϑ
−→ Pf

∫ g→֒h

X(h) × [0, 1](h−g)L

Pfψg,g′

−−−−→ Pf

∫ g′ →֒h′

X(h′)× [0, 1](h
′−g′)L

where

3 popularized by Bart Jacobs for finite probability distributions [24]

Kaddar and Staton 10–15

• ιL : gL →֒ g′L is the embedding restricted to left nodes, the maps ψg,g′ are given by:

X(h) × [0, 1](h−g)L → X(h
∐

g g
′)× [0, 1](h

∐
g g

′−g′)L →
∫ g′ →֒h′

X(h′)× [0, 1](h
′−g′)L

(xh, λ
h) 7→ (X(h →֒ h

∐

g g
′)(xh), λ

h) 7→ [X(h →֒ h
∐

g g
′)(xh), λ

h]g′

extranatural in h
∫ g→֒h

X(h) × [0, 1](h−g)L
ψg,g′

−−−→
∫ g′ →֒h′

X(h′)× [0, 1](h
′−g′)L

• and h
∐

g g
′ is the pushout in the category of graphs regarded as an object of BiGrphemb.

More concretely, with Dirac’s bra-ket notation, T (X)(g
ι
−֒→ g′) can be written as:

T (X)(ι) =

(

Pf
∫ g→֒h

X(h)× [0, 1](h−g)L
)[0,1]gL

→
(

Pf
∫ g′ →֒h′

X(h′)× [0, 1](h
′−g′)L

)[0,1]g
′

L

ϑ 7→ λ′ 7→ let ϑ(λ′ιL) =
〈
p

∣
∣ [xh, λ

h]g
〉

h
in

〈

p

∣
∣
∣ [X(h →֒ h

∐

g g
′)(xh), λ

h]g′
〉

h

T can be endowed with the structure of a [BiGrphemb,Set]-enriched monad, that is, since
[BiGrphemb ,Set] is a (cartesian) monoidal closed category, a strong monad. Its enriched unit ηX : 1→ TXX

and bind (−)∗ : TY X → TY TX are as follows 4 .

ηX(g) :

{∗} → [X ×よ(g), TX]

∗ 7→ ŋg′ :

{
X(g′)×よ(g)(g′)→ TX(g′)

xg′ , _ 7→
(

[0, 1]g
′

L ∋ λ 7→ 1 ·
∣
∣[xg′ , !]g′

〉)
(−)∗ :

{
TY X(g)→

[
TX ×よ(g), TY

]

φ 7→ φ∗

where

φ∗g′ :

(

Pf

∫ g′ →֒h

X(h)× [0, 1](h−g
′)L

)[0,1]g
′

L

×よ(g)(g′)
φ∗
g′

−−→
(

Pf

∫ g′ →֒h′

Y (h′)× [0, 1](h
′−g′)L

)[0,1]g
′

L

(ϑ, g
ι
−֒→ g′)

φ∗
g′

7−−→ λ′ 7→ let ϑ(λ′) =
〈
p

∣
∣ [xh, λ

h]g′
〉

h∈Hg′
in

for each h ∈ Hg′ ,

let φh(xh, g
ι
−֒→ g′ →֒ h)(λh ⊔ λ′) =

〈

qh

∣
∣
∣ [y′h, γ

h′]h

〉

h′∈Hh

in
〈

p

∣
∣
∣Q

∣
∣
∣ [yh′ , γ

h′ ⊔ λh]g′
〉

h′∈
⋃

h∈H
g′

Hh

and Q
def
=

qh1

...

qhn

hi∈Hg′

=

qh1,h′1 qh1,h′m
... · · ·

...

qhn,h′1 qhn,h′m

hi∈Hg′

h′j∈
⋃

h∈H
g′

Hh

(where each qh has been 0-padded accordingly)

As argued before, to construct an abstract model of probability, we show that the monad is commutative.
Affineness straightforwardly stems from the following lemma:

Lemma 5.4 Let X be a constant presheaf on the coslice category g/BiGrphemb, i.e. there exists a set S0

such that X(g
ι
−֒→ h) = S0

id
−→ S0 for every g

ι
−֒→ h ∈ g/BiGrphemb. Then T (X)(g) ∼= Pf(S0)

[0,1]gL .

4 following Fosco Loregiàn [34], よ : BiGrphemb → [BiGrphemb , Set]
op denotes the (contravariant) Yoneda embed-

ding.

10–16 Stochastic memoization and name generation

We have the desired dataflow property, meaning that T is an abstract model of probability [32]:

Theorem 5.5 The monad T satisfies the dataflow property (2.3): it is strong commutative and affine.

Proof (Sketch) In the presheaf category, let ZY × Y X ◦
−→ ZX and ZY × Y

ev
−→ Z denote the internal

composition and evaluation, and f∗
def
= 1

f
−→ TY X (−)∗

−−−→ TY TX the internal Kleisli lifting of a global
element f . To prove that T is strong, we show, internally, the associativity ((Ψ∗

g × Φ∗
g) ; ◦ = ((Ψ∗ × Φ) ;

◦)∗) of the bind, the left unit law (η∗ = λTX .idTX), and the right unit law ((Φ∗ × η) ; ◦ = Φ), for all
Φ: 1→ TY X ,Ψ: 1→ TZY . Finally, affineness stems from lemma 5.4, and commutativity is the equation
a≫=λ x. b≫=λ y. η(x, y) = b≫=λ y. a≫=λ x. η(x, y) internally, for all a : 1 → TA, b : 1 → TB, which
amounts to showing:

((

λA.
((

(λB .η)
∗ × b

)
; ev

))∗

× a

)

; ev =

((

λB .
((

(λA.η)
∗ × a

)
; ev

))∗

× b

)

; ev

✷

5.3 Categorical semantics

In our language, the denotational interpretation of values, computations (return and let binding), and
matching (elimination of bool’s and product types) is standard. We interpret computation judgements
Γ ⊢c t : A as morphisms JΓK → T (JAK), by induction on the structure of typing derivations. The context
Γ is built of bool’s, F, A and products. Therefore, JΓK is isomorphic to a presheaf of the form 2k ×
BiGrphemb(◦,−)

ℓ × BiGrphemb(•,−)
m, where k, ℓ,m are the numbers of booleans, functions and atoms in

Γ, and Xn is is the n-fold finite product in the category of presheaves. Computations of type A and F then
have an intuitive interpretation:

Proposition 5.6 A computation of type A returns the label of an already existing atom or a fresh one with
its connections to the already existing functions: T (JAK)(g) ∼= Pf(gR + 2gL)[0,1]

gL . A computation of type
F returns the label of an already existing function or create a new function with its connections to already
existing atoms and a fixed probabilistic bias: T (JFK)(g) ∼= Pf(gL + 2gR × [0, 1])[0,1]

gL .

For every bigraph g, we denote by Rg (resp. Lg) the set of bigraphs h ∈ g/BiGrphemb having one more
right (resp. left) node than g, and that are the same otherwise. For every e ∈ 2gL (resp. e ∈ 2gR), we
denote by g +e • ∈ Rg (resp. g +e ◦ ∈ Lg) the bigraph obtained by adding a new right (resp. left) node
to g with connectivity e to the right (resp. left) nodes in g. We now give the denotational semantics of
various constructs in our language. Henceforth, we will denote normalization constants (that can easily be
inferred from the context) by Z.

Denotations of Γ ⊢c flip(θ) : bool, Γ, v : F, w : A ⊢c v@w : bool, and Γ, v : A, w : A ⊢c v = w : bool

First, by Lemma 5.4, we note that T (JboolK)g ∼= Pf(2)
[0,1]gL ∼= [0, 1][0,1]

gL . So naturally, the map
Jflip(θ)Kg is the constant function returning the bias θ.

Denotations of Γ, v : F, w : A ⊢c v@w : bool, and Γ, v : A, w : A ⊢c v = w : bool

The map Jv@wKg : JΓ, v : F, w : AK(g) → [0, 1][0,1]
gL returns 1 if the left node corresponding to v is

connected to the one of w in g, 0 otherwise. Using the internal edge relation E , it is the internal composition:

Jv@wK
def
= 1× (JΓK× JFK× JAK)

η×(!×E)
−−−−−→ T (JboolK)JboolK × JboolK

ev
−→ T (JboolK)

And similarly, the map Jv = wKg : JΓ, v : A, w : AK(g)→ [0, 1][0,1]
gL is given by:

Jv = wK
def
= JΓK×JAK2 ∼= 1×JΓK×

(

よ(•)+よ(•+•)
) η×!×

[
! ; ιtrue, ! ; ιfalse

]

−−−−−−−−−−−−−→ T (JboolK)JboolK×JboolK
ev
−→ T (JboolK)

Kaddar and Staton 10–17

where [−, −] is the copairing and ιtrue, ιfalse : 1→ JboolK ∼= 2 are the coprojections.

Denotation of Γ ⊢c fresh() : A.
The map Jfresh()Kg : JΓK(g)→ T (JAK)(g) randomly chooses connections to each left node according to

the state of biases, and makes a fresh right node with those connections.

Jfresh()Kg :

2k × BiGrphemb(◦, g)
ℓ × BiGrphemb(•, g)

m → Pf(gR + 2gL)[0,1]
gL

_, _, _ 7→ λ 7→

〈
1

Z

∏

¤∈gL

λ(¤)E
h(¤,ah(•))(1− λ(¤))1−E

h(¤,ah(•))

∣
∣
∣
∣

[
•

︸︷︷︸
∼=(h−g)R

ah
−֒→ h, !

]

g

〉

h∈Rg

It suffices to consider the bigraphs that belong to Rg only, by garbage collection of the coend.

Denotation of Γ ⊢c λמx. u : F.
As λמ-abstractions are formed based on computation judgements of the form Γ, x : A ⊢c u : bool. We

can decompose the extra variable x in the environment Γ, x : A, the denotation of which is of the form
JΓ, x : AK(g) = 2k×BiGrphemb(◦, g)

ℓ×BiGrphemb(•, g)
m × BiGrphemb(•, g) for a bigraph g ∈ BiGrphemb.

Now, the extra part x is a right node, and its valuation will either be a node already in the graph described
in the rest of the environment, or a new one with particular edges to the rest of the environment. The
argument u can test (if it wants) what kind of node x is, before returning a probability.

As a result, the denotation JuKg : 2
k × BiGrphemb(◦, g)

ℓ × BiGrphemb(•, g)
m × BiGrphemb(•, g) →

[0, 1][0,1]
gL gives us the edge probability of the left node (atom) that we need to generate, both to the

existing right nodes (functions), and to any future right node (which needs to be remembered). This can
be formalized into a natural transformation Jλמx. uK : JΓK→ T (JFK), provided that u satisfies the following
property:

Definition 5.7 [Freshness-invariant functions] A function λמx.u is freshness-invariant if, for every g, bk ∈ 2k,
κi : ◦ →֒ g, τj : • →֒ g and λ ∈ [0, 1]gL , we have (where ι1, ι2 are the coprojections):

∀e ∈ 2gL , JuKg
(
bk, (◦

κi
−֒→ g

ι1
−֒→ g +e •)i, (•

τj
−֒→ g

ι1
−֒→ g +e •)j , •

ι2
−֒→ g +e •, λ

)
is a constant p̃u

A sufficient condition to ensure that a function of the form λמ x. u be freshness-invariant is
that it has no subexpression of the form f@y, where y /∈ fv(λמ x. u). An example thereof is
λמx. let val b ← f@x0 in if b then true else (x = x0). Non examples are λמx. let val y ← fresh() in f@y and
λמx. if f@x then false else true (negation of f). We can interpret freshness-invariant functions as follows:

Jλמx. uKg :

2k × BiGrphemb(◦, g)
ℓ × BiGrphemb(•, g)

m → Pf(gL + 2gR × [0, 1])[0,1]
gL

bk,
(◦

κi
−֒→ g)i,

(•
τj
−֒→ g)j

7→ λ 7→

〈
1

Z

∏

a∈gR

p
Eh(¤h(◦),a)
a (1− pa)

1−Eh(¤h(◦),a)

∣
∣
∣
∣

[
◦

︸︷︷︸
∼=(h−g)L

¤h
−֒→ h, _ 7→ p̃u

]

g

〉

h∈Lg

where pa
def
= JuKg

(
bk, (◦

κi
−֒→ g)i, (•

τj
−֒→ g)j , •

a
−֒→ g, λ

)
for every a ∈ gR, and p̃u is as in Def. 5.7. As a

result, the probabilistic local state monad validates (2):

Theorem 5.8 The monad T supports stochastic memoization (Def. 2.1) for freshness-invariant functions
(Def. 5.7), which include any function λמx.u that does not contain a subexpression of the form f@y, where
y /∈ fv(λמx. u) (so, in particular, constant Bernoulli functions).

Proof (Sketch) The denotation of λמ-abstractions enables us to define a map T (JboolK)JAK → T (F), which

can in turn be postcomposed by T (F)
φ
−→ T

(
JboolKJAK

)
, where

10–18 Stochastic memoization and name generation

φg :

{

T (F)(g) ∼= Pf(gR + 2gL)[0,1]
gL → [0, 1][0,1]

g×(gR+2gL) ∼= T
(
JboolKJAK

)
(g)

ϑ 7→ (λ, a) ∈ [0, 1]g × (gR + 2gL) 7→ let ϑ(λ) =
∑

a′∈gR+2gL pa′ |a
′〉 in pa

to obtain mem : T (JboolK)JAK → T (JboolKJAK), and then we show eq. (1) in the presheaf topos. ✷

Example 5.9 The denotation of let val x ← fresh() in let val f ← λמ y. flip(θ) in f@x is the map

1× 1

(

λJAK.

((
(λJFK.f@x)

∗×(λמ y. flip(θ))
)
;ev

))∗

× fresh()

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ T (JboolK)T JAK × T (JAK)
ev
−→ T (JboolK)

given by ∗, ∗ 7→ λ 7→ θ |true〉+ (1− θ) |false〉, as desired.

5.4 Soundness

Configurations are of the form (γ, e, g, λ), where e is of type A, and can be denotationally interpreted as

J(γ, e, g, λ)K
def
=

∑

ẽ∈2Ug

∏

(¤,a)∈Ug

λ(¤)ẽ(¤,a)
(
1− λ(¤)

)1−ẽ(¤,a)
JuKgẽ(γ, λ) ∈ T (A)gẽ(γ)(λ)

where Ug

def
=

{
(¤, a) | E(¤, a) = ⊥

}
⊆ gL × gR and gẽ extends g according to ẽ: E(¤, a) = ẽ(¤, a) for all

(¤, a) ∈ Ug. We can then prove that the denotational semantics is sound with respect to the operational
semantics:

Theorem 5.10 (Soundness)

J(γ, e, g, λ)K ∼=
∑

(γ,e,g,λ)→(γ′,e′,g′,λ′)
with proba. p

p · J(γ′, e′, g′, λ′)K

Proof (Sketch) As an intermediate step, we build a big-step semantics, and show that this is sound,
i.e. making a small step of the operational semantics (§4) does not change the distributions in the final
big-step semantics. Next, we show that the big step semantics of a configuration corresponds to the
denotational semantics, for which the main thing to check is that the equivalence classes of the coend are
respected. ✷

6 Haskell Implementation

We have a practical Haskell implementation comparing the small-step, big-step operational, and denota-
tional semantics to showcase the soundness theorem with QuickCheck, in a setting analogous (albeit slightly
different 5 , to better suit the specificities of Haskell) to the theoretical one we presented. The artefact is
openly available [26].

7 Summary

In conclusion, we have successfully tackled the open problem of finding a semantic interpretation of stochas-
tic memoization for a class of functions with diffuse domain that includes the constant Bernoulli functions.
Our contributions pave the way for further exploration and development of probabilistic programming and
the sound application of stochastic memoization in Bayesian nonparametrics.

5 Unlike our mathematical framework, where we can memoize all freshness-invariant functions (5.7), our implemen-
tation only memoizes constant Bernoulli functions. Another key difference is that we could not implement coends
in Haskell, so we used a global state monad transformer to manage the memoization bigraph, keeping track of edges
between left nodes (function labels) and right nodes (atom labels) that have been sampled.

Kaddar and Staton 10–19

8 Acknowledgements

We are grateful to Nate Ackerman, Cameron Freer, Dan Roy and Hongseok Yang for various conversations
over many years, relating to [54], name generation, stochastic memoization and subsequent developments.
The presheaf category here is related to the Rado topos [4] that we have been exploring in ongoing work,
with Jacek Karwowski and Sean Moss and the above four coauthors. Thanks to Dario Stein for discussions
about name generation and for pointing out [27]. Thanks too to Swaraj Dash, Mathieu Huot, Ohad
Kammar, Oleg Kiselyov, Alex Lew, and all in the Oxford group for many discussions about this topic.
Finally, thank you to our reviewers for detailed feedback.

References

[1] Aumann, R. J., Borel structures for function spaces, Illinois Journal of Mathematics 5 (1961). Available online at
Project Euclid

[2] Barthe, G., J.-P. Katoen and A. Silva, Editors, Foundations of Probabilistic Programming, CUP (2021).
https://doi.org/10.1017/9781108770750

[3] Bizjak, A. and L. Birkedal, Step-indexed logical relations for probability, in: Proc. FOSSACS 2015 (2015).
https://doi.org/10.1007/978-3-662-46678-0_18

[4] Caramello, O., Fraïssé’s construction from a topos-theoretic perspective, Logica Universalis 8, pages 261–281 (2014).
https://doi.org/10.1007/s11787-014-0104-6

[5] Cassel, J., Probabilistic programming with stochastic memoization, The Mathematica Journal 16 (2014). Avaiilable online
at Mathematica Journal

[6] Castellan, S. and H. Paquet, Probabilistic programming inference via intensional semantics, in: Proc. ESOP 2019 (2019).
https://doi.org/10.1007/978-3-030-17184-1_12

[7] Cho, K. and B. Jacobs, Disintegration and Bayesian inversion via string diagrams, Math. Struct. Comput. Sci. 29, pages
938–971 (2019).
https://doi.org/10.1017/S0960129518000488

[8] Crubillé, R., Probabilistic stable functions on discrete cones are power series, in: Proc. LICS 2018.
https://doi.org/10.1145/3209108.3209198

[9] Danos, V. and I. Garnier, Dirichlet is natural, in: Proc. MPFS 2015 (2015).
https://doi.org/10.1016/j.entcs.2015.12.010

[10] Dash, S., Y. Kaddar, H. Paquet and S. Staton, Affine monads and lazy structures for Bayesian programming, Proc. ACM
Program. Lang. 7 (2023).
https://doi.org/10.1145/3571239

[11] De Raedt, L. and A. Kimming, Probabilistic (logic) programming concepts, Mach. Learn. 100 (2015).
https://doi.org/10.1007/s10994-015-5494-z

[12] Ehrhard, T., M. Pagani and C. Tasson, Measurable cones and stable, measurable functions: a model for probabilistic
higher-order programming, in: Proc. POPL 2018 (2018).
https://doi.org/10.1145/3158147

[13] Fritz, T., A synthetic approach to Markov kernels, conditional independence and theorems on sufficient statistics,
Adv. Math. 370 (2020).
https://doi.org/10.1016/j.aim.2020.107239

[14] Ghosal, S. and A. van der Vaart, Fundamentals of non-parametric Bayesian inference, CUP (2017).
https://doi.org/10.1017/9781139029834

[15] Giry, M., A categorical approach to probability theory, Categorical Aspects of Topology and Analysis. Lecture Notes in
Mathematics (1982).
https://doi.org/10.1007/BFb0092

[16] Goodman, N., Semantics of mem is questionable, Open Github issue for WebPPL (2018).
https://github.com/probmods/webppl/issues/896.

https://projecteuclid.org/journals/illinois-journal-of-mathematics/volume-5/issue-4/Borel-structures-for-function-spaces/10.1215/ijm/1255631584.pdf
https://doi.org/10.1017/9781108770750
https://doi.org/10.1007/978-3-662-46678-0_18
https://doi.org/10.1007/s11787-014-0104-6
https://www.mathematica-journal.com/2014/01/09/probabilistic-programming-with-stochastic-memoization/
https://doi.org/10.1007/978-3-030-17184-1_12
https://doi.org/10.1017/S0960129518000488
https://doi.org/10.1145/3209108.3209198
https://doi.org/10.1016/j.entcs.2015.12.010
https://doi.org/10.1145/3571239
https://doi.org/10.1007/s10994-015-5494-z
https://doi.org/10.1145/3158147
https://doi.org/10.1016/j.aim.2020.107239
https://doi.org/10.1017/9781139029834
https://doi.org/10.1007/BFb0092
https://github.com/probmods/webppl/issues/896

10–20 Stochastic memoization and name generation

[17] Goodman, N. D., V. K. Mansinghka, D. Roy, K. Bonawitz and J. B. Tenenbaum, Church: A language for generative
models, in: Proceedings of the Twenty-Fourth Conference on Uncertainty in Artificial Intelligence, UAI’08, pages 220–229,
AUAI Press (2008), ISBN 978-0-9749039-4-1.
https://dl.acm.org/doi/10.5555/3023476.3023503

[18] Goodman, N. D., T. J. O’Donnell and J. B. Tenenbaum, Probabilistic models of cognition (ProbMods): Non-parametric
models, (2016).
http://v1.probmods.org/non-parametric-models.html

[19] Goodman, N. D. and A. Stuhlmüller, The Design and Implementation of Probabilistic Programming Languages, (2014).
http://dippl.org Accessed: 2020-10-15.

[20] Goubault-Larrecq, J., X. Jia and C. Théron, A domain-theoretic approach to statistical programming languages, (2021).
https://doi.org/10.48550/arXiv.2106.16190

[21] Heunen, C., O. Kammar, S. Staton and H. Yang, A convenient category for higher-order probability theory, in: Proc. LICS
2017 (2017).
https://dl.acm.org/doi/10.5555/3329995.3330072

[22] Hinze, R., Generalizing Generalized Tries, Journal of Functional Programming 10, pages 327–351 (2000).
https://doi.org/10.1017/S0956796800003713

[23] Jacobs, B., Probabilities, distribution monads, and convex categories, Theoret. Comput. Sci. 412 (2011).
https://doi.org/10.1016/j.tcs.2011.04.005

[24] Jacobs, B., New directions in categorical logic, for classical, probabilistic and quantum logic, Log. Methods Comput. Sci.
11 (2015).
https://doi.org/10.2168/LMCS-11(3:24)2015

[25] Jia, X., B. Lindenhovius, M. W. Mislove and V. Zamdzhiev, Commutative monads for probabilistic programming languages,
in: Proc. LICS 2021 (2021).
https://doi.org/10.1109/LICS52264.2021.9470611

[26] Kaddar, Y. and S. Staton, Stochastic memoization implementation (2023). Available at Github,
https://github.com/youqad/stochastic-memoization-implementation.

[27] Kallianpur, G., Stochastic Filtering Theory, Springer Series on Stochastic Modeling and Applied Probability, Volume
]textbf13 (1980), ISBN: 978-0-387-90445-0

[28] Kammar, O., P. B. Levy, S. K. Moss and S. Staton, A monad for full ground reference cells, in: Proc. LICS 2017 (2017).
https://dl.acm.org/doi/10.5555/3329995.3330044

[29] Kiselyov, O., Logic Programming in HANSEI (2010).
https://okmij.org/ftp/kakuritu/logic-programming.html

[30] Kiselyov, O. and C. Shan, Nested inference and lazy variables, Code example for Hansei (2009).
https://okmij.org/ftp/kakuritu/nested.ml.

[31] Kock, A., Monads on symmetric monoidal closed categories, Arch. Math. 21 (1970).
https://doi.org/10.1007/BF01220868

[32] Kock, A., Commutative monads as a theory of distributions, Theory and Applications of Categories 26 (2012). Availablle
online at http://www.tac.mta.ca/tac/volumes/26/4/26-04.pdf

[33] Levy, P. B., Call-By-Push-Value: A Functional/Imperative Synthesis, Springer, Dordrecht (2003).
https://doi.org/10.1007/978-94-007-0954-6

[34] Loregian, F., (Co)end Calculus, London Mathematical Society Lecture Note Series, Cambridge University Press (2021).
https://doi.org/10.1017/9781108778657

[35] Mac Lane, S., Categories for the Working Mathematician, Springer Graduate Texts in Mathematics Volume 5 (1971),
ISBN: 978-0-387-98403-2

[36] Mardare, R., P. Panangaden and G. D. Plotkin, Free complete Wasserstein algebras, Log. Methods Comput. Sci. 14

(2018).
https://doi.org/10.23638/LMCS-14(3:19)2018

[37] Melliès, P.-A., Local states in string diagrams, in: Proc. TLCA 2014 (2014).
https://doi.org/10.1007/978-3-319-08918-8_23

https://dl.acm.org/doi/10.5555/3023476.3023503
http://v1.probmods.org/non-parametric-models.html
http://dippl.org
https://doi.org/10.48550/arXiv.2106.16190
https://dl.acm.org/doi/10.5555/3329995.3330072
https://doi.org/10.1017/S0956796800003713
https://doi.org/10.1016/j.tcs.2011.04.005
https://doi.org/10.2168/LMCS-11(3:24)2015
https://doi.org/10.1109/LICS52264.2021.9470611
https://github.com/youqad/stochastic-memoization-implementation
https://dl.acm.org/doi/10.5555/3329995.3330044
https://okmij.org/ftp/kakuritu/logic-programming.html
https://okmij.org/ftp/kakuritu/nested.ml
https://doi.org/10.1007/BF01220868
http://www.tac.mta.ca/tac/volumes/26/4/26-04.pdf
https://doi.org/10.1007/978-94-007-0954-6
https://doi.org/10.1017/9781108778657
https://doi.org/10.23638/LMCS-14(3:19)2018
https://doi.org/10.1007/978-3-319-08918-8_23

Kaddar and Staton 10–21

[38] Michie, D., “Memo” functions and machine learning, Nature 218, pages 306–306 (1968), ISSN 1476-4687.
https://doi.org/10.1038/218306c0

[39] Milch, B., B. Marthi, S. Russell, D. Sontag, D. L. Ong and A. Kolobov,
BLOG: Probabilistic models with unknown objects, in: Introduction to Statistical Relational Learning (2007). Available
online at https://people.csail.mit.edu/milch/papers/blog-chapter.pdf

[40] Milner, R., What’s in a name?, in: A. Herbert and K. S. Jones, editors, Computer Systems: theory, technology and
applications, chapter 28, Springer (2004), ISBN: 978-1475780741

[41] Moggi, E., An abstract view of programming languages, Technical report, Edinburgh University (1989).
http://www.lfcs.inf.ed.ac.uk/reports/90/ECS-LFCS-90-113/.

[42] Moggi, E., Notions of computation and monads, Information and Computation (1991).
https://doi.org/10.1016/0890-5401(91)90052-4

[43] Pitts, A. M., Nominal Sets: Names and Symmetry in Computer Science, number 57 in Cambridge Tracts in Theoretical
Computer Science, Cambridge University Press (2013), ISBN 978-1-107-01778-8.

[44] Plotkin, G. and J. Power, Notions of computation determine monads, in: Proc. FOSSACS 2002 (2002).
https://doi.org/10.1007/3-540-45931-6_24

[45] Pollard, D., A user’s guide to measure-theoretic probability, CUP (2002).
https://doi.org/10.1017/CBO9780511811555

[46] Pym, D. J., P. W. O’Hearn and H. Yang, Possible worlds and resources: the semantics of BI, Theoret. Comput. Sci.
(2004).
https://doi.org/10.1016/j.tcs.2003.11.020

[47] Roy, D., V. K. Mansinghka, N. D. Goodman and J. Tenenbaum, A stochastic programming perspective on nonparametric
Bayes, in: ICML Workshop on Nonparametric Bayes (2008). Available online at Citeseerx.ist.purdue.edu

[48] Sabok, M., S. Staton, D. Stein and M. Wolman, Probabilistic programming semantics for name generation, in: Proc. POPL
2021 (2021).
https://doi.org/10.1145/3434292

[49] Stark, I., Names and Higher-Order Functions, Ph.D. thesis, University of Cambridge (1994). Available online at
https://homepages.inf.ed.ac.uk/stark/namhof.html

[50] Staton, S., Instances of computational effects:an algebraic perspective, in: Proc. LICS 2013 (2013).
https://doi.org/10.1109/LICS.2013.58

[51] Staton, S., Commutative semantics for probabilistic programming, in: Proc. ESOP 2017 (2017).
https://doi.org/10.1007/978-3-662-54434-1_32

[52] Staton, S., H. Paquet, S. Dash and Y. Kaddar, LazyPPL: A Haskell library for probabilistic programming. (2022).
https://lazyppl-team.github.io/

[53] Staton, S., D. Stein, H. Yang, L. Ackerman, C. E. Freer and D. M. Roy, The Beta-Bernoulli process and algebraic effects
in: Proceedings of ICALP 2018 (2018).
https://doi.org/10.4230/LIPIcs.ICALP.2018.141

[54] Staton, S., H. Yang, N. L. Ackerman, C. Freer and D. Roy, Exchangeable random process and data abstraction, in: PPS
2017 (2017). Available online at Oxford University Research Archive

[55] Stein, D., Structural Foundations for Probabilistic Programming Languages, Ph.D. thesis, University of Oxford (2021).
Available online at Oxford University Research Archive

[56] Stein, D. and S. Staton, Compositional semantics for probabilistic programs with exact conditioning, in: Proc. LICS 2021
(2021).
https://doi.org/10.1109/LICS52264.2021.9470552

[57] Wood, F. D., C. Archambeau, J. Gasthaus, L. James and Y. W. Teh, A stochastic memoizer for sequence data, in:
Proc. ICML 2009 (2009).
https://doi.org/10.1145/1553374.1553518

https://doi.org/10.1038/218306c0
https://people.csail.mit.edu/milch/papers/blog-chapter.pdf
http://www.lfcs.inf.ed.ac.uk/reports/90/ECS-LFCS-90-113/
https://doi.org/10.1016/0890-5401(91)90052-4
https://doi.org/10.1007/3-540-45931-6_24
https://doi.org/10.1017/CBO9780511811555
https://doi.org/10.1016/j.tcs.2003.11.020
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=1DD7A2AF26511541045A7A0D90CCA5C8?doi=10.1.1.173.317&rep=rep1&type=pdf
https://doi.org/10.1145/3434292
https://homepages.inf.ed.ac.uk/stark/namhof.html
https://doi.org/10.1109/LICS.2013.58
https://doi.org/10.1007/978-3-662-54434-1_32
https://lazyppl-team.github.io/
https://doi.org/10.4230/LIPIcs.ICALP.2018.141
https://www.cs.ox.ac.uk/people/hongseok.yang/paper/pps17a.pdf
https://ora.ox.ac.uk/objects/uuid:55a27568-798c-49f1-813f-42594da5c3c0
https://doi.org/10.1109/LICS52264.2021.9470552
https://doi.org/10.1145/1553374.1553518

	Introduction
	Stochastic memoization by example
	Memoization with finite domain
	Memoization with countable/enumerable domain
	Memoization with non-enumerable/diffuse domain

	A language for stochastic memoization and name generation
	Operational Semantics
	Extended expressions
	Configurations
	Reduction rules

	Denotational Semantics
	Base category
	Probabilistic local state monad
	Categorical semantics
	Soundness

	Haskell Implementation
	Summary
	Acknowledgements
	References

